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Lecture - 29
Isoparametric FE Formulation and some Examples

So this is lecture number 29 of the Smart and Microsystem course, so here we talking about the
second part of the finite element formulation which is an extension of what we did in the lecture
number 28. Here, basically we are going to deal with those kind of elements which are curved in
shape, which are necessary for various applications, so today we will see how we can formulate
the elements with curved boundaries, and in addition we will also solve some numerical
examples to see how this method works.
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Introduction

* Till now we dealt only with finite elements having straight edges.
In practical structures, the edges are always curved and to model
such curved edges with straight edged elements will result in
enormous increase in the degrees of freedom and the loss of
accuracy

* In addition, in nany |mr.1c'lil'.|| situations, it s .|]\\‘|_\'.~' nol |'l'(]||irm|
to have uniform mesh density throughout the problem domain.
Meshes are alw ays graded from fine (in the region of high stress
gradient) to coarse (in the case of uniform stress field). These
curved elements enable us to grade the mesh effectively

P

¢ lsoparametric elements enable the modeling of curved tlnnmlﬁ_ 7
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So as I said earlier till now we dealt only with straight edges elements. In practical structures, the
edges are always curved and to model such curved edges with straight edged elements will result
in enormous amount of degrees of freedom and also loss of accuracy. In addition, there are many
practical situations in which the mesh density you will not actually mesh it uniform that is

actually not advisable because it is going to increasing the mesh sizes.

And also when the regions where the gradients for examples stress gradients or the magnetic flux

or any such things are very high and those regions require very high mesh density, whereas the



other regions where the gradients are small or uniform we can just use a smaller set of elements.
So in order to do this gradient, curved elements are absolute necessity. So how do we actually do
this, there is a method called isoparametric finite element formulation which help us to model
this curved elements.

(Refer Slide Time: 02:15)

Procedure
* The elements with curved boundaries are mapped to elements with
the straight boundaries through a coordinate transformation that

involves mapping functions, which are functions of the mapped
coordinates,

* This mapping is established ll}' expressing the coordinate variation
(or transformation) as a polynomial of certain order and the order
of the polynomial is decided by the number of nodes involved in
the mapping

* Since we would be working with the straight edged elements in the
m.lmnml domain, the c|i~'p|.u'rmvnl should also be vx|||'v.~'.<v|l ax A

e :I)]mmi.l] ol certain order in the |||.||1|n-|| coordinates

So how do we do this, the procedure that we adopt here is the elements with curved boundaries
are mapped to the elements with straight boundaries through a co-ordinate transformation that
also involves mapping functions, which are basically functions of the mapped coordinates. So we
do have a 2 sets of coordinates one is the regular X, y, z coordinates and other is mapped

coordinates.

So we try to map the curved boundaries to straight boundaries do our computation on the
mapped coordinates and come back to the original co-ordinate system. The mapping is basically
established through a co-ordinate variation or transformation as a polynomial of certain order,

and the order of polynomial is decided by the number of nodes involved in the mapping.

Suppose, you have an 8 noded elements then the mapping is going to be higher order as opposed
to 4 noded quadrilateral elements. Since, we would be working with this straight edged elements

in the mapped domain, the displacement should also be expressed as a polynomial of certain



order in the mapped coordinates. So everything the displacement, the strain displacement will all
be doing on the mapped coordinates.
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Procedure (Cont)

* In this case, the order of the polynomial is dependent upon the nmumber

ol degrees of freedom an element can support

* Thug, we have two trangformations, one involving the coordinates and

—_—

the other i||\n|\iw__'_ ﬂl_ij_l'li.ﬂl_ll_-_ll_!_llll_'llli
o If the coordinate transformation it of lower order than the |lip|l|.|l'l'|l|t'|l1
transformation, then we call such ransformation as sub-parametric
transformation. That is, if an element has n nodes, while all the n nodes
participate in the displacement transformation, only few nodes will

participate in the coordinate transtormation.

o If the coordinate transformation is n[llliqlh'l' order 1'1_1[!1[14[‘1'1] to the
tliﬁl}l‘u'r‘lnrul transtormation, such transtformation is called super-
purametric transformation. In this case, only a small get of nodes will
participate in the displacement transformation, while all the nodes will

participate in the coordinate transformation

So in this case the order of polynomial is dependent upon a number degrees of freedom an
element can support, we will come to that a little later now. Thus, in isoparametric formulation
there are 2 sets of formulation, which is here one involving the co-ordinate, and the other
involving the displacements. If the co-ordinate transformation is lower order than the

displacement transformation, then we call such transformation as sub-parametric.

That is if the element has n nodes all the n nodes participate in displacement transformation, but
only a few nodes participate in the co-ordinate transformation such a element is called sub-
parametric element. On the other hand, if the co-ordinate transformation is of the higher order
compared to the displacement transformation such a transformation is called super-parametric

transformation.

In this case a small set up nodes will participate in the displacement transformation, while all the
nodes participate in the co-ordinate transformation, let us explain this a little bit.
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Suppose, we have an element we call this an element curved element having 8 nodes, which I
write here, we map this onto a straight edged elements which is a perfect square, so this would be
in basically xy co-ordinate system, whereas this would be in psi eta co-ordinate system. This is

basically transformed to -1, -1, thisis 1, -1, 1, 1 and this will be -1, 1.

And suppose, so we said that if we go back here we said that in the co-ordinate transformation is
lower compared to the displacement transformation. That it is in the transform we again have 8
nodes it can be 8 nodes and if all the 8 nodes participated in the deformation, but only the corner

4 participate in the co-ordinate transformation such a transformation is called sub-parametric.

On the other hand, if there are only 4 nodes that are participating in deformation or the
displacement transformation, whereas all the 8 nodes participate in the co-ordinate
transformation such a transformation is called super-parametric. However, in the finite element
formulation we neither use sub-parametric or super-parametric.
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Procedure (Cont)

¢ In the l-f:"[ormulu!iun. the most important transformation (as
regards the FE formulation iz concerned) is the one in which both
the llislll.u‘r'lllt'llt and coordinate transtormations are of ame order,
implying that all the nodes participate in both the transformations.

