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Hello we are going to focus on the last word of this class that is variational methods in 

mechanics and design we are going to discuss implementation of the algorithms that we have 

already discussed at length that is the optimality criteria method we will see it in action today 

using the software mat lab first we will go through the algorithm one more time and look at the 

code every line that is important for us to look at and then run the optimizations for a bar as well 

as a beam the stiffest bar and stiffest beam were given amount of material okay. 
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 So let us look at the optimality criteria method that we are going to use. 
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We will first review the structural optimization of a bar problem talk about the necessary 

conditions and then describe the optimal getting a method in brief because we already discussed 

that and focus on the implementation which is our main task today. 
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 So this is the statement of the problem where we are trying to minimize mean compliance if you 

recall MC is mean compliance it is basically work done by the external force and if you 

minimize it that is equivalent to maximizing the stiffness of the bar and this is the governing 

equation for the state variable u is our state variable A (x) is our design variable on that design 

variable we have a resource constraint that is a volume constraint. 

 

 Where V star is there so the data for this problem which we must write we know the length of 

the bar we know the loading P (x) and we know the E modulus of the material and V know we 

start these are the things that we know okay. 
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So from here from the problem statement that we just described we write the Lagrangian we 

write the Lagrangian which is basically objective function added to that the governing equation 

with the corresponding Lagrange multiplier function and then Lagrange multiplier for the 

constraint and multiplied by the volume constraint so we can see what is our F the integrand p u 

+ λ times all of this + capital λ this is λ is a function of x where this is corresponding to a 

functional type constraint or global constraint will be a scalar unknown constant and then the 

volume constraint. 

Here and then we take variation with respect to A  that is variation of the Lagrangian with 

respect to a gives us what we call the design equation this is our design equation as we had said 

in the last lecture that there is no area of cross section in this equation yet it is a design equation 

it gives a design equation that is what we will discuss and use it today and this is our adjoint 

equation and λ  is the adjoint variable and it looks similar to our equilibrium equation and hence 

we can solve for λ there is this  equation and this the difference is there is U′ here there is λ fine 

okay . 

 

So we conclude that λ+U and then we have the complementarity condition here complementarity 

condition here which is λ times the inequality constraint either λ is 0 or this expression is 0 in 

this case we would conclude that λ  cannot be 0 because if in that case this one if λ is not 0 then 

this one need not be 0 then it is strictly less than then we have a problem if λ is 0 then we will 



have a problem if λ is not equal to 0 it is fine then this has to be 0 the constraint becomes active 

okay. 
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  So solving the equations we first see that these two let me change the color of my ink from 

these two we get that λ +U and then from this one and this one by substituting for λ′ = U we get 

this and we get the condition which we call optimality criterion E u ′
2 

by λ = 1 and this is what 

we use in the so called optimality criteria method what we do is this is supposed to be 1 so we 

multiply our A (x) in the(k) ration here (k ) refers to K iteration okay, so what we do is we take 

an initial guess best initial guess is to take a of X to be a uniform function so that it satisfies the 

volume constraint you just take V star divided by L as the area of cross section . 

 

So you satisfy the volume constraint area is the same for all values (x ) then you multiply this 

one what you compute at K
th 

 iteration you have to solve the equilibrium equation that is this 

equation then we will get U and U′ then U′ goes here anyway you know x modulus will describe 

how we will compute λ at the k 
th

 iteration multiply by A you  will get K+ first iteration and then 

keep on repeating it until it converges what do you mean by convergence here that AK + 1 

should be = AK in other words this quantity over here should be = 1 and that is exactly what our 



optimality criteria is so convergence is this becomes = 1 that will be our convergence chance 

until that we have to iterate that so the optimal method works . 
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 So to make it faster we just do that but then we introduce a better here are slower depends on 

what value of β you take we can tune the speed of convergence where you get AK + 1 based on a 

AK the information you raise it to an exponent what should become 1 if you raise it to an 

exponent it will still be1 so we choose appropriate value of β we normally choose two or three 

and that is up to us when you run in the code once we have it we have to find this λ at K
th

 

iteration okay, for that we use the volume constraint because volume constraint the 

complementarity condition. 

