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So this is lecture number 28 of the micro and smart system course.
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And here we would be talking about the finite element method development as such and as a

part  of  it  we will  develop the  finite  element  equations  and  the  shape  functions  that  are

required for the development of many elements. So just to give a summary of what we talked

about in the last class.
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We said that finite element uses the weak form of the governing equation with the weight

function v which is same as the dependent variable function, which is given in equation 1

here. So the system and the investigation is split up into many subdomains, which we call it

elements  and each  element  has  a  number  of  notes.  Over  each  of  these  subdomains,  the

dependent variable is assumed in certain form of a series, which is given by here equation 1

where an of t and phi n has certain meanings.

(Refer Slide Time: 01:22)

Let us see what these meanings are. So the equation 1 is the standard form for the most of the

approximate methods that were described previously; however, here in FEM each as I said

earlier has specific meaning. For example, an of t represents the nodal degrees of freedom

that is each element will have a node. For example, if it is a rectangular element, we have 4

nodes and the degree of freedom in each of this node represents this an of t.

And the phi n of x, y, z represents the shape function, which is normally denoted by N in

finite elements. The above variation of the dependent variable when substituted into the weak

form of the governing equation and minimized it we get 2 sets of problems. If the problem is

simple static that is the variables where an is just a function is a constant and the phi is not a

function of t.

Then  we get  a  set  of  algebraic  equations,  which  is  normally  for  static  problems.  If  the

problem is dynamic, then we get a couple set of ordinary differential equation that is basically

a governing differential equation is converted into algebraic equation for static problems and



a couple set of ordinary differential that is the PDE is transformed into a set of ODEs for

dynamic problems.
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Let us summarize the procedure now. So basically what it says here is the substitution of the

assumed  function  into  the  weak  form  of  the  governing  equation  and  the  subsequent

minimization will give us a set of 2 matrices what is called the stiffness matrix and the mass

matrix and the mass matrix will be there only if the structure is dynamic in nature that is it is

subjected to inertial loads.

And the size of these matrices depends upon the number of nodes and the number of degrees

of freedom the each node can support. For example, in order to explain this in little more

detail let us take a simple rod problem okay.
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So the rod problem basically will have 2 degrees of freedom that is the axial displacement u1

and u2 and this  is  node 1 and node 2.  So in  this  case,  the stiffness matrix  k which we

represent will be 2/2. If the same problem is now a beam problem that is when the loading is

in the transverse direction in this direction, then it will take 2 degrees of freedom that is the

w1 and theta 1 the slope and w2 and theta 2 slope.

So basically in which case this stiffness matrix will be 4/4. The other possibility is these are

all 1-D elements. Suppose we have a rectangular element, then this has 4 nodes and each

node can support u1, v1, then this is u2, v2, this is u3, v3, and u4, v4 and stiffness matrix will

be 8/8. Suppose we have a triangular element other possibility then we have 3 nodes and if

each node can support 2 degrees of freedom then the matrix k will be 6/6.

So basically it depends upon how many degrees of freedom it can have. We will come to the

definition of degrees of freedom little later.
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Now the mass matrix formulated through the weak form as I said what we get there is called

a consistent mass matrix. There are other ways of formulating the mass matrix, which we will

not go in detail in this course, it is beyond the scope of this course so in which case if that is

done,  the  consistent  mass  matrix  is  a  completely  full  matrix  depending  upon  the  what

structure it is 2/2 for a rod, 4/4 for the beam etc.

However, there are alternate ways of formulating this mass matrix. Suppose you take the total

mass and length only to the translation degrees of freedom then you will get a lumped mass

matrix,  which  will  be  completely  diagonal.  There  are  various  advantages  of  using  the

diagonal matrix when you do a dynamic analysis, which we are not going through in this

course.

The damping matrix another matrix that is coming from the weak form is many times not

used in  weak forms for many reasons because damping is  a very complex phenomenon,

which  is  not  well  understood  even  today, but  that  has  to  be  there.  The damping  comes

because whenever there is time dependent force then this force will not could be sustaining

the same amplitude it will die down after some time because of the various reasons such as

the environment, such as the material in which it is, the responses traversing etc.