Such a transglormation is called the i.\u—Pununﬂric lrun.\"irnmninn
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What we use here is, we use the same co-ordinate transformation for both displacement as well
as co-ordinates that is all the nodes in the original domain will be the participating both in the
displacement as well as in the co-ordinate transformation. So hence, the order of polynomial
transformation for both displacement as well as in the co-ordinate will be same and hence it is

called isoparametric formulation or transformation.

So this is precisely what we shown here, you have the original domain in x, y, z, and you have a
mapped domain in psi and eta, and each one of them will participate both in there is one to one
correspondence between the nodes in the Xy domain to the nodes in the psi eta domain as the
isoparametric domain or the transform domain. And the coordinates of xy will participate in psi
and eta all the nodes and so is the displacement.
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1-D Isoparametric Rod Element

H’“’ .4_—.
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x=0 x=L X !
(1) Isoparametric Linear Rod Element

* Figure shows the 1-D rod element in the original rectangula
coordinate system and the m.nppc-r] coordinate system, with _ ag
the (1-D) mapped coordinate. Note that the two extreme ends of
the rod, where axial degrees of freedom gy, and g, are defined,
the |n.|l||1c-|] coordinates are -;:—-l and at _—l . redpec tively. We
now azstune the (lih‘ll]‘ll'c‘lllt‘lll variation of the rod in the |||.|ll|n-||
coordinates as

uis)=ay+as

* We now substitute weE=-1)= u, ancd u(é=1)-= u,

and eliminating the constants, we can write the displacement field in
the mapped coordinates as

&) =| 1 ;"  +| 1.:-. [ets _‘lﬂ‘ 1:.—J|“I|_[_\-|_]]:”:

|”3|

M ™

Let us now think about how we can actually formulate an isoparametric element, to demonstrate
it let us take the simplest example that is the rod element, we had in the last lecture derived the
stiffness matrix for the rod element. Now we will do the same using the isoparametric
transformation. So the figure here shows a rod element which can have only 2 degrees of

freedom that is you have ul and u2.

And the left figure is the domain in the x direction and the right will be in the psi direction which
is isoparametric co-ordinate. Isoparametric co-ordinate will always have the origin exactly at the
center, so this is of unit 2 psi=-1 correspond to left node, psi=+1 correspond to the right node.
Now we will now start the formulation by again assuming a displacement variation, now in the

mapped coordinates.

Because we are not going to work on the left system here which is xy system, we are going to
work on the right system which is the psi system, so we need to assume our displacement
variation and on the psi system, so the psi system u of psi will be a0+al psi, because we have 2
nodes so corresponding to that we need to have 2 constants in the assumed variation and a0 and

al are the constant.

So as we did for the regular finite element, now we are going to substitute at u at psi=-1 it is ul

and u at psi=1 is u2. Now relate the coefficients find the coefficients exactly the procedure which



we followed to construct the shape functions in our previous lecture. So in doing so we can write
u psi is Ni*ui where Ni which is a function of the psi, which is the mapped coordinates is 1-
psi/2*ul and 1+psi/2*u2, so when we put this so this becomes my shape function matrix, which
is N1 this is N1 and this is N2.

(Refer Slide Time: 10:37)

¢ We also assume that the rectangular x coordinate to vary with

l‘c'.x‘]u;'vl to 111.||1|_>r_-tl coordinate in the same manner (_nl'tliﬂpl.u'rlllrlll.

That i
[|—: |+:}
Y=|— :
2] ]

¢ [u the above t'l.llldlil_JlL X, and x, are the coordinates of actual

X l =[\i‘:)]:":

h )

element in the rectangular x coordinate system. We can see that
there is one-to-one (‘rn‘rrs]u'nu]r'm"e of the coordinates in the

original and the llhll)l)l"(] systen

i

We also assume that the rectangular x co-ordinate, now we need to because we also transforming
from xy to psi, so we need to have a transformation for x because it is a one-dimensional
problem so only one co-ordinate will participate in the transformation. So we need to have the
rectangular x coordinate also vary as a function of the mapped coordinates what we have defined

for the displacement.

so we said u=Ni ui, x=Ni xi the same N will be used because the order of transformation is same
because it is an isoparametric transformation, so X can also be written as 1-psi/2*x1+1+psi/2*x2.
In the above equation x1, x2 are the coordinates of actual element in the rectangular co-ordinate
system, we can see that there is a one to one correspondence of the co-ordinates in the original

and also the mapped system.

And note that these shape functions also satisfied the properties of the shape function that is it
takes a value 1 at the node where it is evaluated in the mapped coordinates and sum of the 2

shaped functions always equal to 1.



(Refer Slide Time: 12:02)

Stiffness matrix derivation

* The derivation of the stilfness matrix requires the
1‘(||II|)IIL|linn ni'.xl|'.|i||.-c||.~al||‘u'v|nvnt tatrix [B] which
I'l'llllil es the evaluation of the derivatives of the :‘II.I]II.'
functions with |'q-.-‘lwrt to :)1'i2iu.l| v coordinate gystem

® [n the caze of rod, there is only axial strain and hence [B|

matrix becomes

I\ IN A
[]=| %L ¥
) . _ , dx | dx , 5
* The Rll.l]ll‘ lunctions are huiretions ol Imappet coordinate c.

Hence, derivative is first found in |||.||||u-1| coordinate_and

translormed to actual x coordinate using coe wddinate

transtormation and Jacobran

o o4 A
So now next see how we can derive the stiffness matrix, the derivation of the stiffness matrix
obviously requires the computation of the strain displacement matrix B, which requires the
evaluation of the derivatives of the shape functions which is with respect to x. Now we have a

problem, because we always be have the shape function in isoparametric formulation in which is

a function of only the mapped co-ordinate which is psi co-ordinate in this case.

So we need to convert this psi coordinates into derivative in to x co-ordinate derivative, so we
need to get the derivative with respect to X co-ordinate. So in this case the case of a rod the B
matrix will dN1/dx and dN2/dx. So in order to get the transform the psi co-ordinate derivative to
x co-ordinate, we need what is called the Jacobian and that is where we need the co-ordinate
transformation variation, let us see how we can get this.
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® That is, invoking the chain rule of the ditferentiation, we have

dN; dN,;d¢
L L i

St 12 (a)
b dé dx
* From the coordinate transformation, we have
1-¢ 1 + & dx (xs = x) L
X = - \'|+ — Xn. '=-—=—_J
2 2 - ds 2 r Jie
dé& 2 | -
—=—=—, dx=Jd¢
dx L o
* Using the above equations in Equ (a), we see
dN; dN;1 dN,;?2

!

dx  dEJ  dEL
So we invoke the chain rule of differentiation which is used in the partial differentiation chapter
of the mathematics where we say dNi Ni can be N1 and N2 dNi/dx= dNi/d psi*d psi/dx i could 1
and 2. Now in order to find d psi/dx we need the isoparametric transformation of the co-ordinate
that is why we need the co-ordinate transformation. We already said the co-ordinate

transformation always uses the same transformation as that of the displacement.