 

 Where we say λ times constraint = 0 either λ is 0 or constrain 0 if λ is 0 we have a problem that 

equilibrium question will not be satisfied because you ′ it would mean that U′ is 0 but U′ is 0 then 

equally equation will not be satisfied with is EAU′ +P = 0 okay, so that is not possible so lambda 

should be greater than 0 in that case the constraint should be active which is what we have this is 

a consequence of active constraint active constraint okay, since its constraint is active we have 

ADX integral = V star hence we can take this changed A (x) because when you start 



optimization iterative process we take A (x) the initial guess to satisfy the volume constraint now 

when you update it in this manner. 

 

 So this particular one we put for A (x) and try to find this λ that is what we have done we have 

put this new 1 AK + 1 that is AK + 1 we integrate over the length 0 to L that should be = V star 

that will enable us to solve for this λ raise to β  and hence we get this  λ at creation in this manner 

again once you know EA which have assumed to let the optimization start that will give us UU′ 

and you would have assumed value of β you everything. 

 

 You get in the code the denominator we are going to denote by β 1 okay it is not Lagrange 

multiplier anything which is denoting so that you can take this algorithm and look at the code 

and understand how the code in mat lab is implemented okay. 
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Now we also discuss another thing which is adding upper and lower bounds on area of cross 

section area of cross section cannot be very large or we cannot be negative or even close to 0 we 

wanted to keep it at a min or a  L okay lower bound that we choose and then upper bound also 

that we choose then corresponding multipliers L and this should be U you will be there UL and 

you U will be there so because of that our design equation will have two extra terms which are 

indicated here – Min -UU because AL here we have actually this one should be positive and this 

should be negative because of the way no. 

 

 No sorry I think what we had is aright what we had is right okay, because A has negative here 

and A has positive - UU  L - UU = 0 we do not really need to worry about them we do not need to 

need not compute them unless you are interested in calculating the value of λ analytically okay, 

wherever your λ value you want to know it is need not compute it will come as part of the 

calculation as you will see okay, we not complete them we will just go with . 
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 The idea that the area of cross section integrated over the entire domain 0 to L now we have 

three portions will have the first portion second portion the third portion first portion is the one 

that where the area of cross section has reached the lower bound that is where multiplying area 

by taking it as AL itself the L by n is the DX discretization you see the integration has become 

discretization because in the computer when implemented we have to discretize this is the upper 

bound portion upper bound portion and then this is the rest of them which is controlled by the 

design equation so this is controlled by the design equation okay then you can compute like we 

did when we did not have lower and upper bounds only thing is in the numerator will have a few 

extra terms okay ,we have to sum over a set where the area of cross sections have been pushed to 

lower limit that is if it goes below over limit AL we push it up if it goes above upper limit. 

 

We push it down to AU okay that is the difference and rest of it is the same so just reverse of it 

and because it is 1 over λ raised to better so we have to take the beet root of this whole thing 

again in the code this is denoted the is denoted like this in the code in the mat lab code that we 

are going to see shortly okay, this is our algorithm so if you look at. 
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How the algorithm works we have AK + 1 being updated from the k 
th

 iteration information ok 

and then we keep on looping this is our outer loop to update AX  when X k and AX k + 1 

become= meaning this what multiplies it becomes = unity as we have said that we have 

converged right but an inner loop is needed that inner loop to update the λ so we have another 

index J here to update λ why do you need update λ because. 

 

When you update AK + 1 in this manner area in some portions can exceed the lower bound or 

upper bound then you have to push up in the case of lower bound being exceeded or push down 

in the case of lower upper bound exceeded so when you do that the λ value has to be updated 

because λ was calculated in the iteration of the inner loop when you begin assuming that nothing 

has gone above and below the lower bounds now we are pushing it we have disturbed the area  

of profile. 

 

So you have to recompute the value of λ which is what necessitates this inner loop so we have an 

outer loop inner loop as indicated here the outer loop you need to update area of cross section 

that needs the finding of the λ  k at the kth iteration for that you run inner loop and how when do 

we stop we stop when no more elements exceed the upper and lower bounds which ever exceed 

we push them to the either lower upper bound as the case may be but we keep on doing it un till 

there is no change. 



