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Assuming we say that we have to take to perturbations. 
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So that equality constraint remains satisfied and now we express Δσb okay all the errors ε 𝛿 

either go to zero anyway Δσb can now be written as - 𝛿J 𝛿y derivative at a + ε a/ this one 𝛿 J x 𝛿 

y derivative at b + ε   b times Δσ a that is what we get from here to here right. 
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Now what we do is consider the change in first-order change in our functional because the same 

to perturbations we have taken a function y unperturbed at two points a and b then this one will 

also be there this will be if I looked at it you know here what we have we have to make a small 

change when you have K this is actually K here or not J right. 

 

So let me change that this is yeah so that is 𝛿 K let me take the same thing 𝛿 K 𝛿 K 𝛿 K and 𝛿 K 

okay not J because you are doing in K now we will try to do this in J that will only change will 

become this is 𝛿 J x𝛿 y at a + ε   a into Δσ a the same perturbation that we had area + this will be 

𝛿J / 𝛿yb + εb into Δσb that is the chain that is not equal to 0 what we need say well when we take 

this in terms of only a single perturbation σ Δ σ b. 
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We have now written in terms of Δσ a so we can write this this is a first order change in the 

functional objective functional because of the change in the function actually two changes to 

perturbation so we will have 𝛿J 𝛿y at a + ε  a into Δσa now instead of 𝛿σb  will substitute what 

we have here so that will give us this thing𝛿J / 𝛿y at bε b   and this will be the - okay  I  will just 

put it is – 1 do account for that times I am 𝛿K / 𝛿y εa/ 𝛿K/ 𝛿y atb + ε  b this whole thing times 

Δσ a. 
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Now if we look at this is Δσ Δ σ  the perturbation there is only one that we can make other 

perturbation is dependent on the first perturbation to make the constraint satisfied the K equal to 

0 or 𝛿K equal to 0 first order thing now if you collect all of these this one is going to be we will 

say that all of these ε   that we have ε   a in several places they all go to 0 if a perturbation really 

small the other this Δσ a tends to 0 also right when you have that we can leave out all these 

things now what will be left with will be 𝛿J /𝛿y at a + we want to call this portion include in the 

negative sign so there is a negative sign which came because of this here right including that we 

want to call that as sum λ okay. 

 

So I will write that λ okay what will be left out after make ε  a tends to 0 is 𝛿K/ 𝛿y at a okay all 

of this x Δσa this we argue should be 0 this is the first order change and that should be 0 if y that 

you are considering is actually a minimizing function okay that is what we got so you got an 

equation now let us circle it yeah this whole thing because Δσ is arbitrary this whole thing should 



be equal to 0 right let us remember that now let us also try to write what we have here we define 

something to be λ okay. 

 

Now again these ε    we will not right because they tend to zero what we have here is 𝛿 J 𝛿y that 

is a variation derivative at b okay divided by 𝛿K / 𝛿y at be with a minus sign that is equal to λ so 

what does that give us when we write it 𝛿 J 𝛿 y at b + because λ these are - sign let us say we 

take the - and the other side and we have 𝛿 K multiplying that that will be λ times 𝛿K / 𝛿y at be 

equal to 0 so we got another equation here we had one equation another equation if you look at it 

they are the same only thing is this is evaluated at a this is evaluated at b let us remember that the 

two points we chose for perturbations their arbitrary you could have chosen this a and b if you go 

back and look at. 
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It this a and B because in wherever we want that means that. 
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The two equations that we have here this is equation one and equation two are to be valid at 

every point in the domain fromx1 to x2 so that gives us a necessary condition. 
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Now which is to say the variational derivative of the objective functional okay + some λ times 

variational derivative of the functional type of constraint equal to zero this should be true for all 

x belonging to the interval x1 to x2 everywhere they should be true and that is the necessary 

condition for a global constraint problem now this thing like we had done the finite variable 

optimization problem this is called the Lagrange multiplier okay this multiplier is a scalar 

variable a scalar variable okay. 

 

So we have to find that how do we find it because this is a differential equation because this a 

Lagrange equation will be an expression this will be an expression this is some constant that we 

do not know as yet this is essentially the whole thing that we have here is a differential equation 

right this is a differential equation okay and then we will boundary conditions also that we can 

write for it but in order to solve for this Lagrange multiplier in equation fortunately we have it 

what is the equation to solve for that we have this x1 to x2 G that is k equal to G y y´ ´ dx equal 

to zero. 



