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Okay so we were solving this problem of making the stiffest beam for given amount of material 

we got our design equation a joint equation and complementarity condition and the concern the 

equilibrium equation and we said that when we looked at the adjoint equation. 
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So let us look at the equation when we took the variation Lagrange respect to W we got an 

equation that looks like this okay and then we said that if you simplify you will get to this which 

leads us to the conclusion that λ equal to minus W that leads to a very interesting optimality 



criterion that strain is uniform and hence stress is uniform and then strain energy density is 

uniform the simplification which I have done here. 

 

Which I hope you did after the previous half of the lecture so this is what we need to simplify 

which if we do step by step you do not have to expand everything ahead of time because get 

cancelled if you see the first step implies the first line implies this line where I am leaving this as 

it is and I am also leaving this as it is and expanded only this last one okay then this 2 and this 

get canceled and then next time I am still not expanding this. 

 

But I expanded this thing and this particular one also I expand it so everything now except q has 

a double derivative again I can see this and this so this and this get cancelled and this and this get 

cancelled leaving out only this term which is this if we compare that with the equilibrium 

equation that we had which was (E α Aw “)” – q = 0 that was the equilibrium equation from 

above which we had also derived in the last lecture equilibrium equation. 

 

If you compare these two we immediately conclude that λ equal to minus W which winds up in 

the design equation gave us the condition. 
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That  λ  is equal to (E α Aw “)” 
2 

so the optimality condition here the optimality condition here is  

λ  equal to (E α Aw “)” 
2 

right again you see how it came about we had this as the design 

equation and then we substitute for  λ  double prime minus w double prime that gave us this okay 

again let us say man remind ourselves that α is d square by 12 because in this problem we have 

assumed that D is given its part of data. 

 

So this is the condition we got by writing or manipulating the design equation but there is no 

design variable here a this is exactly what we had for the bar as well but it does help us compute 

area o cross section because we know the equilibrium equation which is (E α Aw “)” – Q = 0 

now from here we can substitute for w double prime okay so if we do that I get (E α A√ Δ/E α ) 

right that that is w prime we substituted and then double prime minus q equal to 0. 

 

So even though there is no A explicitly over here in the optimality condition it does come about 

when you put that into the equilibrium equation. 
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So once we have here we know that these are all constants in fact I can rewrite this as square root 

of e α  λ  all are constant except that we do not know  λ  times a double prime will apply only to 

a because others are constants right so that is equal to Q which is given to us so if you want to 

get the area of cross section I just need to integrate twice that e α  λ  that I have okay times I will 

have integral of Q of X first time let us like step by step a prime. 

 

I will get QD x q is a function given to us we can integrate it and then there will be a constant 

okay then one more time if I do I will get 1over square root of E α  λ  then we will have this one 

more integral (q dx)dx + C1x and then we will have c2 okay now we have condition the 

boundary conditions which we are not writing but I encourage you to do this because it is a an 

application of calculus of variations. 

 

We had written all the general boundary conditions you write them which will enable you solve 

for this constant c1 and c2 if you know Q you can integrate twice and then c1 c2 the boundary 

conditions then you get a of X the problem is solved okay analytically that we do not have to 

resort to numerical things here okay if Q is a load that is not integral then you need to do 

numerical integration only for Q twice. 

 

And then you get the answer okay this can be done what happens if we go for the moment of 

inertia f sorry second moment of area I not inertia this I we had written it as a raise to β  and we 

had two possibilities d is assumed that is what we did until now to solve this and the other we 

had said is B is assumed right, so this gave us α equal to d
2 

/12 and β  equal to 1 which was easy 

and now if B is assumed α because one over 12 B
2 

 and b equal to three okay. 
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Imagine that we had to expand this term that is we had (E α Aw “)” which we expanded it that 

we got something before now that becomes (E α A
3 

w
’’
) so expanding this will be much easier 

than expanding this and doing the calculation now you see a cube is their β equal to three it will 

become lot more terms but that can be done if you go to Mathematical you can do it by hand you 

can do it by hand as well. 