But  however  to  represent  it  they  formulate  the  stiffness  and  mass  matrix  and  take  the

damping matrix as a combination of the stiffness and mass matrix and such a matrix is called

the proportional damping matrix.
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There are two categories of numerical method of solving under FEM, one is based where the

forces are basic unknowns these are called the force method which is also a kind of FEM

method, but it is not very popular, but the conventional FEM method which is extensively

used is called the stiffness matrix or the stiffness method where the dependent variable say

the displacement in the case of structures or it is current and magnetic field in terms for the

Maxwell’s equations are the electromagnetic problem are the basic unknowns.

And the satisfaction of the compatibility of the displacement across the element boundaries is

automatic as we begin here.
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So in order to make this very clear let us again take a domain and this domain is split up into

say number of element as shown here. Let us isolate here so in this case the displacement



coming from this element and the displacement coming from this element are compatible at

this  edges because we start  with the compatibility. However, because of the applied load

somewhere  else  there  will  be  forces  generated  and  the  forces  across  this  inter  element

boundary will not be compatible, will not be in equilibrium.

So this equilibrium has to be in force. How do we do that? So we generate the matrices here

for each of the stiffness matrix when we assemble it, the assembly process ensures that the

forces  here are  in  equilibrium.  So basically  there  are  two aspects,  which we said  in  the

elasticity, one is  the compatibility  and other  is  the equilibrium. Here the compatibility  is

ensured whereas the equilibrium has to be enforced.

The assembly of matrices will basically ensure that the equilibrium is satisfied. So when we

assemble the whole matrices so in the case of a rod we have a 2/2 when we assemble all the

matrices say it has 10 degrees of freedom so the total assemble matrix will be 20/20. So it

will be n/n. So if there are n degrees of freedoms, the assemble stiffness matrix will be of the

order n/n.
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Then what we do? After the assembly process, then we get a stiffness matrix say your k will

be say 20/20 for a 10 element rod matrix let us say and this 20/20 will corresponds to the 20

degrees of freedom in the rod. Each element will have 2 degrees of freedom; there are 10

elements so there are 20 degrees of freedom. So in that 20 degrees of freedom, you cannot

solve it without applying the boundary condition.



Because this matrix will be singular so basically you will have your force vector F which is

20/1 will be equal to k*u which is 20/1 where u will have basically u1, u2, to u20. So out of

which we need to say which are the boundary conditions are known, suppose u1 is 0 so that

has to be eliminated. So when we eliminate it, we get a reduced stiffness matrix and similarly

we can get a reduced mass and damping matrices if you are doing a dynamic problem okay.

Then basically the reduced stiffness matrix is solved for the applied loads. So many times the

load would be basically distributed.

(Refer Slide Time: 11:23)

For example, if you have a structure say we have a rod where some portion is having some

distributed loading. So in the finite elements,  we can only handle concentrated loads.  So

basically we split this element into sub elements so this will be element 1, so this will be

element 2 and this will be element 3. So I will name it as 1, 2, and 3. So each will have say 2

degrees of freedom.

So this will have node 1, 2, 3, 4 so you will have 1, 2, 3, 4, 5, 6, so 5 and 6 has a common

node 3 in the global direction. So now we have 6 degrees of freedom okay. So now what we

do basically is this distributed load has to be converted into concentrated load acting in these

2 element edges and when we assemble it corresponding to the degree of freedom 2 and 3, we

have the nodal vector going into the matrices.

So essentially what we are saying is the distributed load has to be transformed into equivalent

concentrated load when we do a finite element procedure. So the resulting equation will then



be solved using the standard algebraic solution methods and we solve for the displacement.

Once we get the displacement, we now use the elemental equation. For each element F=ku

then  get  the  forces  and  hence  the  stresses  and  whatever  quantities  you  want  beyond

displacement can be got by post processing the results.

So as I said earlier in my earlier lectures, the finite element procedure has the preprocessing

that is meshing the system then the solution of the equation and the post processing. So the 3

steps have to be followed in the finite element procedure and in the case of dynamic analysis

we have a PDE that is partial differential equation is converted into an ordinary equation,

which are coupled together to many differential equations.

