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Finite Element for Structures with Piezoelectric Material

This  is  the  lecture  number  30  of  the  Smart  and  Microsystems  course,  where  we  would  be

studying about the formulation of Finite Element for the smart material structures, and in this

case  we  are  considering  piezoelectric  materials  structures.  So  in  the  previous  lectures  we

basically  started studying about  the  finite  element  formulation  in general,  taking mechanical

system into the basic aspects of finite elements for mechanical structures.

And in this lecture we were basically be extending this to smart materials structures and typically

although there are many materials as we discussed in our earlier lecture, piezoelectric material

structures is considered for demonstrating the finite element method for such structures.

(Refer Slide Time: 01:07)

So just to introduce we studied that that in lecture number initial lectures that smart materials

typically like the Magnetostrictive material like Tufnell or Piezoelectric material like PZT has 2

constitutive law, one is the sensing law and the actuation law. So it is this 2 laws give rise to in

addition  to  the  mechanical  component  there  is  also  an  electrical  component  the  additional

complexity arises in the finite element formulation.



So the additional complexity is due to the coupling that couples the mechanical energy to the

electrical  energy, so what does this mean in the finite element terms, it introduces additional

matrices. So here we have given 2 law where the sigma is the stress is related to the mechanical

part C is the stiffness which is basically material properties, and epsilon which is the strain.

And the electromechanical coupling coefficient e that is what we call the piezoelectric coefficient

which is coupled to the electrical field. And here we have said that the mechanical stress is a 3x1

vector for a 2-D problem that a sigma x, sigma y and tau xy and the 3x3 is the material property

matrix and epsilon is 3 strains corresponding to the stress that is epsilon x epsilon y and gamma

xy.

And the  3 electric  field and the 2 electric  field  in  the 2 coordinate  direction  in  Ex and Ey

similarly, the electrical displacement is related to the strain through electromechanical coupling

coefficient piezoelectric coefficient and the permittivity of the medium and the electric field. So

this is the first is an actuation law, second is the sensing law.

(Refer Slide Time: 03:09)

So in the above expression e is essentially the matrix of piezoelectric coefficient which has a unit

of Newton per volt millimeter and it is of the size 3x2, and the electric field is basically in the 2

direction Ex and Ey which is related to the voltage, and the thickness of the structure t is the



thickness of the structure, Vx and Vy are the voltage in the 2 directions the co-ordinate directions

applied voltage.

And the electric field has unit of volt per millimeter because it is V/t t is the thickness in the

millimeter, mu is the permittivity matrix of the size 2x2 and measured at constant stress and has

a unit of Newton per volt per volt, and these the vector of electrical displacement which has a

unit of Newton per volt millimeter.

(Refer Slide Time: 04:10)

So that C basically is the mechanical constitutive law which we already said what it is in our

previous lectures in finite element. And the above constitutive law can be rearranged by taking

the  epsilon  on  the  left  hand  side,  and  S  as  the  compliance  matrix  which  is  nothing  but  C

inverse*sigma and d matrix is electromechanical coupling coefficient d, where d=C inverse*the

piezoelectric coefficient matrix.

So where the coupling matrix that is d has a unit of millimeter per volt because it is taken an

inverse here, so in most of our analysis it is assumed that the mechanical properties will change

very little with the electrical field, and as a result we can uncouple both the sensing law and

actuation law which is not true in the case of magnetosrictive material it is highly coupled.



But in the case of piezoelectric material it makes our life little simple mainly because this laws

can be uncoupled because of the behaviour that the mechanical properties change very little with

the change in the electric field.

(Refer Slide Time: 05:30)

So the first part of the equation that is the actuation equation represents the stress developed due

to the mechanical load, while the second part is the same gives stresses due to the voltage input.

So we have that epsilon =S sigma+d*E, so the first part is because of the mechanical and the

second part is because of the electrical field, so it is clear that the structure will be stressed due to

the application.

Suppose we do not have a mechanical loading and if we pass an electric field we see that it is

going to be stress or strain and the vice versa,  suppose we apply an electric  field it  will  be

stressed so it  will  also elongate.  That is  what alternatively when the mechanical  structure is

loaded it generates an electric field, so this is what we call the smart concepts.