 

If you use Mathematical are a symbolic manipulation software we will do all the expansions for 

you and then you can write down or Lagrange equations just simply taking partial derivatives. 
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As we have seen for the design equation and that joint equation so what we have here you can do 

all of this using Mathematical our maple and our by hand which is doable finally what you 

would get when you do all this that is something that we should remember we will be getting the 

design you equation will be getting the design equation because of taking Lagrangian varies 

respect to design variable equal to zero okay. 

 

And this is a design equation we have particular form there will be some expression x λ  x some 

expression equal to 0 that is form of the design equation we had already said that this particular 

thing will be gradient it will be an expression meaning at every point x gradient of the objective 

function variant of the objective function okay that means that if I take objective function and 

take its derivative with respect to A. 

 

In the sense of calculus of variations whatever you get will be the expression for every value of x 

if you evaluate that you be the precisely the gradient and this particular thing is going to be 



gradient of the constraint when I say constrained not the governing equation that is just a state 

variable controlling equation that is really not a constraint the real constraint here is a volume 

constraint that is what. 

 

Because the corresponding λ is there for that constraint that will become the gradient of that if 

we go back and look at the case when D was assumed our design equation they go all the way up 

here a design equation look like this λ minus e α w w’
2
=0 if I now plug that inhere for that 

problem so this is e α w w’
2
 square with a minus sign and this is one right that means that this is 

the gradient of the objective function objective function here is the mean compliance integral of 

Q W is that integral if you take derivative at a particular a of X okay FX is a function let us say a 

particular value of x if you take a of X or that cross section. 

 

If you change only their how much at what rate as the objective function change is given by this 

expression so let me reiterate that saying that in this problem as it will happen any problem if 

you look at what is in the parentheses ye α w w’
2
 is the derivative of a of X a particular a of X 

any value of x of the objective function which is the integral 0 to l q w DX and this has to be 

understood really well because you have an expression to say what happens I have a beam okay 

let us draw a beam profile. 

 

Let us say that is optimum let us say these optimal somebody has told you it is an optimum now 

or even otherwise some profile is given let us say at some value of x let us say this is our X at 

some value of x if I change the cross section little bit little bit okay let me use some color some 

material I want to add then obviously under the loading q if I compute w by solving equation I 

will have a different mean compliance right compared to the one without this little additional 

blue right. 

 

So what is at what rate that is change is given by this okay and likewise in this case gradient is 

one because the volume constraint we have integral e DX the respect to a if you take derivative 

get one and that is what we got okay design equation will always have this form and a joint 

equation will always have the form similar to equilibrium equation numerically if you have a 



finite element routine to solve the equilibrium equation for W you can also solve λ because what 

will be different is just the loading. 

 

In this particular case loading turn out to be minus Q let us look at that equation again we got if 

this is the equilibrium equation we got this as the ad joint equation for solving the ad joint 

variable λ here if you see the loading real loading is minus Q here it under B plus Q meaning that 

loading is minus Q okay so this is a consequence of the objective function which we have Q 

integral WQ q w DX. 

 

So what we have there is essentially the ad joint load which is simply gradient objective gained 

of the objective function with respect to the state variable with a minus sign in this case okay so 

if you follow this procedure you get in a joint equation that look exactly like the equilibrium 

equation if you have an adequate routine to solve for W you can also solve for λ which is very 

easy straightforward once you know q + λ you have the expression for the finer the derivative 

objective function in the design equation if it can be analytically solve like we did in the previous 

example of assuming d to be constant are given we had analytical solution. But now if you have 

other situations let us say other objective functions and more constraints you may not be able to 

solve it analytically. 
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So let us say that we have in addition to volume constraint we have some constraint and stress or 

buckling or frequency whatever then design equation design equation which is obtained by 

taking the variations Lagrange in with respect to the design variable we get something and that 

something again is the gradient of the objective function plus λ into gradient of the 

corresponding constrain there the volume constraint let us say I have another constraint whose let 

us take it as a functional type of constraint let us say the gram multiplier transponder is right. 