 

Then we stop the inner loop so there is an outer loop that goes repeatedly with the index K there 

is an inner loop that goes with the index J so that is what is going to happen so for every outer 

loop there will be a few inner loop iterations and then exits goes to outer loop and outer loop 

converges when this quantity becomes equal to 1 and then a k + 1gets very close to AK based on 

the tolerance that we specify in the code so let us look at the mat lab code. 
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Now so this is those of all of you should be aware of mat lab by now otherwise you can go to 

math works website and look at tutorial files okay a percentage sign in mat lab shows a comment 

line that will not be executed by mat lab software so we can write your name and things like that 

so for example this code we are modified it for NPTEL massive online open course so course is 

redundant here okay. 

 

So there are some housekeeping commands meaning that we have to do close all figures that are 

there clear all variables clears screen and hold off all these are basically what I call housekeeping 

commands you have to keep your you know code in it and it is workspace everything we have to 

keep it clean these are housekeeping commands it is a good idea to do add these lines any time 



you write mat lab code we are specifying length here and the comments here say what it is and 

data for finite element analysis. 

 

Because that is what we will use here we are choosing 100 along the length of the bar and 

number of nodes in that case will be one more than the number of elements number of elements 

is n which is 100 number of nodes will be one more because if I say I have two elements how to 

have two three nodes this is 12 these are elements if it is a bar just a straight bar so we will have 

one more than the number of elements for the number of nodes okay that is straightforward 

enough and you can change the number and play with the code. 
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Now after that we define the length vector okay the once n / 1that means that it is a n / 1 array or 

vector okay and that is magnitude is l /n so we have n elements and length of the bar is l each 

element will be of length L divided by number of elements so L / n and then we have this vector 

containing initially area here we are just taking constant 6 ideally we can take volume that we are 

going to specify be v* divided by number of elements but does not matter it just starts from some 

uniform guess we can change the number in the code and we have the young’s modulus each of 

them is given as n / 1vector okay. 



 

Because that is how our finite element code which is part of this code is implemented and then 

we have the x coordinates for this it is a one-dimensional problem so it is like this no different 

nodes are there we are to the x coordinate x1 x2 x3 of course until X we have n + 1 nodes so that 

is xn + 1 and then ny we do not have any of them they are just 0 it is a one-dimensional problem 

which zeros okay. 
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Going to the next few lines in the code we have copied the lines over here to explain then we will 

go to mat lab code in math lab soft and run it and we are taking the force here if you look at these 

commands there are these comments here so whether you want to put uniformly distributed force 

the P (X)  is like p0  which in the steak is taken as 20 units then you would give this 20 times 

once n + 1 / 1 because number of nodes are n + 1 so you have to do that so f vector that we have 

will be n + 1 / 1 okay if you want force at the center you have to know n / 2 1you will specify 

some force or force at the end f n + 1 times 1 okay. 

 

So n + 1 times 1 you have the for specified at the n other time you put a percentage sign here and 

remove this percentage becomes midpoint then you put back percentage remove this force in the 



end basically you can specify whatever force you want algorithm is going to work okay and then 

there is as connectivity to say which nodes make up an element so if I have a bar and several 

nodes here let us say this is 32, 33, 34 then 32 and 33 makeup. 

 

Let us say 30 second element that is what is connectivity does and then most important thing for 

us the boundary conditions if you see we have bound to connect four fixed free then this π done 

that is displaced upon the degree of freedom ID displacement ID for the first node value is zero 

that is fixed and free that is we have a bar this end is fixed that it is free so this is fixed and free 

okay. 

 

Similarly fixed then you put 1 and n + 1 both are specific to be 0 and then free fixed we have n+ 

1 value is 0 what value this value is what value you are specifying for that node all these are self-

explanatory we are going by line by line here. 
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And then once you have it we also have to give that tolerance that is tolerance is given as 10 

power - 3 here let us up to you can increase it decrease it that is going to decide when area of 

cross section AK + 1 how close it is to AK when it quits that is what we have and in this etta our 



data okay that is this in the code it is written as beta actually better in when I explained it that is 

we had something that event will be equal to 1we were raised into beta right that is this better. 