So we can actually use these aspects of the additional terms that are coming to our actuator

application or sensing application. So I have said that in other words the above constitutive law

demonstrates  the  electromechanical  coupling  which  is  exploited  for  a  variety  of  structural

applications involving vibration control noise control and health monitoring.
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So now let us talk about actuation, so as I said when we pass on the electric field the mechanical

structure elongates causing the strain, so in this crystal aspect let us consider the structure shown

here which has a length width and the thickness in this direction,  and let  us consider 2 thin

piezoelectric electrodes which are bonded to the top and bottom surface and such a structure is

called bimorph structure.

And here taken a bimorph plate of thickness t this is the thickness t having length L, with W. And

suppose we pass on an electric field through a system here where we pole it this way, when we

pole it basically we will have the strain developed in the direction perpendicular to the poling

direction, so this is the direction of poling, so in the current position it is shown we will have a

stress in this x direction and also in this direction which are the perpendicular direction to the

poling field.

So when we do that so we can actually relate the change in length that is strain to the d31 this is

the electro because the 31 3 says that it is in the direction 3 with the applied voltage in the 1

direction, so we have actually poling it in the 3 direction and we are getting the stress in the 1

direction, so that is why we have d31, and E1 is electric field and L is the length.

So this is basically d31 V L/t is basically the strain in the length direction and d31 V W/t in the

width direction and in the direction of poling it is d33*V. So we know that if we can actually



pole in the appropriate direction and we can actually pole in the direction if you know in what

direction  we  want  the  stress  or  strain,  we  can  actually  pole  the  piezoelectric  plate  in  the

appropriate direction.

(Refer Slide Time: 09:12)

So as I said here d31 and d33 are the electromechanical coupling coefficient in direction 1 and 3

respectively. Conversely, if the force F is applied in any of the length along any of the length

width or thickness direction, the voltage V that is applied will be d31 F/mu L that is coming from

the second constitutive law where mu is the permittivity of the medium.

So it can be in the x direction it is d31 F/mu L, d31 F/mu W in the W direction and d31 F/mu L

W is  in  the  thickness  direction.  The  reversibility  between the  strain  and  voltage  makes  the

piezoelectric material an ideal for both sensing and actuation, so we will actually see how we can

do as we go along in this lecture.
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So what are the piezoelectric types we did discuss this in our earlier lecture, there is our lecture

number 2 where we said there are different kinds of piezoelectric material and it is available in

different forms either in the ceramic form or in the crystal form or in the polymer form. The most

commonly used is the ceramic form that is PZT.

Where PZT stands for Lead Zirconate and Titanate material, which is extensively used as a bulk

actuator material as they have high electromechanical coupling coefficients, here we are talking

about d31 d33, so the material  which has very high d31 and d33 we call  it  as a very good

actuator material. 

However, the polymer form of the piezoelectric material which is called the PVDF that PVDF is

polyvinyl difluoride which has a very low d31 and hence extensively used as a sensor material it

cannot be used as the actuator material. And we also talked about the other forms of the piezo

material  it  is in the form of fiber composite,  the Piezo Fiber Composites basically it is used

extensively as an actuator material.

Because it can be embedded into the composite structure and it is found that it is very useful to

do vibration and noise control. Here we would not be talking about PFC here but we will see

how the same constitutive law can be used for PVDF and PZT material and how it can be used

for sensing and actuation application.



(Refer Slide Time: 11:48)

Now  coming  back  to  the  finite  element  modeling,  see  the  finite  element  modeling  of  the

mechanical part which is epsilon =S times sigma is very similar to what we discussed in the

previous lecture, except that the coupling terms introduce additional energy terms in the weak

form  of  the  governing  equation  which  would  result  in  the  coupling  matrices  in  the  FE

formulation, so what does it mean in the finite element modeling.

So the introduction of piezoelectric material introduces an additional degree of freedom which is

in the form of the electric field E, this additional degree of freedom can be basically can be an

electric potential phi which is related to electric field E by taking the gradient of the potential phi

or we can take the electric field itself either way it is fine.

Alternatively, since the sensing and actuation law are not coupled analysis can be performed by

using conventional  beam type  elements  or  plane  stress  type  elements  or  even plate  element

derived earlier and the effects of coupling terms are translated into equivalent concentrated loads

on to the beam structure and the conventional beam element which we actually use can be a

beam or plate element or plane stress elements can be used to actually solve both sensing and

actuation problem.

We will deal with these 2 and see how each of them can be used in this lecture.



(Refer Slide Time: 13:36)

So the first approach we call it as the lumped approach, where we have doing an FE analysis of a

piezoelectric bimorph beam, so here there is bimorph beam where there is 2 layers one is the top

layer and the bottom layer are stitched together, and we have taken 100mm x 5 mm x 0.5 mm the

width is 5 mm.