So we have x=1-psi/2*x1+1+psi/2*x2, so we take a derivative dx/d psi which is basically x2-
x1/2 and the x2-x1 is basically is the length of the element L/2 which we designated by J which
is we called it as a Jacobian. So we get d psi/dx=2/L or 2/J and from this we can easily say dx= to
converter our integration we also have the integration with respect to x so we convert x to psi by

multiplying with the Jacobian J.

So now using the above equation in equation ‘a’ we can say dNi/dx= 1/J*dNi/d psi=2/L.

(Refer Slide Time: 15:01)



¢ Substituting the shape functions, which is given by

[N=[N, 1\31-['?" '**:]

-

we can obtain the .\'h.lpr function derivatives with respect to

lll.-'l]ll)t‘ll l'l_)(Il.'l.ll‘.ll.-l{r':\I .Illl] ll('l].l.‘t' [llt.‘ lB] matrix l‘t‘('l.’lllt‘.‘.‘

dVy -1 dN, | 1 1[-1 1
dé 20 dE 2 [b]—.f[l *}

In the case of rod, there is only axial stress acting and as a result
l(.‘], the material matrix for evaluating the stiffuess matrix will
have only E, the Young' s modulus of the material. The stiffness

matrix for a rod is given by

[&]=[(l [c][] e '=“[/ff{:{f;| dav=[[B EAB|J d

V 04

So now we have the N matrix here, so we obtain dN1/d psi=-1/2 from here dN2/d psi=1/2,
B=dNi/dx so which is 1/J of dN1/d psi and 1/J of dN2/d psi which is given by this. Now we have
all the quantities what we want in order to find out the stiffness matrix except one. Now as in the
case of beam we need to find out this matrix C, the only predominant stress is axial stress axial

strain, so the axial strain is du/dx on which we derive the strain displacement matrix.

So the matrix is replaced by a single quantity called E, which is Young's modulus of the material,
so the stiffness matrix which we know is this. So now this is on the volume on the mapped
domain, and the mapped domain we have a coordinate of -1 to +1, so we say that we can actually
change this to 0 to L in the B transpose E B into area of cross section of the rod same dA/dx and
this because -1 to +1 B transpose EA*B*dx is nothing but J times d psi we derived this in last
lecture.
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* Substituting in the above equation for [Bl matrix and Jacobian.,

we get the stiflness matrix for a rod as
l

.+ EAl ]
[£]-
[ |
* Which is same as what was derived in the |u'r\inu.~' lecture

* For lower order and straight t't_lf;r_‘ll elements, Jacobian is constant
and not a function of lu.||1|n_-<l coordinate

* For ('l)lllllll'\' geometries and higher order elements, Jacobian is
alw aysa function of the l]l.ll]llt'(l coordinate, In such cases,
integration ol the expression lor computing the stilfness matrix

will involve rational polynomials

To show this aspect, we w ill now derive the stiffuess matris [or a

higher order rod

So we need to integrate this, so in doing so we get the K which is EA/L 1 -1 -1 1 which is same
as what we derived in the previous lecture number 28. So here are some of the observations we
could see, for lower order and straight edged elements Jacobian is always a constant value,

which is normally equal to half the domain length and not a function of the mapped coordinates.

However, for complex geometries as we go along we will see or higher order elements Jacobian
is always a function of the mapped coordinates, in such cases integration explicit integration like
what we did here is not possible exact integration is not possible as it is done for a simple rod,
then we need to because basically the integration will involve what is called rational polynomial,

even today it is very difficult to exactly integrate the rational polynomial.

So this becomes very difficult in such situation what is the solution, before finding out the
solution is let us see how we can get these kind of matrices by adding a little more complexity to
our rod model by introducing an additional node at the middle, so it becomes a higher order rod.
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Stiffness matrix for a Higher Order Rod A

.IHI!%
x=0 x=L72 x=I L "

(b) Isoparametric Quadratic Rod Element
* The displacement variation for this element m the mapped

coordinate iz gih'll by

-
wé)=ap+af+ar&”  (b)
* Fl_:llt_l“'ing_ the same [11’(_.L't_‘(llll1‘:: was done for the pPrevious case,

we first substitute

wE=-D=u, W(E=0)=u,, u(=1)=uy

* This will give the following shape functions
Va (l 71) Ny e@te) (€)

"

s(=1+¢)

- i

N,

* Next. Jacobian requires to be computed for which we assume
the coordinate transformation as
E(-1+8) .2 E(1+ &)
.\'=7.\-]+(1—; ).\'a+ ¥y (d)
~ - - 2

So this is a higher order rod which is shown here on the left is the Xy co-ordinate system and the
right is the psi co-ordinate system, so the origin is exactly here, so we have this psi in this
direction, so psi=0 at the middle and it again the unit is equal to 2 varying from -1 to +1. So here
we have 3 nodes, the nodes are located at x=0, x=L/2 and x=L in xy system and psi=0, psi=-1
and psi=*+1 in the psi system. As I said once we are mapping it we will work only on the psi

system.

So we need to assume our displacement polynomial in the psi system which is given by equation
‘b’ and we note that we have 3 constant corresponding to 3 degree of freedom x=0, x=L/2 and
x=L, so we have there is one to one correspondence between the psi system and x system, we
need to have 3 constants here and the 3 displacement variation can be given as given in the

equation ‘b’ here, and you see that it is not linear it is quadratic.

So we go by the procedure what we adopted for deriving the shape function, so we substitute u at
psi=-1 is ul that is here, u at psi=0 is u2 that is here and u=psi at psi=1 is u3 that is here. So we
will substitute it and go through the procedures what we have adapted in the previous class, we
can construct the shape functions and these functions are again quadratic, because we have
quadratic variations in psi which is given by psi*-1+psi/2 will be N1, 1-psi square will be N2 and

psi*1+psi/2 is N3.