 

Oh here it is taken as point3 we are slowing it down rather than speeding out that is something 

that you have to decide when you run and then v* is 20 units you can put whatever these 

numbers here and Al and AU are here this is AU upper bound and AL this lower bound and then 

history a basically it stores everything you can see how the bar we started a uniform bar how the 

shape changes we can see the figure file to see how optimization is being carried out and thus 

those commands here. 
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And this is the real implementation the font is a little small here but since you have the code that 

is also posted along with this we will be able to see that more clearly or pass the screen and look 

at it so first thing is we are calling fem bar that takes the area of cross section moment second 

moment this actually is not needed here this is for a this is actually length of the bar L here it is 

not I a length of the bar and then X model is x coordinates y coordinates are not needed encon 

number of elements number of nodes force vector de Spidey dispel that we describe all this is 

input to finite element code that is going to return you displacement and a little bit of other stuff 

that we do not need right. 



 

Now for this discussion it returns reactions and P internal forces and K singular matrix before 

displacements are applied and AC the strain energy we are interested in U we use that you to 

compute u’  using finite difference method so this one is finite difference method to compute it is 

all numerical now we are computing finite difference using finite difference method and then we 

initiate this λ  1 which was the numerator of our update scheme that we had pointed out in the 

slides earlier let us go there so we can look at that quickly. 
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So we said that this in the code is denoted as. 
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λ 1 okay that is what we are talking about that is all of this stuff is λ 1 okay that is there in the 

code so we are here λ 1 and that summation that we do if you remember that that had a 

summation that is what we do and then once you have λ 1you compute λ is λ 1 way V* raised to 

1 over β as I said data in the code is better in the slides which is a symbols okay but different and 

then you update a j equal to aj that is k
th

 information and what should be equal to 1 okay. 

 

That is how we update and there is a iterative loop you see this number of iterations so iteration 

outer loop starts here outer loop starts here okay. 
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And then we are checking by setting a false for the flag and then checking whether it has reached 

a max or a min if it is there we set it to e masts are a min if it exceeds upper bound we set it to a 

max with exceeds lower bound set it to a min al and au and this is a u and this is al. 
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We do that then the inverse now so inner loop begin here okay in the loop that we discussed in 

the slide you should go through it carefully inner loop begins here that goes where you check 

whether it is exceeded or not when it does not exceed you update using our usual design equation 

otherwise you set it to a max and min and then check first when you come if anything has gone 

you say you assign it and you are up count that is how many elements are there above which 

have reached MX and then how many have reached the lower bound amen or a you one AF you 

keep count of that. 

 

And then use that when you are updating for λ and that is over here in terms of computing this λ 

1okay now you have to take that λ one where you are subtracting that again it correspond to the 

formula we had in the slide so up count and down court we count how many elements are have 

exceeded upper bound and hence are pushed down to upper bound how many have exceeded 

lower bond and then pushed up to lower bound. 

 

So all this we had subtract from v-star remaining one of them we have used to compute our λ so 

go back and look at the slide so let us do that quickly to see what we are talking about so we are 

talking about this. 
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So how many have exceeded lower bound and upper bound that is what we are subtracting from 

v * if you see the code we are subtracting this and this okay so once we do that we go through it 

and then finish the inner loop you can see the text here but this is inner loop ends here inner loop 

ends here so it began here it ends here okay we are basically taking care of computing λ in the 

new loop and then it is inside the outer loop and then finally. 
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We store everything check for convergence here is where we are checking for convergence to 

see how first of all we are storing all the history so we can update plots we can see how 

optimization is actually working and that said. 

 

Now what we will do is we will go to math lab software and look at the actual running of the 

code so we go here I will start mat lab over here which I have already started and the code bar 

optimization is over here that you will see on the screen in a minute so all the code that I showed 

you in the slides is exactly listed here okay so you can compare with the slides and here and the 

data you can change whatever and do it okay what we will do is now we will look at the data 10 

units. 