So here the 2 bimorph beams are stitched together and we consider this bimorph material is made

up of polymer type of piezo material that is a PVDF beams with opposite polarities, so the PVDF

patches poled in such a way that the strains are produced in the axial direction that is we poled in

the wiser plane that is in this direction, so that we get the stress in x direction due to the applied

field in the z direction.

So we get the field in the z direction, so we get the poling in z direction will introduce a strain in

the x direction, so these are the dimensions, so what does it mean? If I use a lumped approach so

this is going to cause a force F at this end and a force F in this end, which is basically equal to a

couple, so we can actually calculate this force from the piezoelectric constitutive law and apply a

couple to the cantilever beam, and then study the response using our beam element, let us see

how we can do in the both approaches.

(Refer Slide Time: 15:17)



So before doing that  we can actually  derive  the exact  solution  to this  using the strength of

materials  approach,  so as  I  said  that  the problem can be statically  reduced to  a  problem of

cantilever beam with an end moment M as shown in the figure. The moment M needs to be

determined from the constitutive law of the PVDF material. So the beam is under the 1-D state of

stress with the stress acting in the x direction.

So we have simplified the problem considerably, so that we can actually  go ahead and do a

simple exact  solution and we will  actually  check this  exact  solution with our beam element

formulation, so from the constitutive that is the actuator law we have sigma =S times sigma-S

inverse d*E, so we can write the constitutive law into this form where E is the piezoelectric

coefficient which we have derived it earlier.
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So the first part of the above is due to the mechanical part, which is 0 in the present case because

there  is  no mechanical  loading we have  applied,  we have applied  only  purely the  electrical

loading which is converted into equivalent that is equivalent moment. And hence the first part is

not relevant to the present problem, since the beam is in 1-D state of stress only sigma xx has and

the bending stress in the axial direction exists.

The  only  material  properties  here  of  relevant  to  the  Young's  modulus  y,  and  the  relevant

piezoelectric coefficient is e31 that is the piezoelectric coefficient because it is in the direction 1

due to the field in the direction 3 that is the z direction, which is the first element of the third row

of the matrix e. Hence the constitutive law here becomes sigma xx =e31*Ez or e31*V/t V is the

applied field in the z direction.

From the elementary beam theory we said that M/I =sigma xx/z, z is the thickness co-ordinate, so

where M is the moment being acting on the cross section and we have found the moment, we

need to find this moment to be lumped on to the to be use in the equation, and I is area moment

of inertia of the cross section and as I said z is the thickness coordinate.
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So substituting this into the equation we get basically we take this the moment we substitute

sigma x here so the M/I =V*e31/ t z and we get and at the midpoint of the thickness at the 2 top

ends z  ranges  from –t/2  to  +t/2,  when we substitute  this  the moment  becomes 2*e31*V I/t

square. 

So from the theory of deflection of beams we can show that the transverse displacement w of a

cantilever beam is given by w M due to a cantilever is M x square/2 E I with M substituted from

e31 coming from the piezoelectric constitutive law, so when we actually plug this in equation we

get that the equation for a bimorph piezoelectric PVDF beam is given by this equation. So we

can substitute x at any point and we can get the deflection due to this effect of piezoelectricity.

So supposed we take that at x=L that is at the tip e31 V/E*L/t whole square, we get that so we

can basically see how this whole thing when we increase the voltage for a given material there is

the deflection increases or when we decrease the thickness or increase the length the deflection

increases.
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Next, what we do is we will add in addition to electric field, we will also introduce a mechanical

load P, so when we do that now we have 2 problems, one is due to mechanical load, one is due to

electrical field, we have already found out what is the deflection due to electric field. Now we

will take the mechanical load and we will take we will solve this problem of cantilever beam

with a mechanical load L.

And we know that this can be easily solved by any of the deflection methods are used in strength

of materials  and that  exact  deflection  at  any point  x from here can be got by x cubed/6*-x

squared L/2 multiplied by P/E I, and when we substitute at x=L, so we have taken x= here, so

then x=L we get the deflection is P L cube/3 E I. Now the total deflection at the tip is due to

mechanical load which is P L cube/3 E I and due to the electrical.