And we note that this shape function again well takes a value of unity at their node and it will be
0 at other nodes, and sum of these 3 shape functions is equal to 1. So next we need to compute
the Jacobian because that is required to convert the psi derivatives to x derivatives. So since it is
an isoparametric transformation we assume the same variation as used in the displacement, so we

can write x=Ni*xi where xi 1s the coordinates of the elements.

So that is psi*-1+psi/2, 1-psi square/2 and psi*psi+2 all multiplied by x1, x2, x3 has showed
here, so equation d is the co-ordinate transformation.

(Refer Slide Time: 21:00)

* Taking the derivative with respect to the mapped coordinate,

we get

i (26-1) (2E+1)
=i = Yy 4 ey =, = Jd§
&l - -

Unlike in the 2-noded rod case, the ].lu obian in the ilil_{llt'l' order

-

rod cage is a function of the 11|.1]||w<l coordinate and its value

changes as we move along the bar

Il the coordinate 121'uim‘in|r with the mid point of the rod., the

\'Illlt' cl|l I|lt' l.lt‘nl:idll |u'l'(llllt*.~‘ f /2

¢ The [B] matrix in this case becommes

1[( 2&-1 2% +1
-5 (2] - (22 a
F | 759

And next we will see need to take the derivative and we will do the same thing in the mapped
coordinates as we did before, so dx/d psi will be equal to which is given by here by taking the
derivative of the co-ordinate with respect to psi which is given by here. So we see that unlike the
2 noded rod case where the Jacobian was a constant the Jacobian in the higher order case is a

function of the mapped coordinates and its value changes as we move along the bar.

And suppose we choose my coordinates x2 exactly coinciding with the midpoint then because of
the symmetry we find the Jacobian becomes a constant equal to L/2, then we do the same thing
what we did that is we convert this the derivative with respect to psi 2x by multiplying with J, so
the B matrix will become now 1/J*2 psi-1/2-2 psi and 2 psi+1/2. So once we have the B matrix

then we have all the quantities to evaluate the stiffness matrix.
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o The stiltness matrix

L I

ISE j[z:f [c][B] b = ”[f»']’ E[B] dd dv= J'[f}']f EA[B]J d

V 04 l

‘ _7-1 25 :.1‘ | ‘ Jd: (e)

Jr-
I 28 +1
=

=
® l|v\iuusl}*, the above expression cannot be integrated in closed

form as we did earlier. [t is in the form of rational |_1<_||_\'11¢.n1|ai.ll.-.~‘.

for which closed form solutions does not exist/ It has to be

numerically integrated .
So the stiffness matrix is given by integral volume B transpose CB converted in to remove the
area into this and converted into line integral 0 to 1 by multiplying this with the area, so you will
get this and again dx=J times d psi, so everything is in the psi co-ordinate system and integration
limit is -1 to +1, when we substitute this into this we see that we have a J square and J is also as

see here is a function of psi.

And we have a coordinate complex functions here which becomes very difficult to integrate
because the exact solution for this may not exist, so the integration has to be done through
numerically integration and that is a standard procedure for all isoparametric elements. So let us
now self this for a while, we will revisit later after we described the numerical integral
procedure.
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Numerical Integration and Gauss Quadrature

* Evaluation of stiffness and mass matrix, specifically for
isoparametric elements involves expression such as the one
given in |'f1]1| (e), where the elements of the matrices are
necessarily rational polynomials

* Evaluation of these integrals in close forms is very difficult.

¢ Although there are different numerical schemes available,
Gauss Quadrature is most ideally suited for isoparametric
formulation as it evaluates the value of the integral between -

I 'to +1, which is the typical range of natural coordinates in

Isoparametric formulation. a

So we have seen that how complex the expressions become as we increase the complexity of
elements add more and more elements and becomes make it more higher order, so the evaluation
of the stiffness and also the mass matrix for dynamic problem specific for isoparametric element
involved expression such as the one shown in equation ‘e’ here, so where the elements of the

matrices are necessarily rational polynomials.

Evaluation of these integrals in close form as I said earlier is very difficult. Although there are
different numerical schemes are available, the one which is more popular among the finite
element specialized or the people working with finite element is the Gauss Quadrature method, it
is ideally suited because for same reasons that it is a formula given where the integration limit is
-1 to +1, which is the case with most of the finite element formulation, and it is also exact at
certain points which has been theoretically proven.
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* Consider an illh‘Ql'.ll of the form Iéﬂ*: /ﬁ.%{ﬂli\
s e

o T a5

+1
;—[Imj. F = F(&) =a 2%

* When this function requires to be integrated over a domain —1<&
with the length of the domain t.‘(|ll.|l to 2 units.

* When the above expression is exactly integrated, we get the
value of integral as 2a,

® I the value of the integrand is evaluated at the mid point (that is,
at ), and ulllllilwl) with a weight 2.0, we obtain the exact value of

the integral.
* This result can be generalized for a function of any order as given

|.)}.
+1
I=[Fdi=WZF +W,F, +... IV, F,

So what is this numerical integral let us consider a simple integral of the form F=a0+al psi, so if
you want the exact integral I exact will be equal to you have a0 psital psi square/2 evaluated
between -1 to +1 which will be equal to 2a0, this is exact we all know we can integrate it. Now if
you want to integrate this function numerically within the limits -1 to +1 how do we do this,

what does this Gauss Quadrature do?

So basically there are 2 ways to do it, suppose we design a method where we take we evaluate at
certain point and multiply with certain weights can we get the exact answer. For example here if
we say that we evaluate the expression at the midpoint, the midpoint is O that is at psi=0 and

multiply the resulting with weight factor 2, then we get the exact answer.

And this is the philosophy, why is at the midpoint and where are the points where we need to
evaluate these or those which are established after considerable mathematical rigor people have
established it. So in generalized form of numerical integration especially with Gauss Quadrature
is if you have F integral of this term, so you multiply with the function F1 evaluated at psi 1, this

F2 is evaluated at psi 2 multiplied by W2.

And if you have n points you have n number of weights. So this is the principle on which we
work with the numerical integration for finite elements and see how best we can actually achieve

this.
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* Hence, to obtain the approximate value of the integral I we
evaluate at several locations . multiply the resulting F, with the

appropriate weights I, and add them together.