 

This is a scalar equation this is a scalar equation because if you remember you recall a functional 

is a scalar it is value because function is a mapping from function space to a real number space it 

is real value scalar so this is a scalar equation so we can solve for a scalar unknown which is λ 

okay so when this is the what we have here is the necessary condition we can also write the 

Lagrangian here just like we had done penetrate variable optimization you have the J + λ K we 

can write a Lagrangian then if you take variation of this Lagrangian with respect to this function 

y equal to 0 what you get is essentially this differential equation okay and we have the constraint 

which is this which we can solve. 
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So we can right now the necessary conditions for the problem where we have minimize J which 

is from x1 to x2 with an integrand fy and y ´ dx where y is the unknown subject to or constraint k 

equal to x1 to x2 where integrand is G which depends on y and y ´ dx let us denote let us make it 

a habit to indicate the corresponding Lagrange multiplier right there okay with a colon there to 

indicate Lagrange multiplier. 

 



Then we can write the Lagrangian for this problem as J + λK then we take the variation of the 

Lagrangian or write Euler  Lagrangain equation for the Lagrangian directly meaning if I were to 

write what I would do is ∂ L / ∂ y - ∂ L / ∂ y´´= 0  zero because you are taking up to the first 

derivative if there are more derivatives you keep on adding as we have already discussed. 

 

so the concept of writing the Lagrangian comes out as we have derived today by taking to 

perturbations and making sure that the constraint remains active due to perturbations then you 

got a condition that looked like this of course Lagrangian included means that what we had was 

𝛿 J /𝛿 y + λ times 𝛿K / 𝛿y these two things being what we get when you write the Euler Lagrange  

equation so this will be this part will be ∂j / ∂ y –∂J / ∂ y´´ equal to 0 likewise this portion  going 

to be ∂K/ ∂y - ∂ K/ ∂ y´ ´ well not equal to 0 right suggest the expression yeah. 

 

So that is what we have and what we have here going to take variation that is what it means 

when you take Lagrangian this L has J+ λK that is what we will have ΛK coming from this and 

total this is what we get okay this is how we do when you have a constraint let us take a simple 

problem from mechanics geometry or mechanics. 
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Which is the famous problem again if I have two points and there is gravity this time I am NOT 

going to talk about brackish different problem there are two points and that is gravity we take a 

problem of a chain or a rope which has some mass okay when you are going to hang it between 

two points this let us say it is fixed over there and fixed over here okay there is there are two 

point seven point one coordinates are given point two coordinates are given what shape does a 

chain take under the effect of gravity this is the constrained minimization problem because we 

know principle of minimum potential energy. 

 

So this chain let us say that the chain has mass per unit length mass per unit length equal to let us 

say a rope some kilogram per meter right this is some kg per meter I have this ρ that is given to 

us and the chain has a length also length of the chain length of the chain or a ρ heavy ρ let us say 

this is length is l okay and let us say the separation between these two is some let us say H okay 

horizontal separation is H vertical separation will be there you know one and two points 

coordinates are given to us. 

 

How do we pose a problem because it change all these little points on the change every one of 

them wants to minimize its potential energy as a consequence everything wants to go down as 

much as they can right so but then they cannot all go because it is held fixed or the two points 

because they are all this is in extensible chain we have to consider change usually when you take 

you cannot pull it you cannot apply tension and then try to elongate it. 

 

Because you are considered inextensible ρ here then what shape does it take, we pose the 

problem using minimum potential energy so I will write minimum potential energy let us 

indicate with PE itself potential energy under the gravity we take some reference where we 

measure this let us say I take this reference right here I put a coordinate system this is my X and 

this is my Y the shape of that chain is my function y(x) right. 

 

Taking from reference coordinate system that we have taken now petitioner G wherever the 

beam you know from here we measure this how much ever this will have some Y value here at 

certain x and as I extend it there will be some y there y there and so forth a different values of x 



where x goes from super energy we can write from because I have take warrant system here 0 to 

an on horizontal separation h 0 to H. 

 

If I take a little piece of the chain here okay with the DX there are let us call this D s a little piece 

over there okay let us say that is ds what is its mass it is going to be Ρ ds how much is it come 

down at that point it has come down xy and because there is gravity we also should put Ρ G 

because that is the force gravitational force ρ gy ds will be the petitioner g due to that little 

element d s that we have shown there. 

 

And this d s we have to integrate over the entire thing right now it is not let us say zero to H we 

have to do it over the entire length of the chain that is given to us that is 0 to L because L is the 

length of the chain we have to go along from here all the way there by taking small pieces of d/s 

everywhere okay, that is the objective function that we have this we can rewrite okay because 

our X is not there yet. 

 

But I can write because the ds that we have we can write it as √dx
2 

+ dy
2  

that is basically 

Pythagoras theorem right I said this is d X let me write it here little DX that the ds that is DX and 

dy okay so if I enlarge it this is ds DX and dy this is ds, this is DX this is dy how do you get ds 

Pythagoras gives us this I can rewrite this as if I take DX outside okay DX square if I take 

outside becomes DX and when I do that this will become 1 when I want to take outside I have 2 

divided by DX here that becomes dy/DX square are in our notation. 