So we see that basically the electrical deflection opposes the mechanical deflection, so when we

increase the voltage we it will be increasing it will decrease the total deflection to such a level

that we can actually choose a voltage which will make the total deflection 0, and that is precisely

the actuation that we are talking about.
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So from this expression we see that the voltage is increased, it reduces the net deflection due to

mechanical load, so we can actually get an expression that what is the voltage that is necessary to

make the deflection 0, so basically we can equate this term equal to 0 and we can get what is V

that makes the total deflection equal to 0 and that is given by here. 

So we can actually make this equal to 0 by using this value of voltage. So it is very clear that the

presence of electrical load helps totally eliminate the deflection in a cantilever beam due to the

mechanical load, this is essence is the main principle of actuation which can be exploited to a

variety of application as I talked before.
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Now let us do the finite element solution, so as I said here in this lumped approach we need not

use any smart or electrical degree of freedom. Here, the forces are generated due to electric field

are needed to be lumped onto the corresponding finite element degrees of freedom, which in this

case is the moment M which is given by this expression. 

Since, our objective here is to see how the deflection is caused by a pure mechanical load is

negated by the electric field generated through PVDF patches, we need to retain the degree of

freedom corresponding to the transverse mechanical force at the tip of the cantilever beam.

(Refer Slide Time: 22:55)

So we go back to the stiffness matrix which we derived in the lecture 28 which will be use here,

which is basically Y I/L cube Y is the basically the Young's modulus given by this matrix related

to the w1 is the transverse degree of freedom of theta  1 is the slope at  the node 1, w2 is a

transverse at node 2, and theta 2 is the rotation at node 2. So we will model this beam only

through one element here, and we need first to enforce the boundary conditions.

Since, it is a cantilever beam we are talking about, so you have w1=theta 1=0 here, so we apply

this and eliminate these 2 rows and columns, and we will have only these the reduced stiffness

matrix will contain only these terms here, so which is written here P2 and M2 is related to w2

and theta 2 by here, and we know M2 which is got by our reducing the electrical  load into

equivalent moment which can be applied here.
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So we take the inverse of it w2 theta 2 is the inverse of this matrix which is given here, and we

substitute M2=2 e31 V I/t square and from which we can compute the transverse displacement

which will be equal to this expression, and when we substitute for a moment we get this, which

is same as what we got from the exact solution. So because the stiffness matrix for beam is exact

we are able to get the exactly reproduced the sensor material solution here.

And now if you apply a vertical load P here at the transverse degrees of freedom, so we also get

that the total solutions can be so here this will not be 0 in the first case it is 0, but in this case we

have a P here, and when we get the total solution is given by this when we put this equation we

get this, and which is same as what we got with sensor material solution. 

And again we can equate this to find out what is the total voltage required to make the total

reflection 0. So what we have seen here is what we derived from the exact solution we are able to

reproduce exactly with the finite element solution.
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Next, let us see whether we can actually do a much sophisticated element formulation that is in

terms  of  the  2 dimensional  4  noded isoparametric  finite  element  formulation.  We discussed

isoparametric finite element formulation in lecture number 29, where we outlined the procedures

that are required that is to recap, we require both the variation of the dependent variable that is

deformation u and v and also the variation of the coordinates.

In addition now because we have a smart degrees of freedom, we are not assuming anything with

regard to the uncoupling of the sensing and actuation law, we take it as it is we introduce also a

smart degree of freedom in to the formulation, and this smart degree of freedom will be only in

the that direction so we use this. 

So the general degree of freedom may shown here,  so you have at  each node it  can take 3

degrees of freedom that is the axial deformation u, the transverse deformation v and the electrical

displacement E, and this is mapped onto the rectangular isoparametric co-ordinate system psi and

eta, and using a coordinate transformation, so the psi and eta which is mapped onto a square of

unit 2, so totally this element will have 12 degrees of freedom.
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So now we need to assume the variation for the 2 mechanical degrees of freedom that is u and v

and u and w here and the electrical degrees of freedom, the mechanical degrees of freedom is

assume exactly the way we did for the conventional mechanical structure, so we take it in the

form of Ni ui, w=Ni wi where ui and wi are the nodal coordinates of the given element, and psi

and eta are the isoparametric co-ordinate system as I said.

And we write the shape functions in the form of in the isoparametric co-ordinate system and

these functions which are given here are derived in the lecture number 29. So now the question is

how do we actually  interpolate  electrical  field,  which we have also introduced as additional

degrees of freedom. 