There are various methods that we use to actually solve these equations such methods are

called the modal methods where we use the Eigen values, we convert the dynamic problem

into an Eigen value problem and find the Eigen values and use these Eigen values to find the

dynamic response or we can use finite difference scheme, which we talked about little later

by actually using the finite difference scheme for the reduced ordinary differential equation,

which we call it as time marching scheme. We are not going into details of these right now.
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So to understand this we can take this big flow chart. So this is the preprocessing part the left

hand part,  so this is the preprocessing part where we start,  we read the mesh, constraints

where the loads are, what are the types of loads, what are the types of materials okay. Then

we pre-compute all the elemental properties and then we initiate the displacement. So if you

are doing a dynamic analysis, we can ignore this.



So we begin to do loop over the element, we find the strain displacement matrix, we find a

material matrix and if it is a nonlinear problem, we have to update the stress, we do not care

to do about it. Then we solve for the displacement, compute the element forces and we do this

for all the elements. So before this we generate the stiffness matrix, assemble it. After the we

generate the strain displacement matrix we generate the stiffness matrix, assemble it, solve

for the displacement, find the elemental forces.

If you are doing a dynamic problem, we have to set the initial displacement to 0 then we need

to begin a time marching scheme, then we go about doing it, apply the constraint loads, find

the new displacement and this has to be done for each of the time step.

(Refer Slide Time: 15:47)

So now let us begin the finite element equations. How do we get the finite element equations?

So we again talk about we go back and revisit our energy theorems and one of the energy

theorems we derived is the Hamilton’s principle because we are now trying to derive the

equations for the general dynamic equations and then remove the dynamic part of it and solve

only for the static part.

So  if  you  go  back  to  our  Hamilton’s  principle,  the  Hamilton’s  principle  states  that  the

minimization of the total energy between the time t1 and t2 that is T is the kinetic energy, U is

the  potential  energy and nc  is  the work done by the  non-conservative  forces  and if  you

integrate this with respect to t1 and t2 equal to 0 will give us the governing equation. So now

let us go and find out each one of them.



Let us take the kinetic energy for a three dimensional system. Kinetic energy is nothing but

integral over the volume of the mass times velocity and the velocity has 3 components that is

u, v, w in the 3 coordinate directions so we have u dot, v dot and w dot here. So now we take

this and you know that the variational operator operates like a differential operator so we take

the variation in the 3 respective directions and then integrate by parts.

So now when we take the variation of T, now we have rho*du/dt*d/dt of delta u, dv/dt*d/dv

delta u etc. Now you have 2 time dependent functions, we integrate by parts and then make

sure that the first variation vanishes at time t1 and t2 we have done this in the last class so I

am not going to repeat it here and when we do this ultimately we get this expression where u

double dot is basically the acceleration.

So this can be written in the matrix form as variation of the transpose vector into d dot*v

where d double dot is nothing but a vector of acceleration and delta d is nothing but du, dv

and  dw. So  we  have  converted  this  equation  into  matrix  form  with  a  variation  on  the

displacement vector multiplied by the acceleration vector.
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Next, we take the strain energy part. We know the strain energy, we derive the strain energy

for a 3-D state of stress which is nothing but is given by this expression where it is a product

of stress and strain in each of these planes, which can be written in matrix form in this form

and when we take a variation we have to take a variation on displacement or the quantities



dependent on the displacement and the quantity dependent on displacement here is the strain

because we know the strain displacement relationship so we write this delta U/this form.

Now we take the work done by the non-conservative forces, which can be split up into 3

different forces, one due to body force, one due to surface force acting on the surface and one

due to damping force. So now work done by the body force is Bx*u, By*v and Bz*w and it is

a volume integral because Bx, By are all force per unit volume. So this can be written in this

form in the matrix form and taking a variation of that we get this in this form.

(Refer Slide Time: 19:24)

Similarly we can write the surface forces in this form where ts is the surface vector acting in

the 3 coordinate direction and similarly we can write damping in this form. While treating

damping,  there are  different  ways of damping,  the damping could be frictional,  damping

could be based on material  property, damping could be viscous.  The most common type

which is mathematically easily tractable is basically the viscous damping.