 

But that also will have something here and that will be equal to 0 and this will be the gradient of 

that constraint okay so you have expressions for gradients coming out of this analysis so if you 

do not want to solve analytically or you cannot do analytically for complicated problems this 

procedure this analytic pressure is still applicable because you get expressions for the gradients 

once you have that you can go and use any of the nonlinear or what we call mathematical 

programming techniques which are plenty these days readily implemented in let us say mat lab 

mat lab toolbox has FM in con consume minimization routine would solve using sequential 

quadratic programming and trust region methods. 

 

And there are many more and any of those mathematical programming techniques are 

constrained minimization algorithms can be used to solve because now you are able to supply the 

analytical gradients that is the beauty of this analytical procedure we have the gradients when 



you have gradients algorithms will be happy because they do not have to compute the musing 

finite difference which will be time consuming because we have to perturb each variable at a 

time and do repeated finite element analysis if you have let us say 100 design variables you have 

to perturb hundred times that λ a 1 λ a 2 λ a 3 and so for that will be time consuming whereas 

now we have analytical gradients okay. 

 

That is if you want to use this package programs are blind box blind or black box programs 

where you just supply your problem and the gradients they will give you the solution but if you 

want to write your own programs the design equation is still useful let us say I have a design 

equation such as this let me just for the sake of writing I will just say this is m + λ times n okay 

let there be another constraint but we'll set that aside let us I get something like this m1n will be 

some expressions. 

 

Which we can compute as soon as we saw the governing equation that governing equation we 

can solve whenever we have a so we assume let us say iteration is 0 of X we assume that in any 

optimization problem we need to have an initial guess you have to start somewhere initial yes 

you take that so that it satisfies the volume constraint okay make sure that it satisfies volume 

constraint that is easy because you make it uniform okay then you will make it let us say we have 

a beam of length L you are given some beast our volume you may cross section everywhere 

beast r by l if integrate you will get V* right. 

 

So if you do that make a 0 equal to constant I would say in fact v* if we have v*/ L constant 

because both are given which star is given L is given so it satisfies volume constraint it satisfies 

the volume constraint okay. 
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Now taking this equation we can use that optimality criteria method optimality we are using the 

optimality criterion here that is what is called optimality criteria method we use plural even 

though we have one criteria but remember that we had a joint equation other criteria they are all 

combined into this what we do is that M +λ n which should be 0 we add it to get a 1 so a 1 of 

function the first iteration. 
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The first iteration so this refers to the iteration number this refers to iteration number okay  so 

this we say we add it to the first iteration function we had Plus this M plus λ   times n which is all 

calculated at zero th iteration  okay m we will have some expression the case of the D assumed 

we got this as minus e alpha w, w ‘ square and n was one so we will always be able to compute 

that once you solve the governing equation where state variable is computed and hence its 

derivatives can be computed there is this λ   that you do not know but for that we have the 

equilibrium the volume constrain which is active by the way because we got λ   equal to e I w, 

wm square. 

 

Which is the design equation if λ   equal to 0ww ‘ equal to 0 w, w ‘ equal to 0if put in the  

equation then that will lead to a conflict that something 0plus q equal to 0 minus q equal to 0right 

that why we said λ   cannot be0 that means constraint is active constraint is active less than equal 

to sign goes away then we have 0 to L a DX is equal to v star now not less than or equal to any 

more equal to because λ   is not 0 λ   is 0 w, w ‘ is0 w double ‘ is 0 equilibrium will have a 

conflict okay. 

 

So once you have it we substitute the new area a 1 that is here I put a 1 that means that I have to 

do 0 to L a 0 plus M plus λ   n all of this integrated with respect to DX should be equal to v star 

if you look at that what are the things that are known this we know this we know this we know 

what is not known and also v star is known what is not known as λ   it is only one equation right 

we can actually calculate that we can calculate this now by taking all the things that we have to 

the other side so we start okay  first I think not  really okay let us just do this I will write the λ   

part of it λ   into 0 to L n DX n is equal to one here but let us do it right. 