The electrical degrees of freedom is exactly assumed as the variation is assumed exactly same as

that of the mechanical degrees of freedom, that is we take that Ez or the E as a function of psi

and eta Ni*Ei where Ni is again given by these 4 degrees of freedom, we have 4 E’s at the 4

nodes, so that means it will have 4 shape functions.
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Here, the same shape functions is used for mechanical degree of freedom as well as the electrical

degree of freedom. The isoparametric formulation as I said we map the actual geometry to a

square of size 2 using the generalized co-ordinate system through a Jacobian transformation. So

for which we need to assume the variation of the coordinates and the coordinates are assumed

exactly as that of the mechanical degrees of freedom and the electrical degrees of freedom.

Because it is an isoparametric formulation where the same number of nodes that participates in

the deformation will also participate in the co-ordinate transformation.
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So the Jacobian is computed using a chain rule, I am not going into this, this was explained in

lecture number 29 because the Jacobian relate makes the coordinates the derivative with respect

to x is related to derivatives with respect to psi and eta. So once we have established this relation

then we are in a position to evaluate the strain displacement matrix.

And the strain displacement matrix in addition to the mechanical degrees of freedom we also

introduced the electrical degrees of freedom which has no strain except that it is directly related

to the electrical  displacement, so this aspect becomes the strain displacement matrix, so now

using the assumed variation of field variables in the field variables here are the displacement u w

and the electrical field E.

We write  the element  vector  displacement  vector  as u1 w1 u2 w2 u3 w3 u4 w4 that  is  the

mechanical vector and the electrical vector is E1 E2 E3 E4 are 4 nodes.

(Refer Slide Time: 30:38)

So now the strain displacement matrix after it is computed will be of this form B*u and it has 2

explicit components one coming from the mechanical degrees of freedom that is u and w, and

one coming from the electrical degrees of freedom E, and the mechanical degree of freedom size

is 3x8 corresponding to 8 degrees of freedom and the 3 constitutive, and the electrical degrees of

freedom has only one constitutive law and it has 4 degrees of freedom.



And the expanded form of this B matrix is given by this equation here, where the B matrix will

contain only the shape function matrix corresponding to the electrical degrees of freedom, and

this part is very similar to that what we derived in the earlier lectures. So we just directly put it

here and these are filled with 0’s, and only this part corresponding to the electrical degrees of

freedom gets added to the strain displacement matrix.

(Refer Slide Time: 31:44)

The next part is because there are additional complexities that has arisen due to the coupling, we

need to rewrite the weak form of the governing equation and the weak form of the governing

equation  can be got  from the Hamilton’s principle,  which we actually  derived in  the earlier

lectures. So here we take the weak form and minimize it to get the finite element matrix, just

similar to our principle of minimum potential energy.

So the first part is the inertial part due to mechanical degrees of freedom that is coming from the

kinetic energy of the system, this is the strain energy of the system, this is the energy due to, this

is additional energy that comes into picture because of the piezoelectric material, that is coming

because of the electrical displacement, and this is the force vector due to concentrated load, this

is due to the surface traction and this is the additional force that is coming here.

So here S1 and S2 are the 2 surfaces where the surface forces and the residual displacement act.

Now using the constitutive model we can rewrite the weak form of the equations in this form by



taking the minimum variation, and here this is coming because of the constitutive model, we are

not deriving it get here mainly because it is too complex, but assume that this can be done by

taking care of the embedded system as we do it for laminated composite.

So these are the total matrices that are going to come into play because of the constitutive matrix

the weak form of the governing equation.
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Once we group these things together we can write we can now in this situation we can substitute

the variation u=Ni ui, then we have w=Ni wi and E=Ni*Ei, when we substitute this into this

equation and write it in matrix form, this is the mass matrix, this is the matrix corresponding to

mechanical  degrees  of  freedom,  which  we  call  it  as  Kuu,  this  is  due  to  coupling  between

mechanical and electrical which you call it as KuE, this is due to again kuE transpose

And this is due to purely electrical field which we call it as KEE. And these are the force vector

due to concentrated load, surface load and also the body force due to electrical field. So we put

all these things into matrix form, we get here in this form, we know that there is no entry due to

the  inertial  component  coming  from  electric  field  because  we  still  take  that  it  is  not  an

electrodynamics problem where there is a coupling between the dynamics, the inertial force also

getting coupled here.



Here, we say that the mass is only totally due to the mechanical degrees of freedom, so there is

no component of mass that will come into the due to electrical degrees of freedom, and we see

that the mechanical degrees of freedom or electrical degrees of freedom are coupled through this

matrices, this is the coupling that gives us the actuation or sensing element that we want for

various applications.