So we assume that the viscous damping force is given by this expression, which is directly

proportional to some constant, which is called the damping constant multiplied by the d dot, d

dot is essentially the velocity vector. So now we put all these things together we get this

whole thing in the Hamilton’s theorem. Now we simplify each one of them. Let us do that.
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So before we do that now we said that in finite element we assume the variation over each

element. That is the variation can be expressed in terms of the shape functions, which I talked

about in the first slide multiplied by the an of t, the an of t is the elemental displacement

vector of the element, which I call it as ue of t. For the sake of convenience, ue means e is the

elemental vector whereas u is the global vector.

So now I can get because here d dot is N*ue, N is only a spatial dependent. So the time

dependent comes from the displacement and d double dot is essentially N*ue double dot and

delta  d=N*delta  ue.  So basically  now we put  that  into the first  expression,  which is  the

inertial  expression  coming  from  the  kinetic  energy.  So  we  can  write  this  and  delta  d

transposes nothing but delta  ue transpose into N transpose multiplied by d double dot is

nothing but N*ue double dot.

So when I put this I get this and this quantity is called the mass matrix and the way we can do

that is the basically is the consistent mass matrix. Now let us take the strain energy portion

which has the strain displacement matrix. So strain displacement we know epsilon x=du/dx

etc.  In  matrix  form,  it  is  given by here.  Now epsilon=B*d.  So now I  know u,  v, w are

basically given by the shape function relation, we substitute here u, v, w in this form.

Then we can write epsilon=B*d and delta epsilon is B*delta d. We substitute it into the strain

energy expression here that is basically coming from here. Then when we do that we get this

form and this form B transpose C*B is basically the stiffness matrix where C is the material



matrix.  We derive this  material  matrix  for isotropic,  orthotropic or whatever  the material

conditions are in the structures.
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So this can be written in this form mathematically. Similarly we can write the body force

delta d using this expression here we can write a delta d transpose is delta ue transpose into N

transpose and multiplied by the body force vector and this is the discretization of the body

force. So this basically converts the body force, which is distributed into the concentrated

force acting on the nodes.

Similarly, we can do the surface force and when we put all these things together we get this

equation and here delta  ue is the incremental  displacement,  which cannot go to 0 in this

expression so the only thing that can go to 0 is the 1 within the bracket and that is what is the

governing equation,  discretize  form of  the governing equation  in  the  FEM. So the mass

matrix is completely got from the discretized portion that is N transpose N. 

The damping is got here N transpose N*eta and k is B transpose CB integral. So we have

everything in the discretized form which we need to solve. If we are solving a static problem,

we ignore this portion, we ignore this portion, we solve only Ku=R.
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So now let us introduce certain terminologies. Degree of freedom, what is degree of freedom?

It is the number of independent motion a structure can support. Example, a rod can support

only axial motion in the 2 nodes and hence it has 2 degrees of freedom. It is a number of

independent motions. For example, a beam can support both transverse motion and rotation

so that is each node in a beam will have 2 degrees of freedom.

A composite plate can support 3 translational motion that is in 3 coordinate direction and 2

rotation in plane direction. Hence, the plate node will have 5 degrees of freedom. If we need

to add a twist about the axis then we can add the sixth degree of freedom.
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To explain this a little bit, so let us take a rod. So rod can move only in this direction, it can

move only in this direction so basically that means you have 2, this is node 1, this is node 2.



So this is u1 and u2, correspondingly you have F1 and F2 so it can support only 2 degrees of

freedom. So this is a 2 DOF model. As I said earlier, this is a rod, so this is a beam, beam can

bend so it can bend, it can undergo this bending and this bending is caused by the rotation

that is the moment that is applied at the end.

So it can support the transverse displacement w at node 1, this is node 2, w1 and w2 and it

can support theta 1 and theta 2 and corresponding to the w1 because everything will have a

displacement dependent variable determination and a force variation and what is cause and

effect as we found in the variational principle. The w1 is caused by the shear force 1, w2 is

caused by shear force 2 and theta 1 is caused by the moment 1 and moment 2 and as I said if

it is a composite beam, the mid plane does not coincide with the neutral plane.