 

And this is only for rendering we have diameter otherwise it is not needed just to show it in the 

graphics number of elements is 100 we can change to whatever we want number of nodes as we 

already said is n number of elements + 1 and we have six for the uniform initial young’s  

modulus to 10 it is actually giga Pascal but does not matter for looking at the shape when you 

solve an actual problem you put their actual numbers with the correct units and so forth and we 

went through all of this let us just look at what boundary conditions are boundary conditions only 

the first node is fixed at zero value meaning we are looking at a fixed free condition okay and 

what is the force the force commands are up here we are using uniform distributed force if you 



want other ones they are all over here we can remove the comment and put them that is this one 

is for midpoint load only this is for n point load only right. 

 

Now we have uniformly distributed load force P (x) equal to P0 is 20 units here and then we have 

fixed free bar let us run this and then see what happens you will see that how the thing change 

change too quickly is converging already okay and the cursor comes back over this window that 

means that we have converged let me look at the figure window it is done so just so that you will 

not miss it I am going to run again watch it this time how it goes iteration wise and when the 

command prompt comes back now it has converged it come to this very quickly and you see that 

it has reached the upper bound over here that we have set okay. 

 

And they reach the lower bound we have set let us find out what those values are a max and A 

max somewhere so a max is 6 a min is one okay let us look at the figure so it is a max is 6 so I 

think the way it is done yeah I think it is the drawing here does not really show that a minima 

because some scaling must have been done over here okay so but basically has A max and there 

is any mean we can check and see why it is showing breadth of the beam is so much but here the 

nature of the thing is important it is linearly profile linear profile here which is a lower limit and 

upper limit okay. 

 

If you change the numbers it should change actually but here we are taking from here to here 

looks like there is a scale factor of some kind in order to show here it is only rendering but 

actually area profile will be calculated okay. 
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Now what we will do is we will well let us let us try this if a min is actually working let me put 

this as 0 and then run to see if it works yeah it did work so the tip point went to zero so there is 

scaling scale factor does not matter in rendering now there is a scale factor remains 0 even after 

scale you should come to zero became a sharp one here okay a men and a max some value okay. 
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Now what we will do is we will put back this again to let us say one or something okay now it 

we run it and it is going to go like that it lodged it is not allowed to go to zero right it is still okay 

I would Stan so now we are going to change the displacement boundary conditions so it was a 

fixed free. 
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Let us make it fixed, fixed so what I will do here is to fix also the other end that is n plus 1 and I 

need to add the value because I  am fixing it that should also be 0 should be fixed, fixed bar now 

okay comma r this either one is fine destroy comma so this has not changed one second I think 

we have to put the this one to be semi colon here this value also is semi colon okay, okay now 

you see it has changed we have to put semicolon here 1 and n plus1 node and the 00 value fixed, 

fixed this fix is tapering down and tapering up so fixed, fixed one is different. 
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We can also do fixed free, free fixed so I will remove this so only n plus 1 the first node is free 

the last node is fixed if we do that it should show a mirror image of that so previously it was 

tapering that way and making this lower bound then it becomes lower bonded because upper 

bound basically the code works whichever way we want okay and now if you were to play with 

the forces so we had different forces here. 
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So if I want to apply force only at the end okay let us take that and I will make it zero right that 

that array is needed and then I will pray that only n plus 1 at the end I would like to put 100 

everywhere else it is zero okay the profile if you see the profile is going to obtain profile fixed 

free uniform loading this is the one which you can verify analytical thing we have done in the 

earlier in an earlier lecture now if I put constant loading okay at not n because that we have fixed 

that the first node okay let us see what happens then it remains constant it just adjust to the 

volume and that said it is converged already because the prompt came in so I will run again to 

see very quickly it converges and comes over fixed free but when you put this loading here again 

at one node so we can change it we can add another node if you want. 
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Let us say I added at the NY to the mid one somewhere in the midpoint let us see then you see it 

goes to a min here is fixed over here and free when I whenever a load is only midway I do not 

need material over here the algorithm realizes that many times when you implement algorithm 

like this it will not miss the intuition that you have and that you have to check various cases like 

we have doing now so we can basically run everything all right so having seen the barcode I 

would like to show you the beam code also. 
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Which we have discussed optimal criteria first affair structure so we will run this beam code now 

okay again you can go through all these lines which basically mirrors the bar code but for the 

case of beam where there will be fe m beam that will be called okay that we can see instead of 

bar now we will  have the beam code being run so you have a fee m beam that also will be given 

in the website for you to download to run the code yourself okay let us run it whenever you run 

massive asks for change in the folder which we are doing here so it is also you can see how it 

changes looking at it we can say it is a fixed, fixed beam. 