 

In general you may have an something else so n DX equal to v star minus 0 to l a 0plus M DX 

okay  I have taken this to the other side and I have this now so what I get is λ   is we start minus 

integral0 to L a 0 plus M DX divided by0 to L. 
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And D X okay so basically have n equal to 1 it will just become L but in general you can get λ   

that is also analytical because our constraint here is linear in area of cross section if it is 

nonlinear we are do that also numerically okay but in whatever case AC single variable λ   is our 

variable now we can find that using an equation once you have that λ   you can update we have 

one once you get a 1 you get a 2in a similar way that is wherever one is we have to replace that 

with 2 this becomes 1 this becomes 1 then you have to get λ   for that iteration using the same 

way. 

 

And you keep on repeating it until this becomes zero meaning that a k plus 1 is very close to AK 

or to our satisfaction very close you have to define when you want to stop how accurate you 

want optimal structure to be optimal profile to be you stop meaning that then this will be 

0converge that is exactly what was our condition that M plus λ   n is equal to 0 that is what we 

do ok that is how the optimality criteria method works in numerical sense whenever you can all 

solve the problem analytically we had done this for the bar we will do this for the beam in the 

next lecture. 

 

So you can see that before that before you go to the numerical implementation in the next lecture 

we should also consider the fact that you might have upper and lower bounds on area of cross 

section if you do this sometimes area of cross section may already be negative or maybe 0 which 



you do not want tolerate or become so large in some places that you may not want it so I can put 

in additional constraint that area of cross section at any value of x has a lower bound and an 

upper bound right in fact in this there are two constraints. 

 

One is since we always write everything in the form of less than equal to L minus a less than 

equal to 0 a minus a u is less than or equal to 0 for these are local constraints right because these 

are function type constraints local constraints these are local or function type constraints because 

they are everywhere for all values of x so I will use lowercase letter M ooh we can call it mu L of 

X and then mu u of x two additional multipliers okay so accordingly when you write down the 

design equation this will have minus mu L will come here plus mu. 

 

You will come the design equation so for this problem if you are too right we had this capital λ   

minus e alpha w double ‘ square and then we will get minus mu L plus mu u equal to 0 right now 

we do not know this mu and mu u when do they come because we also have complementarily 

conditions that come from these constraints right that is. 
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We will have mu l x a l minus a equal to 0since they are less than equal to we want mu L to be 

greater than or equal to0 and then mu u times a minus a u equal to 0 and hence we get mu u you 

get an equal to 0 this these two functions that we have here can only be non-negative they cannot 

be negative that is what these things illustrate so you have to find them actually do not have to 

find them because whenever it reaches that when you are updating your area profile in this 

manner when you are updating in this manner we as you find the uppercase λ   you check after 

you do this whether area cross section anywhere is going to disobey these bounds when the 

disobey you push them to that. 

 

If something is exceeding au you bring it down here you and fix it at that when something is 

going below air you just make it stay at all in that case what happens is that area classic is 

already known because if you make anywhere ax of Kate iteration numerically are doing if it is 

less than a el less than equal to we can say then you simply say a equal to a el for that point for 

that value of x okay similarly if a of X K iteration is greater than at you, you basically make that 

a at that point you so if you have the domain okay 0 to L but different values of x there could be 

some domain where it is reaching the lower bound let us use a for the lower bound there could be 

somewhere that could be reaching upper bound okay. 

 

Rest of the blue is in between which is controlled by your expression according to the design 

equation so when you are trying to find the λ using this equation you do not have to worry 

because that 0 to L is now split into three different things we have the first one no constraint 

second one lower bound constraint third region upper bound constraint you accordingly split 

your 0to L a DX into three regions lower bound region upper bound region and then 

unconstrained region. 

  

Okay and you do similarly this calculation you will always be able to get λ   and you proceed 

okay so we will solve a problem where we will have lower and upper bounds on the area of cross 

section and numerically illustrate to you in MATLAB with a code that you yourself can also run 

after we go through a few examples both for a bar we had done earlier now we will do for the 

beam so that we understand this clearly in the next lecture thank you. 

 



 

 

 

 