That  means  there  will  be  an  additional  component  u1,  u2,  F1,  F2  so  it  is  basically  a

combination of both rod and beam. So each will have 3 degrees of freedom per node and 6

DOF per element. So if it is a plate, we have plate so you would basically have it can have the

translational degrees of freedom u, w, v. Then it can have the theta x, theta y and you can also

have a twist degree of freedom if there is a twisting angle to it.

So these are called the independent degrees of freedom that you should understand what is an

independent  degrees  of  freedom? So every  beam will  have  a  degree  of  freedom that  is

defined by the motion that is the structure is undergoing.
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The other  one is  the continuity. So as  I  said earlier  across the element  boundary all  the

displacement need to be continuous that is a derivative should exist. For example in the case

of a rod, or a plane stress element, it is necessary to have only displacement to be continuous

such a continuity requirement is called C0 continuous element.

(Refer Slide Time: 28:31)

That is for example if you have a series of rod element and we isolate it, this is element 1 and

element 2. So the element 1 this will have 1 and 2, 3 so the axial displacement 2 due to

element 1 should be equal to the axial displacement at 2 due to element 2. That is not at all an

issue because it can be maintained, but if it is a beam normally in beam the slope theta here is

derived from dw/dx from the transverse displacement w.

So if it is a beam then we need to see that the slope at 2 due to element 1 should also be

continuous due to slope at 2 due to element 2. So in the case of beam, we need both w and

dw/dx to be continuous so there are 2 variables.  The primary dependent  variable  and its

derivative needs to be continuous, such a continuity requirement is called the C1 continuous

element.
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So basically the C1 continuous element is a problem. It is not easy to satisfy especially when

we go from beam to some other higher elements. So that is the problem with the beam so in

order  to  avoid  this  people  introduced  what  is  called  shear  deformation  into  the  beam

formulation  and  such  a  beam theory  is  called  the  Timoshenko  beam theory  and if  it  is

introduced in plate is called the Mindlin plate theory.

In these beams, theta is not equal to dw/dx and theta can be independently interpolated so

then you need only w and theta to be continuous so that you do not need the first order

continuity, which  is  easier  to  solve.  So  we can  still  build  in  the  C0 continuity  in  beam

provided we use Timoshenko beam theory.
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Now let us come to the shear functions.
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So as I said I go back to equation 1 when we said that we approximate the dependent variable

or the displacement within the element by a series shown by this equation where an of t is

basically the what is called the degree of freedom or the nodal displacement and phi n is the

shape function.  This  phi  n  are  basically  the  one  which  satisfies  the  governing boundary

conditions or they are normally used by approximating this whole thing into a polynomial,

which is dictated by the order of degrees of freedom.

(Refer Slide Time: 31:38)

For example, if it is a rod problem, so for the rod problem we basically have the element has

2 degrees of freedom x=0 and x=L, so if you want to approximate the variation within the

element and use polynomial we need to have 2 unknown constants into the variable that we



are assuming why because it can support only 2 motions that is x=0 and x=L that is u1 and

u2.

So for these two unknowns we need to have 2 constants so we take this equation u of x t=a

naught t=a1 t*x. So in this above expression, we know that the constants are here a naught

and a1 are time dependent if we are talking about a dynamic problem or it is simply constant

in the case of static problem. Now we substitute that at x=0=u1 because we start our axis here

this is x=0 and u at x=L=u1 the above equation.

(Refer Slide Time: 33:19)

Then we will write the u1 and u2 in terms of the unknown constants so that is given by so

now I can say u1 u2=1 1 0 L a naught and a1 and we invert this matrix then we get a naught

a1 equal to 1/L L 0 -1 u1 u2. Now we substitute this back into our equation 1 and we can

write  and factorize  all  the u1 and u2 separately  then we can write u of x=1-x/L*u1 and

x/L*u2. 

So this 1-x/L and x/L are called the shape functions for the rod element so then we can write

u of x, t is sum of i=1 to 2 Ni*ui or you can write this N1*matrix this is N matrix u1 u2

where N1 are given by this as I said these are the shape functions for a rod element. So what

are  the  properties  of  the  shape  functions?  If  we  go  back  x=0  is  the  left  node  where

displacement is u1 and x=L is the right node where the displacement is u2.