(Refer Slide Time: 35:25)

So the above equation is the elemental equilibrium equation as I said where the KuE where the

Muu  I  am  sorry  this  is  the  Muu  is  the  mass  matrix  and  the  Kuu  is  the  corresponding  to

mechanical degrees of freedom, Kuu is the stiffness matrix stiffness matrix, KuE is the stiffness

matrix stiffness matrix due to coupling. I have explained all these things previously, and each one

of them can be explicitly written now in the isoparametric form.

These are all in terms of over the volume which is dv, dv we can be written as T*da, da is d psi*d

eta multiplied by Jacobian this is basically =dx*dy. So similarly, we have for each one of these

which is equal to dx*dy multiplied by T becomes the volume. So once we get this we know the

shape functions, we know the density, we know the matrices here, by using all these things and

mu 33 is the permittivity.



Now we know the complete  system of matrices and we are in a position to solve the same

problem using the 2 dimensional approach not the lumped approach which we talked a little bit

earlier.

(Refer Slide Time: 36:38)

So here the elemental followed is due to the mechanical load, concentrated load and the surface

load, and qe is the charge vector due to electrical displacement. The matrices in the finite element

equations are assembled as in the case of the mechanical structure we did some examples in the

last lecture, and we find out the global stiffness matrix, then we enforce the boundary conditions,

and we solved for the displacement and the electric field.

Note that it has 0 diagonal in the block matrix which requires special solutions schemes, so we

cannot  directly  solve because it  becomes a positive semidefinite  system, so we need special

solution schemes. The method of solution sensing and actuation problem are quite different, now

we will see where how we can do a sensing problem or actuation problem. 

For a sensing problem for a given mechanical loading we need to determine what is the voltage

and this voltage will exhibit certain features which we can extract to do the sensing using a smart

patch.  So this  is  basically  done by obtaining  the  mechanical  displacement  due  to  the  given

mechanical load which is then used to obtain the electrical field and hence the voltage developed



across the sensor patch, as I said this will introduce certain features and these futures can be

extracted to actually do a sensing problem.
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So in order to solve this the global matrix equation which is given in the previous case here, this

equation we can actually write it as 2 different equation, we can eliminate this portion for getting

the voltage, for example this can be rewritten in this form, the first equation can be expanded as

given here, and the second equation can be expanded like here. Now from the second equation

because this is a square matrix we can take an inverse.

So we can take KEE inverse into q-KEE inverse into KuE transpose into u, so we substitute back

here and we totally eliminate the electrical degrees of freedom and entirely we leave it as the

mechanical degrees of freedom. So in the above equation is the only in terms of mechanical

displacement  which  can  be  solved using  the  conventional  solution  techniques,  so  using  this

solution we can obtain the electrical field, once we know the mechanical through this equation.
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So for actuation problem the voltages and hence the electric field goes as input for the actuator,

because we have to feed the electric field in order to actuate, so that is the second equation in A,

that is this equation is not required for the actuation problem. Hence, the equation becomes this

equation  for  actuation  problem  we  have  this  one  and  this  goes  as  an  input  here  which  is

equivalent load, and now we can actually perform the actuation.

If any arbitrary value of E is specified the problems comes under the category of open-loop

control, if the value of E comes from the sensor input and which is fed back into the controller,

then the control scheme is referred to as closed-loop, we can do both open-loop and closed-loop

from the finite element analysis, and this is how we do it for using the 2-dimensional problem.

So as we see here that this formulation are using the isoparametric is a level higher and more

sophisticated  than  the  lumped  approach  we  did.  The  lumped  approach  only  gives  as  an

approximate  value  how  this  the  piezoelectric  material  operates,  because  we  make  this

assumption that the sensor equation sensor law and the actuation constitutive law are uncoupled.

But  in  actual  case  what  we  have  done  in  the  second  approach  we  do  not  use  any  such

assumptions, we take it as it is then we simplify the equation and then we can construct the plant

matrix or the output matrix which are used for control for especially for closed-loop control from

the finite element formulation.



(Refer Slide Time: 41:10)

Let us now do the numerical example, we will consider the same numerical example which we

solve using the exact equation and also using the lumped approach, and here we will see how

more information can be got especially for the actuation problem. So this is static problem where

the effect of mass is neglected, so we have to show this example we have model this structure

only along this plane exact plane using 300 2-D plane stress finite element, with a thickness t

here given here.