 

It is still some small changes are still happening now it is not straight line anymore like in the bar 

in the case of abeam this is for uniform transverse loading that is acting perpendicular to the 

beam here and now until the command prompt comes here it is not done so it is still changing 

slightly you can see some lines here and there slightly flickering means that it adjusting fine-

tuning accord to the tolerance that is specified in this program. 
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Now it has come back so it is done we have fixed, fixed beam so we can go back and change the 

boundary conditions so if you see in the beam code we have one two three, three times number 

of nodes minus 23times number of nodes minus one freedom number of nodes basically every 

node will have three degrees of freedom X displacement Y displacement and then rotation the 

slope okay  so by specifying one two three I am fixing the beam like cantilever at one end one 

two three that is the it cannot move in the X Direction it cannot move in  y direction it cannot 

rotate also and same thing I am doing in the right hand side because three star n nodes 3 star n 

nodes minus 1 32 n nodes minus 2 all are fixed okay. 
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If you just want to see what happens if I remove this here when I remove that it is going to 

become like a pin joint because I am allowing to rotate then remember the profile here it is 

symmetrical because fixed, fixed beam now by removing the three star n nodes I made it like a 

pin joint so let me run this you will see that it changes the pin joint actually wants it wants no 

material there if I make area of min here equal to zero will actually become a point right. 

 

Now it is going to a min some value that is specified okay, it is still running because the 

command prompt has not comeback when it comes we will go there is some small changes you 

cannot see, see how quickly the Appalachia algorithm converges we are only being overly 

careful by giving a very small tolerance value and it takes some while to put but you do not see 

any change but there is a little change happening. 

 

So i want to show you that if I make a min equal to 0 what happens let us try that a min over here 

it is one let us make it 0 okay, so make it 0 yeah it is going to 0 so it is becoming a sharp tip and 

since over here also tipping sharp tip now it is actually deciding to go apart and come together go 

apart come to that is what iteration is happening okay, transverse loading is there instead of 

becoming two beams it is just adjusting a finally it went because you cannot have 0 because was 

going like this so this may take a while for it to resolve number of maximum iterations you put it 



will be basically it wants to make it once come down we are allowing it to go to 0 it has gone to 

0 and goes there looks like a fish, okay. 

 

So transverse beam the loading acting and a fish is you know we can say optimal but that is not 

correct it will just looks like a fish it has now come back right, max new iterations is 50. 
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So instead of putting 0 let us put 0.5 or something like that then we will see the effect of that 

already, okay. Now it has some area of cross section it's not going to 0 this is for fixed and 

pinned beam okay, when it comes back then it is done we will get to command prompt, prompt 

and beam code would have been done okay, so this way we can change the boundary conditions 

we can change loading and look at the solutions optimal solutions for the profile okay, very 

small tiny changes must be happening here that is why it is sticking so there is some flickering 

here, here there okay. 

 

So it is just running until now it is done command prompt has comeback so what we will do now 

going back to the this going to let us make it like a cantilever I will remove these are the degrees 

of freedom completely make the other end free only 1,2,3 left node fixed in xy and the slope, so 



if you do that then we should see that part it is coming down like a curve in the case of a bar to a 

straight line but here it is not and it just goes to a min the other part okay, so you should learn by 

learning it several times by looking at it you have to guess the boundary condition it is fixed and 

free, okay. 