Suppose we substitute x=0 here that is at the left node, N1=1 and N2 will be 0 so it takes the

value of unity at node 1 where the displacement has to be satisfied. So at node 1 we need



displacement to be u1 so u2 should go to 0 so that is why x=0. At x=0 the N2 goes to 0, N1 is

1. At x=L, N1 goes to 0 and N2=1 so N1 takes the value of 1 at node 1 and 0 at node 2 and

N2 takes the value of 1 in node 2 and 0 at node 1 and let us evaluate the sum of the n1+n2

which is equal to 1.
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So the sum of shear functions are always equal to 1. So these are some of the properties of the

shape functions.  It  takes  the  value  of  unity  at  the  node where  you are  evaluating  it  the

coordinate and all other places it is 0.
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We will do the same this with beam element. As I said the beam element has 2 degrees of

freedom for node, which is w is the transverse displacement and theta is the rotation. So the

minimum order that is needed here is it has to have 4 degrees of freedom are there so with the



assumed polynomial  field  if  we assume polynomial  should  have  at  least  4  constants  for

determination of this 4 displacement boundary conditions.

So that means minimum we need a cubic so the higher order approximation that is required

because of this 4 degrees of freedom will lead to continuity requirement which is C1 mainly

because  as  I  said  earlier  both  w  and  dw/dx  have  to  be  continuous  at  the  interelement

boundary. So we take a cubic polynomial here. So what we do we substitute at x=0, w=0 so

that is given here.
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At  x=0,  you  have  w1,  at  x=0  dw/dx=theta  1  because  the  slope  is  derived  from  the

displacement. At x=L, the transverse displacement w2 and at x=L theta dw/dx will be theta 2.

When we substitute this, we can relate u with theta and inverting it we get the unknown

constants a naught, a1, a2 can be related to the nodal displacement by this and when we

substitute this back into our original equation here for a naught, a1, a2, a3 we can write

w=N1, N2, N3, N4 of u so ni*ui.

That is the standard from for all finite element formulation and we get the following shape

functions. So a lot of mathematics has to be done just it is a matrix inversion. Once you do

that we get this. So let us look at these shape functions, does it satisfies the shape function

properties? That is we need that it takes the value of 1 at where it is evaluated. Suppose we

substitute at x=0, we expect that the N1 should go to value 1 and all other should go to 0.



So at x=0, we clearly see N1 is 1 and N2, N3, N4 are all 0. If we substitute x=L, we see that

this is x=L we have (()) (38:34) N2 will be 0, this will be 0, N3 will be 1 because it is the

transverse displacement that is 3-2 and N4 will be equal to 0. Then what about the theta

degrees of freedom.  So the N2 will not go to 0 when x=0 because what we are looking at N2

is the shape function for the dw/dx that is the rotation which is got from w.

And similarly N4 it is the shape function for theta at node 2 at right node so we will find that

the dN2/dx that is because theta is derived from the w, we need to take dN2/dx and substitute

at x=0 you will see that this will be equal to 1 and this will be 0 and when x=L dN2/dx

basically this will be equal to 0 and this will be equal to 1. So that is precisely what I have

written here.
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These  shape  functions  essentially  satisfies  the  properties  of  the  function  and  I  have

specifically said that N2 which correspond shape function of this slope and node 1 does not

take a value of unity at x=0 even though it is evaluated at that node, only dN2/dx=0 and if

you plot this you see that the variation, N1 takes the value of 1 and 0 at 2. The slope dN2/dx

takes the value of 1 at node 1 and 0 elsewhere.

This is N3 which is again corresponding to the transverse function so this is how the shape

functions vary.
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Now let us go to a 2 dimensional element and suppose we have a rectangular element of

length 2a and width 2b, which has 4 nodes and each node can take 2 degrees of freedom that

is u and v in 2 horizontal directions so it will have totally 8 degree of freedom element. So we

have 4u degrees of freedom and 4v degrees of freedom that means the polynomial is not only

x it is also y dependency is there.