In the first problem, the voltage is increased from 50 volts to 200 volts, so when we actually do

that from 50 volts to 200 volts we that the deflection, we know that when we apply this load the

tip is going to reflect maximum in this direction, so there is no mechanical load here, so as we

increase the load we see that the deflection increases as we increase the voltage here. The other

one which we have said is for a given voltage how does this whole the theoretical tip deflection

vary.

So we have given in the form of the deflection shape of a beam and also the graph relating to the

voltage  versus  the  tip  deflection,  so  as  the  voltage  increases  we see  that  the  tip  deflection

increases.
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So now let us actually do some case studies using the formulated element, so here what we have

done here is to show how the piezoelectric material can be used as a sensor now, what we did is

the actuation problem we actually used to actually see how we can make the deflection 0, but

here how we can actually sense the presence of the crack, what happens when the piezoelectric

material is put on a cracked beam.

So here  we have  taken  a  composite  beam where  the  crack  is  in  the  form of  delamination,

composite is constructed as a laminate construction and due to excessive loading the laminate

can  peel  of  causing  delamination,  so  is  it  possible  to  actually  determine  the  predict  this

delamination well in advance that is the goal and for which can we used to this piezoelectric

material.

So here that delamination essentially behaves as a stable crack and can be characterized what is

known as in fracture mechanics called the strain energy release rate. The main objective here is

to understand the distributed sensing behaviour of the piezoelectric sensor patches embedded in

composites with growing delamination.

(Refer Slide Time: 44:16)



So in the composites there are 3 modes of failures, whether it is in composite or metal, one is the

opening mode where the crack opens this is called the mode one crack. When the other one is

when mode shears due to shear loading which is put in other terms it shears, so that is called the

mode 2. One is the outer plane loading that is the tearing out one against the other which is called

the mode 3. And the crack is characterized by the basically the stress intensity factor.

(Refer Slide Time: 44:54)

So here what we have done is we have taken a cantilever beam with the central delamination

through with and we want to see what is the piezoelectric sensor response, that is what is the

voltage that is developed as the crack starts propagating and goes inwards. What would be the



sensor voltage  that  will  be predicted  in  these 3 cracks,  which is  very useful  to  actually  see

whether there is something going on?

So hence the object is used to study the generated voltage in the sensors to the approaching

cracked tip stress fields. And to study the sensitivity of this defined by the J integral, which is a

measure of the crack sensitivity or the stress intensity factor with the voltage generated by the

sensor patch. So this is basically used in structural health monitoring study, so here we have not

defined what it is, it  is just a case study to make us understand how this can be used in the

sensing application.

(Refer Slide Time: 46:03)

So if you before doing it if we model this with our formulated element and predict this stresses,

this is the basically the axial stress and we see that there is a very high stress is found in this

region which is basically a singular region where the stresses will be very high because the crack

is emanating from here.
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So we can actually predict the sigma x, sigma z which is the other stress that is there which is

also pretty high here, and the tau xy basically.

(Refer Slide Time: 46:41)

So when we actually study the voltage here under the static load, so this is the length of the

delamination which is increased from 20 to 50, the 20 is very small is approaches 50 which is

very near to the top and the bottom sensor and also the sensor right across the crack tip. So we

see that the voltage increases as the delamination increases as the location from the surface node

okay.



And this is basically the voltages that is found and we will see that this is on the first sensor this

is the tip sensor, so we have 3 sensors here. So basically this is the crack here, the sensor here,

sensor here and sensor here. So this is on the top node there is a front sensor response, this is the

bottom sensor response and this is the response at the approach, you see there is a sudden peak of

the sensors.

So based on the increase in voltage the state of stress changing and based on this concert we can

basically say that the crack is there, which it is approaching fast, and that is possible that was

made possible only because we had the piezoelectric patch here. So this is very tremendous for

us for in terms of using this for the sensing application, this is one of the sensing application

there are many applications that we can actually construct using the piezoelectric material.

So here we clearly see there is an increased peak in the response in the sensor 3 and based on that

we can basically say that there is something happening, even here in the front sensor we see that

as the load is increased as the delamination is nears 50, there is a huge increasing the load, so this

is the sensitivity of the J integral. 