* The points where the integrand is evaluated are called sampling

Plriﬂh‘

* In Gauss Quadarure, these are the points of very lngll accuracy and
sometimes referred to as Barlow Points.

* These lnllnf.-‘ are located .\"\llllllt'flil'.lll'\' with t't'.-‘lwt‘f to the center
of the interval and .\'}mnu-lrir.lu_\' |||.u'rl] |min|.-' have same weights.

* The number of points required to integrate the integrand exactly
depends on the degree of the highest polynomial involved in the

expression.

So hence, to obtain the approximate value of the integral I, we evaluate the integral at several
locations multiply the resulting Fi’s with the appropriate weight Wi and add them together. The
points where the integrands is evaluated are called sampling points, and in Gauss quadrature
these are the points of very high accuracy, people have actually proved that this have very high

accuracy points and sometimes referred to as Barlow points.

So these points are located symmetrically with respect to the center are on the mapped co-
ordinate center of the interval and symmetrically placed points have the same weights that is the
beauty of the thing, and for integration up to certain order people know exactly what are the
locations and weights. And the number of points required to integrate the integrand exactly

depends on the degree of the highest polynomial involved in the expression.
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* If p is the highest degree of the
P lynomial in the inte grand, then
the minimuwm number nl'|m‘ml.~' n

l't'l]llil'cl] to integrate the integra

. Order n Location £, Weight
exactly is equal to n=(p+1)/2. | , ,
’ 1 0 2
- . ) :
L] S R, +
hat ix for a polynomial of secon - T -
degree, ie. p=2, minimum [ } | £0.77459 66692 41483 | 0.55555 55555 55556 |
number of lll »ints l'l‘llllil't‘(l to (00000 G000 (M0 () SB8ES SHRES BR88Y
integrate is r'l]n.ll to 2. [ [ 208613 6311594080 | 004785 48451 454 |
* In the case of 2-D elements, the $033998 2043584836 | 0.65214 51348 62546
i | « 0.90617 98459 38 [70.23692 68850 56189 |
stillne #2 and mass matrix 00617 TS 36664 | 02502 63450 Ja18
: " + + 0 53846 93101 03683 047862 86704 99366
computation mvolves evaluation
J = 0 DOOO0 QOGO DOm0 ) SH8RS K888 BR8KY
the double Illll'Ql'.ll of the form
| I wn N M
I ) | F(&.,qp M3dn JIEW,F($,.n)idn LW W . Fl&.n,)
1

=1=1 ~1Lt= tal ful

A

So let us see if p is the highest number degree in the polynomial in the integrand, then the
minimum number of points n required to integrate is exactly equal to n=p+1/2, this has been
mathematically proven, so we are not going to prove here, we will take it as a phase value that
this is true. Suppose we have the highest order of polynomial in the integrand is 2 that is p=2, so

minimum number we need 2 point integration.

So if it is a 1 point integration as I said the location is exactly at the middle with the weight 2, if
you are want to have a 2 point integration location is 0.57735 which is basically +-1/root 3 and
the weight is 1, so if we want the third order of integration this is 1 is at the middle and 2 others
are the root of 0.6 and the weights are given here, so like that people have derived where the

location where are this Barlow points, where these solutions are accurate.

And we just used it and the operations become very simple to actually integrate this, these are
true if it is 1 dimensional structure, in the case of 2 dimensional elements the stiffness and mass
matrix computation involved the evaluation of the double integral of this form, so we use 2
summation one on psi and one on eta and eventually this becomes in this form.
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Stiffness matrix of the Quadratic bar

* Let us now revisit the stiffness matrix of the (lu.n]l'.llil' bar that
was dizgcussed earlier
* Writing Equation (e) again

-~ i

25-]
=)

LN 2 e 2541
(K] J'm o2 1= 2 =R e @
= - -

2+

-

* From the above equation, the highest degree of mapped
coordinate C 18 2. Hence by the formula n=(p+1)/2. a2
point Gauss integration is l't'llllil'r_'ll

* From the tle]]r-. the .-'dlllplitlg{ points for integration will be
located att A ith weights llc‘ing 1.0 for both points

Now let us revisit our quadratic the stiffness matrix of the quadratic bar, we wrote this before and
we said it is very complex and very difficult to integrate. Now let us examine this expression, we
have J which is linear J square is quadratic and this product is quadratic, so basically we have
and this is multiplied again with the determinant the Jacobian, so if you look at this we need the

order of the highest integrand is 2, so we need n=p+1/2 in 2 point integration.

So the 2 point integration the points where we need to sample or the sampling points we need to
integrate +-1/root 3 and the weight is given in the previous table which is given here, so the
weights are given here the weight is equal to 1 here.

(Refer Slide Time: 31:15)

¢ Using these in Equation (e), the stiffness matrix can be

written as

T
K]==5-1 2 -]
(A==

0 -1 1



So when we do that and sum it up we get a very simple matrix which is symmetric and this is the
stiffness matrix of the higher order, so we see that once when the order of the polynomial
increases because of the increasing number of nodes then the integration become complex, the
element formulation becomes really complex and the third numerical integration it is not
possible to evaluate this stiffness matrix.
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4-Noded 2-D Isoparametric FE Formulation
L1 n |

* Here, x-v¥ is the original - ! 3 ‘
coordinate system .nulcfi-l] is the ]
) : 11 2.1

mapped coordinate system.

X
() Isopwrnmercic Quadralateral Element

* Fach of the Ill‘ll)l}l.‘l.l coordinate

ranges from +1 to -1 .
The displacement variation

® This ] 8 . :
I'his element has 4 nodes and b Dt two cooydimate

J . - .t ) e . )
each node can r~l||1l)n|r & (]I‘Llr‘r‘r- directions (u -il'lll!.[ X

of freedom. In all the element has  Jivection and v along v

3 t]\'i_l_lt'('r-' ol freedom and the divection) is given in terms
resulting stithhess matrix would of mapped coordinates as
be of size 8 x &

(S m=ag+as +ar+adn

W =by+ b+ b+ by
Now let us see how we can actually do a more complex by formulating the 2-D isoparametric
finite element formulation, so you have a very arbitrary element which may be a quadrilateral in
this quadrilateral we have straight edges of arbitrary shape, so to handle this in the conventional
method becomes extremely difficult, this is the form of some kind of an arbitrary trapezium, so

we mapped it to a completely a square of psi eta coordinates.