 

This will be 1 + y’
2 

dx okay so I can write this as now d s is turned into DX so I can say zero to 

H because that is our limit for X as we have taken that will become Ρ G Y x into √1+ y’
2 

DX 

because that is what we have for D s over here right now this is subject to a constraint right if 

there is no constraint you will make this Y as negative as possible to minimize the potential 

energy that is all the chain links are not attached to one another if all of them want to minimize 

potential is it together they will all fall down to minus infinity. 

 

But we are not allowing it because links are connected there is a constraint on the length of the 

chain length of the chain how do you take this will be integral ds right so we have this little 



length you take and you do it from 0 to L again for Ds we have this so I can write this constraint 

as the length of the chain 0 to h s√1+ y’
2 

DX again remember that this is nothing but ds okay so 

this 1 minus length of the chain that is given to us should be equal to 0. 

 

Now if you look at this problem this is an example of a calculation problem where there is a 

functional type of constraint okay we had that already in the problem statement of a bar 

optimization but we first wanted to understand how to do these things if I have a problem like 

this. 
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Then I can write for this one I can write the Lagrangian right so let us remember our objective 

function which is in this form the constraint which is in this form I can write the Lagrangian for 

this so Lagrangian is the objective function 0 to H okay which is Ρ G y 2 √1+ y’
2
 DX plus where 

to put it Lagrange multiplier set we have to make it a habit to put that functional type constraint 

uppercase Greek letter a scalar unknown ρ times the constraint which is 0 to H √1+ y’
2 

DX 

minus length of the chain okay. 

 



This is our unconstrained problem now because we wrote a Lagrangian for this we are at a 

Lagrange equation for the Lagrangian itself right that means that I have to do ∂l / ∂y minus ∂l/ ∂x 

prime equal to 0 this will be the necessary condition for the constraint problem where there is a 

functional type of constraint in this case that functional is an integral Euler Lagrange equation 

with the Lagrangian okay. 

 

So we can do this now so we have ∂l/ ∂y we have Y here and now here l see so we can write it as 

Ρ G 2 √1+ y’
2 

that is ∂l/ ∂y okay so let me insert this in black so you can relate to the black color 

now let us write this part in blue color okay- we have to write ∂l/ ∂y prime it is over here and it is 

also over here more terms will come in so if you do this so y is now kept as it is because you are 

doing partial derivative respect to Y prime so this will have Ρ G Y derivative of this will take it 

downstairs √1+ y’
2 

there is a half that comes. 

 

And then y prime square derivative will be to let me write it half because this is you know square 

root half will come and now this will become 2 y prime okay and this 2, 2 gets cancelled that is 

for this portion we will also have plus ρ times this part right there is a y prime there that will be 

again to will get cancelled this will be 1 plus y prime square and then y prime 2 y prime 2 gets 

cancelled to get this whole thing we are to take derivative like this one okay. 

 

That is equal to 0 this will be differential equation for the chain so to simplify it now you have 

√1+ y’
2 

it goes but then there is a prime right we have to do this basically we have a differential 

equation with which we can solve for the change shape in fact when you solve this you still do 

not know this ρ right how do you find the ρ for that we have the constraint so this and our 

constraint which says that from 0 to H √1+ y’
2
with a square root DX minus L equal to zero or 

that is equal to L. 

 

So this differential equation and this constraint have to be solved to find our solution Y star X 

and our solution value of ρ star if you find that you would have solved the problem and that 

happens to be what is known as a cat in every say famous geometry or mechanics problem it is 

both geometry mechanics problem it is called a catenary a chain takes the shape of a catenary in 



fact many bridges that are built suspension bridges will also take this bridge if you take this 

shape called catenary okay. 

 

So what we have done now is we have taken a problem where we are minimizing punish energy 

subject to a functional type constraint there is a integrand for this integrand for this both are 

defining to functional and we have solved the problem so by using this concept of Lagrangian so 

just before we finish let us say what we have done today we have done a general problem where 

you have minimized there is a functional which will have x1 to x2 an integrand that depends on a 

function infact it can be any number of derivative. 

 

Even though whatever we have discussed we did not say it but variation derivatives applicable to 

any number of derivatives okay we have a function like this subject to a constraint which also 

can depend on any number of derivatives so integrand here can be y y’, y’’ and y nth derivative 

DX if we have something like this so here we should not forget to put this ρ which is the 

Lagrange multiplier we write the Lagrange so Lagrangian if you say again is l is j +ρk and write 

a Lagrange equation for the Lagrangian directly on the boundary conditions if you write all of 

them you get the answer. 

 

Answer here is arriving the differential equation and the constraint like we have a catenary 

problem that is the differential equation this is the constraint to solve for this ρ okay, now we 

know how to deal with a functional type constraint in the next lecture we will deal with a 

differential equation that constraint, once we do these two we can solve any problem in calculus 

of variations then you can do any problem in mechanics or structural design optimal structural 

design, thank you. 

 