 

We can try lots of different boundary conditions fixed and guided and many others okay, fixed 

and guided means that we fix it okay, let me back so roll said, so that will make it 1 okay so 

going to this displacement boundary conditions let it go yeah, over here so fixed guided means 

that I will fix that the last degree of freedom that is slope degree of freedom and I will fix the x 

thing but y are alone meaning that I will have this one the right-hand side he is able to move up 

and down but cannot rotate this is not alone but can move up and down. 

 

So I have a beam this right-hand side cannot rotate but it can move up and down such a condition 

is what we have specified it will give you a slightly different one it almost looks like fixed, fixed 

but it is allowed to move there okay that is what we had put, right. So it looks slightly asymmetry 

now slightly and we can change the boundary condition and look at what happens okay, X 

displacement y displacement whichever way you want we can try all of those okay, it is still 

running there are fine adjustments being done okay, so I would encourage you to try out these 

codes because we will be giving a programming assignment also for you so that you can try 

these programs and look at your own optimal profiles and run the programs. 

 

In the future lecture we will have a strong guest column design which again can be done using 

optimality criteria method. Once you follow the algorithm that we have developed by writing 

down a Lagrange equations and solving the joint equation analytically and get the optimality 

condition from the design equation and developing that kinetic criteria method implementation is 

quite easy in fact once you have finite element analysis doing structure optimization is not at all 

difficult it is very straightforward. 

 

The code may look long but it is very clear and it is very easy and this lecture we compared the 

code with algorithm so you can understand the code that is given okay, so we can run lots of 

them here. 
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So I can again go back to cantilever let us see how it looks when I change the loading to only 

point loading so let us see where the force is forces here so now it is force applied on all of them 

like one okay, so we can make it uniform distributed or only at one node now it is going 1 to 1 

nodes all of them it is giving but we can make only the last one have lost one has a movement 

anything that we can try because there are so many so once everything is 0 let me comment this 

line let me comment this line, okay and give force okay that is 3*n nodes number of nodes that is 

the last degree of freedom that is I am applying only a moment load. 

 

Let me put some 45 does not matter what it is okay, if we do that loading let us see the code 

works or blows up so we have constant movement when there is constant movement we got 

conservation of cross section that makes sense if you go back and look at analytical thing if 

constant movement only movement we applied for a cantilever at the end then the bending 

moment is the same throughout the beam and hence up my criteria method would tell you that 

area of cross section because we assumed second moment of area equal to area of cross section 

some αd
2
/12 that is just an αβ=1. Then what we get is uniform cross section that is what it is it 

converge you very quickly. 
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Instead if I apply a vertical load okay, that degree of freedom will be one less than that okay, this 

becomes a transverse load let us see what happens yeah, now these the tapering thing that we 

have so it in this case has not reached the upper limit but has reached the lower limit okay, it is 

still running because command prompt has not come back now it has comeback we can rotate 

and then see how it looks now it is a profile that is straight goes like this, okay. 

 

So yeah, that is how it is all right so if you want again the uniform distributed load you can have 

that so we can move back and remove uncomment these things no comment run it again for a 

cantilever it will go back to that they will be slight different now it's a little bit curved we are a 

cantilever was when you have only a transverse load at the free end of a cantilever becomes 

straight linear but if you be distributed load it gets a little curved and you can see this now yeah, 

a little curve compared to the one that is there. 

 

In fact one may say that Eiffel Tower if you remember that has wind load which we assume that 

it is constant then it will have a shape so look at this shape does it not remind you of that Eiffel 

Tower because there is a M input if there is no M in it just goes like a spire I can make nm= 0 it 



will go there we will just do that the last one that we tried a min was somewhere in the code here 

yeah, a min let us make it 0 okay, then it will just go like a point thing. 

 

So you can already see it is happening okay, once you allow 0 it just goes there with the load that 

is being there we will wait for the prompt to come up so it still making some small T is going to 

a max and then nm okay, and that is 0 so this became a pointed thing like spires. So many of 

these structures that are built were also optimal they probably did not run all these algorithms but 

the intuition guides good structural engineers to come up with optimal solutions, but you have 

algorithms to get that now. 

 

So let me just turn it around and see how like a church spire coming here with a pointy tip 

alright, so you have the coding hands now you can run it and understand how it works and enjoy 

the code, bye. 

 

 