So now we have the isoparametric coordinates both in the psi and eta, so each of these can
support 2 degrees of freedom, so there are 8 degrees of freedom per element, so they result in
stiffness matrix should be 8 by 8. So now we will forget about the Xy coordinates system since

we have mapped it, we will work only on the mapped system.

So we start with the assumed displacement field on the mapped system in the psi eta coordinate,

which is given by these equation here, so u psi and eta = aa0+al psit+a2 eta+a3 psi eta and b0+bl



psit+b2 eta+b3 psi eta. And you see that since there are 8 degrees of freedom 4 on u and 4 on v
each of the u and v will have constants and psi and eta, and it is a linear in both psi and eta.
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* h‘lil)."l“llli(lll of lln' Ill‘l|:ln'll [N ult'llilhllt‘ﬁ at lln‘ lour ll(llll'h. \\nlllll
result in the determination of -']1.1|>r' functions. The lh.“llLl('c‘lllt‘lll

field az well of shape [unctions is given by
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* The coordinate transformation between the original and mapped
coordinates can be similarly written as
¥ N 0 Ny ] Ny 0 N 1]
[¥[ _[M 2 ) 4 (]
|1 0 N ¢ N, 0 N3y 0 Ny

[N]tx)

So this is the shape function matrix which can be arranged in this form where the u vector is ul
vl u2 v2 etc. and if you go through the motion what we did for the rectangular element xy

exactly following the same procedure using the assumed polynomial here. We can write the N1=

1-psi*1-etad, N2= 1+psi*1-eta/4, N3= 1+psi*1+eta/4 and N1= 1-psi*1+eta/4.

Each of these again follows the properties of the shape function that is takes the values of 1 at the
points where it is available 0 at all other points and sum of these 4 shape functions will be equal
to 1. And now coming back to isoparametric formulation we assume the same variation of
displacement to the coordinates, now there are 2 coordinates x and y. So here u and v are
replaced by x and y, and u vector is replaced by x vector which contains the coordinates of the
original element in the xy system.
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* To compute the derivatives, we will invoke the chain rule.
Noting that the original coordinates is a function of both mapped

coordinate & and 1)

¢x ¢ dy « 'n ax 7 @3 n
3|
‘ ‘ ax &y Fil
3 F .
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) A A lfl A
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* The numerical value of the ].lu_nl)i.m tlt"lk'llllh on the size, blht']t‘

and the orientation of the element. Also,

i ¢
‘ ax I ‘ 04 ‘

Nl 1
‘f“ff' ‘”a}‘

So next we need to convert the psi derivatives to x derivative, so we use the chain rule on both x
and psi I mean the psi and eta, so d/d psi=d/dx*dx/d psi+d/dy*dy/d psi similarly, d/d
eta=d/dx*dx/d eta+d/dy*dy/d eta, so this can be written in matrix form that {d/d psi and d/d eta =
1 matrix*d/dx, so that is this matrix is the J matrix is the Jacobian matrix, so this is the Jacobian

matrix.

So now we are interested in only in d/dx and not d/d psi, so d/dx basically will be equal to J
inverse of this into eta, one of the things that we have to be very careful is the J should always be
positive, the determinants of J should exist it cannot go to 0, it can go to 0 when we are trying to

mapped a regular domain to a completely 0 domain.

So one of the fundamental things in the isoparametric formulation is for the formulation for the
mapping to exist Jacobian always be positive definite, that is the fundamental thing that is the J
inverse should exist, so when I only when the J inverse exist we can get the psi derivatives and
eta derivatives converted to x and y and derivatives, so this is y derivatives.
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¢ Using this equation, we can determine the derivatives required for
the computation of [B| matrix. Once this is done, we can derive the

stillness matrix for a l:l.mv element as

|1
: Y 1 1R £
[K]=¢] [[B] [C][B] d¢ dn
-1=1
¢ The above matrix should be numerically integrated with 2 point
integration. The stithiess matrix will be § x 8. [ €] is the material

matrix, and assuming plane stress condition | we have

So once we have all these things, once we have evaluate the B matrix, so from which we can
easily get the B matrix because this is just the strain displacement matrix, and here in the 2-D
that the third dimension is only the thickness, so that are removed out and we have -1 to +1 in the
x direction or psi direction and -1 to +1 in the eta direction, again dx and dy which is =J*d psi*d

eta.

And of course we do not have a single element in the case of a 2-D element because there is a 2-
D State of stress, so the constitutive matrix will be a full matrix, which we have already derived
it which is given by this, where Y or it can be said as E is the Young's modulus and mu is the
Poisson’s ratio.
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Some Numerical Examples

Analysis of a stepped Rod (0] Q@ g

* The aim of this t‘x.uulalc' 12 2| P il B

to determine the stresses L L
(lr"\'r'll!llt"ll in this Hrr']ll)t'(l

bar due the central loading.
Next the Matrix are assembled
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What we have seen till now is how we can formulate the regular element with a straight edges
we did for the rod beam and also rectangular element, and we also said if the domain is curved or
even straight how we can actually use the isoparametric formulation and formulate the element.
And we have shown for rods and probably even beams we can show that what is formulated in
the basically in the regular domain and the isoparametric domain, we will always have the same

stiffness matrix.

Now we will actually use this developed stiffness matrix and solve some problems of practical
interest, these are all very simple problems as we know that is the complexity increases we
cannot do this problems by long hand, a simple problems are basically taken to demonstrate
these methods. Let us take a simple analysis of stepped rod which is fixed at 2 ends which is

shown here and there is a central point load.

This of course a problem which can be solved by regular analytical methods but here we will try
to use the finite element methods to actually solve this, using the developed stiffness matrix, so
you have a central point load here each is of the length L and you have the properties that this is
2 times YA, Y is the Young's modulus and this is YA. So let us actually say that so here we take it
has 2EA this is 2EA and this is EA.



So now we take so totally we have 1, 2 and 3, 1 degree of freedom per nodes, so we have a 3
degrees of freedom element. What is the aim of this example? The aim of this example is to
determine the stresses developed in the stepped bar due to a central point load P, so let us take

this split up into 2 elements and we will write the stiffness matrix for each one of the elements.