So basically what we are saying is if you just measure the voltage and if we have this curve, we

can say how severe the crack is and what are is there any necessary repairs that we need to do to

avoid catastrophic failure, which is very very important from the structural health monitoring. So

this was done by using a load, which was in this direction.
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So now we do the same thing when the load is in this direction where we apply here, so this is

going to cause a shearing, so the shearing is basically the mode 2 load, so in the shearing load

here is the sensitivity of a response you see there is a tremendous increase in the voltage when

this  is  approaching  very  near  the  crack  tip,  so  this  is  on  this  sensor  here.  So  basically  by

measuring this we will know that whether the approaching is it going to be catastrophic or not.

So we can actually generate a lot of this curve and correlate the fracture parameters with the

sensor voltage,  this  is  basically  the voltage  distribution  across the sensor surface for  a  vary

delamination length. So we see that it increases tremendously as the length of the delamination is

increased, so become basically we have shown that we can basically use this concert of sensing

using piezoelectric for structural health monitoring applications. We can again do this for variety

of other applications.

(Refer Slide Time: 50:04)



So this is another way where the sensitivity is done for the patch when the upper portion of this

sensor here, and same thing is the voltage distribution this is the sensitivity, so we see how the

voltage, in most cases there is a linear variation in some cases where the level of stresses are very

high especially in this sensor we see a significant nonlinear variation. So basically what we are

trying to see here is how we can use piezoelectric material for the sensing application.

(Refer Slide Time: 50:40)

This is another aspect of in the lower sensor, so we have done for this sensor, this sensor, this

sensor. You see there is a complete non-linearity especially for the mode 2 loading, how can the

voltage varies, so basically this change in voltage variation is a measure of the state of stress in



the happening in the laminate which can basically be used to actually make an opinion about

how severe the crack is, and that is basically a sensing problem.

(Refer Slide Time: 51:13)

So let  us summarize  what we studied here,  so in  this  lecture  we covered the following, we

introduced  the  piezoelectric  material  constitutive  model  and  discussed  its  effect  on  the  FE

modeling.  So basically the effect is coming in terms of additional coupling matrices because

additional energy that goes into the weak form of equation due to piezoelectric material coming

from the electrical field.

We developed 2 different finite element model. One based on beam modeling where the explicit

coupling between electrical  and mechanical  degree of freedom was ignored,  so we basically

reduce the problem into a statically equivalent load lumped onto the beam model, and we studied

that as the actuation problem.

So in the second model we developed at 2-D 4 noded isoparametric plane stress model with

additional degree of freedom in the form of electrical field, and we also again studied the same

actuation problem that is giving a voltage and reducing the total deflection in the beam structure.

Then we introduced another case study of how this can be used as a sensing.



Where we actually related showed how this can be embedded into a composite and measure the

voltage because of the ensuing mechanical load and tell about the state of the structure especially

with regard to the presence of crack. So basically we can use the piezoelectric material as the

crack sensor for sensing application. 

So essentially what we have covered in the entire finite element method is we basically said we

started basically on how the finite element modeling can be helped in the microsystem design,

then we covered the theoretical basics for finite elements and we basically said how a second

order system can be characterized,  how many numerical methods can be characterized using

weighted residual method.

And how we can derive finite element method from the weighted residual method. Then we

actually established the theoretical basis of the entire finite element modeling for say using the

mechanical system as the example, this method is not related to mechanical alone it depends

upon the governing differential equation and the physics based on the governing equation and the

degree of freedom is physically based on what the physics modeling.

Suppose you are modelling a Maxwell’s equation instead of the displacement you would have

electric field and the magnetic field as basic unknowns, otherwise if you have the corresponding

forces would be the electrical displacement and the magnetic flux if you are modeling a thermal

problem then  the  temperature  and  the  temperature  flux  will  be  the  dependent  and  the  first

variable.

So like that any physics of the problem we can actually use it, if we are solving a fluid problem

we need to idealize the whole Navier-Stokes equation in to  finite  element  modelling,  where

instead of displacement we will have velocities as the basic degree of freedom. So it depends

upon the physics what you are modeling. 

So in microsystem we need the  modelling  of electromagnetics,  electrical  field,  electrostatics

where Maxwell’s equation need to be modelled, wave equation for mechanical system, Navier-

Stokes equation for the basically the fluid system and the Fourier law for the thermal systems.



So it does not matter what the governing equation, the approach what we are derived is exactly

same only the dependent variable meaning is changing, so in short the finite element modeling

what we have developed can be exploited for all other domains which are prevalent in the smart

and microsystems, thank you.