It will have x and y and it should have 4 constants both in u and v so we take the form u of

xy=a naught+a1x+a2y+a3xy. Similarly,  we have  b  naught+b1x+b2y+b3xy so  there  are  8

constants corresponding to 8 degrees of freedom here. So now we substitute the coordinates

of the element. So here the axis is exactly at the middle so we have a middle axis this is x and

y.
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So this corresponds to -a and this is +a and -b and +b so we substitute this equation into the

assumed function here in this function and we evaluate the coefficients we can write a will be

equal to this G inverse*u where my u will be a vector u1,v1,u2,v2 to u4 v4. So this is the

vector of my u displacement. So when I substitute this back into this relation and simplify we

can write u=N1 N2 N3 N4 into only u degrees of freedom which will have u1, u2, u3, u4 this

will have only u1, u2, u3, u4 transpose.

And this will have only the vertical degrees of freedom that is v1, v2, v3, v4 okay and each

one can be given x-a*y-b/4, x-a*y+b/4, x+a*y+b/4, x+a*y-b/4. If you look at this carefully

let us substitute at x=-a*b suppose we want u1 which is -a*-b this is 4ab, everywhere you

have a 4ab here. So when you substitute x=-a*y=-b here, N1 it takes a value of unity whereas

N2 will be 0 at y=-b, this will be 0.

And similarly when we take the value of say u2 at -a and b so N2 takes a value of unity and if

you take the sum of N1+N2+N3+N4 it will always be equal to 1 so all these properties are

followed and if this is not followed then they are not called shape functions.
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Now for the triangular element, how do we do it? So now let us look at it is very important

element but inconvenient to generate the shape function by the procedure we adopted before

even though it can be done. So here we take a slightly different approach where we will not

use the conventional coordinates, which is given by you have x1 y1, x2 y2 and x3 y3. What

we will do here is we will take any point for which we require a coordinate.



We split up this into 3 areas, we call them A1, A2, A3 okay and if I want the area, area can be

got  from the  coordinates  if  A is  the  total  area  of  the  triangle  they  can  be  got  from the

expression given here which is the determinant of this where x1, x2, x3 are the rectangular

coordinates of the original element.
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So now we will define the area coordinate for this problem or the point P it is located by L1,

L2, L3 where L1, L2 is the sub area A1/A so if you look at it the sub area A1/A is the L1, L1

is the one where the opposite node is the node 1. Similarly, we take L2 which is the sub area

A2/A, L3 is A3/A. The position of the point is thus given by these coordinates, which are

normally refer to as area coordinates and or not independent and they satisfy the relation L1

L2+L3.

So the moment you solve that it is similar to sum of shape functions satisfying the equation

N1+N2+N3=1 where the coordinate x can also be related. I am not going into the derivations

of this. Through this relation L1 x1, L2 x2, L3 x3 so from this we can derive the expression

between L and the coordinates that is here we say Li will be Ai+Bi x+Ci y/2A where A, B, Cs

are given in terms of the coordinates.

So you can get  L1 will  be A1,  B1,  C1,  L2 will  be A2,  B2, C2 and these are  all  cyclic

permutations which we can get. So basically the above equation requires to be used we will

use this when we want to find the derivatives because in most of our B matrix we need dN/dx

with respect to x when we have the area coordinate L we need to use this expression to get

the derivative with respect to x.



So that is why we need this relations so this is more convenient to do that. So now we can

write this shape functions for the triangle as u=N1u1, N2u2, N3u3 where N1 is nothing but

your area coordinates L1, L2 and L3. So here these shape functions also follow the normal

rules that is it takes the value of A where L1=1 at the node 1 and 0 elsewhere and L2 and L3

is 0 at node 1 so in order to fix this we can go back here.

So at this point L1=1, at here L1=0 and if you come here L2=1 and L2=0, if you come here

L3=1 and L3=0. So basically when you say here in this point L3 is 0, L2 is 0 but L1 is 1. If

you look at here, L2 is 1 but L1 and L3 are 0. So it satisfies the property of the shape function

and at the same time elegantly we can able to formulate the element in more convenient

manner. The conventional method will give us lot of problems.
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So what are the rules for choosing the interpolating functions? The assumed solution should

be able to capture the rigid body motion and this can be made sure by retaining the constant

part of the assumed solution that is basically what we are saying here is so if you have a

function u=a naught+a1x+a2x square etc  the constant  part  make sure that  the rigid body

motion  can  be  present  in  the  assumed  function,  which  is  absolutely  necessary  for

convergence for the solution.