The stiffness matrix for the element is EA/L 1 -1 -1 1 but EA is 2EA in the first element, so the
stiffness matrix of the first element will be 2EA/L 1 -1 -1 1 and we will write that there is a local
system and the global system, locally this is ul u2, this is a global system so this will be ul and
u2. The second element will have only EA here, so EA/L ul u2 u3 corresponding to the degrees

of freedom u2 and u3, so we write it has u2 u3.

So now in order to make sure that the force equilibrium exist at the interface between the 2
elements we need to assemble this, so when we assemble this you will have ul u2 u3, now while
we will assembling we will go and see ul ul, so there is a ul ul is here which has 2EA so EA so
2 goes here. Then you have ul u2 so ul u2 is 1, so basically this will be ul u2 is -2 which is
coming from here and 2 is multiplied which is there and ul and u3 are not connected so it

becomes 0.

Then similarly, it is symmetric so u2 ul will be -2 and u2 u2, so the u2 u2 is a combination of the
middle degree of freedom where there is a contribution from element 1 as well as element 2, so
the element 1 contribution is u2 u2 is 2 which goes here, and element 2 is u2 u2 is this one 1 so
2+1 will get added up here, and u2 u3 is only here there is no u2 u3 here which is -1, and u3 u3

there is u3 here, so u3 u3 is only this component that goes here.

And the 2x2 system is upgraded to 3x3 system, next we need to see where the loads are, the load
is the degree of freedom is ul u2 u3 correspondingly we have F1 F2 F3, in the first node there is
no load is there only the middle node F2=P and we need to see that these are a fixed end, so that
means there is no moment of this in the horizontal direction, so ul and u3 will go to 0, so you
need to solve only for one unknown here.
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Load and be :lllul.ll"\' conditions (BC) are uy =, =0,

* FE equation becomes,
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: u : wlement |
iz the nodal vector of element 1. Using these in the above

l'(l"-lli(lll. we get stress in element 1 as

So which is given here so we apply these boundary condition and so as I said, so here because
there is a constraint we do not know what is the load here, so we eliminate this 2 rows F1 and F3
where we have applied the boundary conditions, then we have only one equation EA/L*3*u2=P,
so u2=PL/3EA. If there is a uniform segment then it will be PL/EA now we will have a stepped
rod so that will be PL/3EA.

The stress in the element sigma=Y or E this is E*epsilon 1 which is E*B*{u}, so B matrix was
derived earlier is used here.
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o Similarly, stress in element 2 is given by

. : r
-Vp = (91 m = —14, |

O-j = } '(‘: - } [B] '”'.'f'n'uu‘n.rl‘ '”hu’.wrpufﬁ r |”] Ity 1 = ]”: “}

Substituting the [B] matrix and the displacement, the stress in

element 2 is given by



So when we use, this is what would be, so by doing this we can find the stress is given by P/3A.
And similarly, we can find the stress into and which is = -P/3A, because the stress state is
constant in a rod. So using a simple finite element method by using matrix approach we were
able to find the stress in element without going resort in 2 equations, so it was purely used based
on the stiffness matrix formulation.
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¢ Observation:

o [ this case, the calculated stresses in elements 1 and 2 are
exact within the linear llu'nr_\' for 1-D bar structures. It will
not Iuel]n if we further divide element 1 or 2 into smaller
finite elements.

¢ for |J|Il'lt't| bars, averaged values of the cross-sectional areas
f"l|l|u||| |'-‘|.' ”.‘“'(l Ill i f]ll' i'll'“ll‘“‘.‘:.

¢ We need to find the lli.~‘|1f.|t'tf1m'ul-‘ [irst in order to find the

stresses, since we are using the displacement based FEM

So what are the observations we see here, in this case the calculated stresses in element 1 and 2
are exact within the linear theory of bar structure why? Because we assumed polynomial
u=al+al x or a0+al psi exactly satisfies the governing bar equations, so even by increasing the
element you will not help improving the results, whatever the results you get with one element is

the converged results.

And if the bar is tapered if we take the average of the areas of the end bars you will get a very
good results, we need to find the displacement first, before we find the stresses later, so stresses
are always found by post processing the displacement.
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A Spring supported beam structure:

Here, following properties are

{2
Y
given, P=50.0 kN, k=200 kN/m D) @ |
=3 ( =210 aPg 2 -
L=30 m and E=210 GPa, : E bz 2
L

[=2%104 m4
L 4

* The beam structure will consists o1 nudadie support and the right
end iz .\Ill\llﬂ!‘h'li by a spring. Such a configuration can be found in
a MEMS structure on a silicon substrate, wherein the stiffuess of
the substrate is modeled asa spring

* The beam structure is modeled with 2 elements, element |

spanning nodes 1-2 and element 2 spanning nodes 2-3.

¢ Element stiffness of beam derived in Lecture 28 will be used here
and we will use this to generate the elemental stiflfness matrix for

cach element

Let us take about the next example which is a Spring supported beam structure, we are given
some properties here, the load is applied at the top and we the property the material property E is
given, the cross-sectional property the area moment of inertia is given, where do you find these
kind of structures, these are very common in the case of microsystems, the microsystems

basically has the silicon wafer over which these beam structures rust.

So now in order to find the bending of the beams will create a capacitance which is a basically
depends upon the type of sensor and measuring the capacitance will basically give the sensing
components of what you are trying to measure. So typically the material the silicon substrate is
basically the effect of silicon substrate on the beam structure are basically simulated through a
spring, so basically we can actually evaluate the spring stiffness by looking at the stiffness of the

silicon substrate.

So this is a typical problem which can be used in many of the MEMS structures such as
accelerometers, so here there is a discontinuity here and we are going to model this again with 2
elements. In the structural analysis term this is an indeterminate beam, that is there are more
number of equations than the number of statically equilibrium equations available, and hence this

structure is statically indeterminate structure.



So we take these 2 elements model this structure with 2 elements, we have already derived the
element stiffness, we take this element stiffness for a beam structure of course the beam structure
is the element stiffness is 4/4, so it has more degrees of freedom that is based on the transverse
and the rotation, then we assembled the stiffness put the boundary condition solve it and get all
the post quantities what we want.
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* As appe wed to rods, beams support two (||'Q|‘t't'.~‘ ol freedom at
each node, namely the transverse digplacement wand the
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* Next we will model the spring in the finite element frame

rotation 6 =

work. [t ig like a rod element with stiffness contributing to
nodes 3 and 4 in the transverse z direction, The spring stiflness
matrix is given by N |
h : ,
k. = k -k |v3
"
-k k"™

As in the previous problem, we have to generate the stiffness

matrix for each element and assemble. As before, the node 2 is

common for both the elements and the global stilfness matrix

will have contributions for both the elements for the transverse

and rotation degrees of freedom corresponding to node 2.
So as apposed to rods beams can support 2 degrees of freedom as I said at each node, namely the
transverse displacement and theta which is basically is = dw/dx, as I said earlier the beam
element based on this theta assumption is essentially a C1 continuous element. Next level we

will model the spring first, what is the spring? What is the effect of the spring? So basically
spring is like a rod element but the stiffness EA/L is replaced by k.

And basically it has 4 elements in addition to 2 beam elements we have to have a rod type
element here which movement is only push and pull in this transverse directions, so we modeled
this the element stiffness for a rod is EA/L 1 -1 -1 1, so instead of EA/L we put the k there and
we can say the stiffness matrix for a spring element is k -k -k k and this corresponds to w3 w4

and the w3 w4 is shown here okay.

So, now as in the previous problem we have to generate the stiffness matrix for each of these as

before we see that that node 2 is a common point for the element 1 and 2 that means the



contribution is the transverse displacement to 2 and rotation at 2 will be there for both elements 1

and 2.
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* Now adding all the stiff nesses, the global FE equation iz given by
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So let us see, now we generate the stiffness matrix, so the total number of degrees of freedom
what we have if you look at it this becomes w1 theta 1 w2 theta 2 w3 theta 3 w4 theta 4, so it has

8 degrees of freedom why? Because there are 4 nodes here if you look at it, there are 4 nodes

nodel 2 3 and 4.

And so this is the assembled stiffness matrix and you can clearly see that for the theta component
here there is the addition of the stiffness that is coming from the transverse displacement here is
added here that is coming here and that can be clearly seen in the addition of the matrices. So
now this is the assembled stiffness matrix where we add the component and we say k prime= (k

L cube/ EI

And now we assume we put that this is a so here the boundary conditions are it is a fixed end, so
we have the transverse displacement w=0 here and rotation is 0 here. Here, this is a hinge there
will be rotation but the transverse displacement is 0 here, here nothing is 0, in addition here the

rotation will be non-zero but the moment is 0, it cannot take any moment because it is a hinge.



So we apply these boundary condition here we say that wl theta 1 w2 and w4 the w4 here is the
fixed, so here there is nothing happening here both the w4 is 0 because this has only theta 4 there
is only w 4 here that is 0, and we also apply M2 and M3 =0. So here because we are putting a
spring here it cannot undergo any moment, so we say that the moment here is 0, so these are the

boundary conditions we apply here.

And after applying the boundary conditions we delete the corresponding rows and corresponding
columns and get the reduced stiffness matrix and the reduced stiffness matrix is given by here,
and you can clearly see the w3 there is a component of the transverse k and that is why you have

a k here, and it is a simple 3x3.

And you can also note that the load at if you look at it the only active degrees of freedom are
theta 2 w3 theta 3 that is the moment at 2 is 0 because I cannot take it, the moment at 3 is 0 I
cannot take it, but the shear force at 3 is present there, so that is the concentrated load that is
coming from here this is the node 3.
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¢ Solving thiz equation, we obtain the deflection and rotations at

node 2 and node 3, which is given by

& | . 3
| PL’
Wy r =
Ef(12+7k")
&, 9
* The influence of the spring k is easily seen from this rezult.
Plugging in the given numbers, we can calenlate
‘{J‘ U_“U:J‘Jz.ﬂ!u’)
W, | 0.01744m
‘ - 'H( | ‘ 0.007475rad .
* From the global FE equation, we obtain the nodal reaction forces
15,
V, 69 T8BEN
\/ ‘ 69 78kN m
V, ‘ ‘ 116.2kN
v, 3 4S8EN

So once we have this, we can solve for the equations and once we solve this we can get the
displacements at the rotation at node 2, the displacement at node 3 and the rotation at node 3

given by this expressions. And one thing which can clearly see that when k=0 it acts like a fixed



free cantilever beam, because there is no restraint here, when k becomes infinite it becomes like

a fixity there, so there is nothing to solve theta 2 w2 theta 3 becomes 0.

So you can see the k is an intermediate kind of a support which can simulate many many
conditions depending upon what the value is, so after solving this we plugging those values
which we gave at the starting of the problem and we see that these are the displacements, so once

we get the displacement we go to the elemental equations.

And the elemental equations we substitute these equation, the elemental equation relates the
shear force and the moment in each of the beam element to their respective displacements, we
plugging there and we can get the shear force and moment at each one of these segments, so it is
very elegantly a complicated problems such as this was solved using a simple finite element
method using the developed stiffness matrix.
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Summary

* In this lecture, we covered the following topics:

[ l.\'nll.ll.lllll‘ll'il' formulation, its need and lll'tll‘t‘t'lll't'

' Derived isoparametric formulation for elementary, and
hightl' order rods and 2-D |_Il.|llt‘ stress elements

1. Some numerical examples mvolving finite elements were

.l[.‘*(l .\'lll\'t'il

So now let us summarize, what we have studied in this lecture, in this lecture we covered the
following topics, we said how the isoparametric formulation takes place the need for it, what are
its procedures. How do we formulate the element for the simple rod the higher order rod and the
2-D 4 noded isoparametric element formulation we saw that. We derived the procedure the

emphasized the need for the numerical integration.



And we also showed how the numerical integration works especially in the case of the higher
order rod element, and showed that in conventional isoparametric formulation especially using
for the complex geometries which we will be dealing with a many real life problems, the

formulation leads to highly rational polynomials for which exact integration is not possible.

We showed that Gauss integration is very useful, we also found how to do that what are the
integration points and how to choose the order of integrate integration and such other things. And
finally we also said that how to solve some numerical problems using finite elements where we
took a typically problems that are normally encountered in some of the microsystems analysis

that one will be dealing with, thank you.