The assumed solution must be able to retain the constant state of strain as the mesh is defined

and  this  can  be  assured  by  retaining  the  linear  part  that  is  the  linear  part  a1x  in  the

interpolating function. This is absolutely necessary. These are some of the rules that we need

to follow.
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Most second order systems that is the second order system is where the differential equation

is order 2 requires only C0 continuity so you want only displacement to be continuous. We

explained this  which can be easily  met  in most finite  element  formulation.  However, for

higher order systems such as the Bernoulli-Euler beams where the elementary beam or the

plates where the slopes are derived from displacement.

Theta is dw/dx we need to see that both w and dw/dx are continuous across the element these

are extremely difficult to satisfy in the interelement continuity. So in such situations what we

do is we introduce shear deformation as I said earlier and Bernoulli-Euler beam is converted

into Timoshenko beam where the theta is not derived from the slope that is theta is not equal

to dw/dx where now we need to have only w and theta continuity that is we go back to C0

continuity.

Now if you look at it if the beam is very thick shear deformation is very, very predominant

we can use Timoshenko theory. Suppose the beam is very thin, there is no shear deformation,

you cannot make a C1 continuous to become C0 just by relaxing this. So in which case the

displacement predicted would be many, many orders smaller than the correct displacements

and such a problem is called the shear locking problem.

So we have to be careful well actually migrating from C0 to C1 by using different beam

theories.
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The order of assumed polynomial is dictated by the highest order of the derivative appearing

in the energy functional that is the assumed polynomial should be at least one order higher

than what is appearing in the energy function. To understand this now if you take a beam you

have u will be equal to 0 to L EI d square w/dx square whole square to dx and suppose you

assume a linear polynomial, which you cannot do anyway if you assume it then the energy

will go to 0.

Because d square w/dx square will not exist and suppose you use a quadratic polynomial then

d square w/dx square will only be a constant. So we at least make sure that in the case of a

beam we need to have something, which is where one more higher order should be there. So

what we need to choose is choose a polynomial where d cube w/dx cube exist. So basically

that is what is required here.

So  in  summary  what  are  we  doing  here.  For  all  the  elements,  we  can  express  the

displacements in terms of shear functions and nodal displacement, which are given by u=uN

into which is given here ni*ui and the spatial discretization will be used in the weak form of

the  governing  equation  substituted  there  and  then  we  formulate  the  stiffness  and  mass

matrices then these matrices will then be used, assembled, solved for forgetting the solution

of the structure.
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This is in summary about how the finite element process takes place. Now let us look at some

of the element formulation, this is a rod element formulation where you have N1 and N2

given by here where N1=1-x/L and x/L we use this shear functions then we know this is the

stiffness matrix, we have derived this so we put this into this system.
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So B is the strain displaced only relevant strain is epsilon xx. So only you will have C present

here  then  we  put  the  C  back  here.  So  once  we  use  this  we  can  actually  get  the  strain

displacement  matrices  and  the  C  matrix  will  contain  only  E  the  Young’s  modulus.  We

substitute all these things into this equation replace C/E, once we do that we get this equation.

And we put this back here and this is the stiffness matrix for a rod we see that it is symmetric

and it is a function of the material property E, sectional property A and length.
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Similarly we can do the beam element formulation where we have the displacement relation

between the axial displacement is given by theta times slope. So basically when the beam

bends we have so this is the mid plane so we draw this and this is the axial displacement,

which is the theta so that is the z times theta is nothing but the axial displacement and this

one.

And on using the strain displacement relation we find that this is second order strains and we

have the normal strains in the y direction and this is x and this is z so the sigma z in this

direction is 0 shear strain is 0 so only relevant material matrix here is again E.
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Here we plug this back into this equation and derive the strain displacement matrix, which is

du/dx which is given by there and when we substitute for u we get this is the second order

matrix and we substitute back into the governing differential equation and integrate between

0 to L we get this is the governing equation.
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So basically we have done this and now in summary what we have understood here is we

have developed the FE equations, outlined the procedures for finding out the shape functions

and also derived some of the elements that can be directly go into our analysis like rods and

beams and we also discussed few issues concerning the choice of the interpolating functions

etc. Thank you.


