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So this is a different kind of a ring gyroscope. Here, we have the same central post as it is shown.

Here, it is fixed only there, in the rest of the structure is free to move. Here we see that, to the

ring there are lot of these cones attached to it and there are 2 degenerate mode shapes for it. One

shape is such that this one, this one, this one and this one. That is these 4 sets of cones oscillate

that is as shown over here.

They oscillate about this point, this point, this point and this point, that is one mode shape and

the other mode shape is as shown here, where these 2 things that I am checking with 2 arrows,

this one, this about that point, about this point, about this point and about this point, it will go

like this as it shown. 

So when we set, let us say this one into oscillation, that is our drive mode, the sense mode, the

other set will start oscillating by measuring the capacitance of these cone fingers that is, that one,



that  one,  that  one and that  one,  we can sense if  there is  any angular  rate.  Again it  happens

because of coriolis acceleration transferring energy from one mode to another mode. So, this is

the principle of micro machined gyroscopes. 

This is also the principal for macro machined ones, but in micro machined gyroscopes we have 4

different ways of measuring, which we discussed in this lecture and all of these have been made

into micro machined devices, some of them are also commercially available especially the dual

mass one is commercially available. Ring gyroscopes are not yet commercially available but they

also have shown a lot of promise in terms of research. Thank you.

(Refer Slide Time: 02:45)

Hello as part of the micro and smart systems course, today we are going to begin another topic

which is very important in the micro systems which is modeling of Electrostatic-elastic coupled

problems. Electrostatic actuation is quite popular in micro systems because it scales very well

with miniaturization.

That is the force here, at the micro scale electrostatic force is quite large, we do not do that that

means that we do not use electrostatic force at macro scale to make our actuators. We use their

electromagnetic force quite a lot, but electrostatics has this very nice favorable scaling that the

force is enormous at that micro scale and it has an interesting issue with regard to modeling and



that is because it couples with the elastic deformation of the structure. We will discuss that in

today's lecture.

(Refer Slide Time: 03:40)

Let us consider a very simple problem of 2 plates that are parallel to each other, which we call

parallel plate capacitor. Parallel plate capacitor that means there are 2 plates that are parallel to

each other. This is Plate 1 and this is plate 2, based on what we have seen in micro systems until

now, you can relate to this type of parallel plate capacitor arrangement in many devices. 

One is the electrostatic cone drive, where we have these fingers which are interdigitated the other

ones coming in between like this. So here between this and this I have a parallel plate capacitor

and if you imagine a (()) (04:41) diaphragm the electrode underneath again, I have a parallel

plate capacitors. And in the case of an accelerometer, we have something that moves back and

forth this way, there is a (()) (04:54) that moves, there is electrode underneath if I  am measuring

capacitance there, again I have parallel plate.

So we have many examples, we have such parallel plates, models exist. If I want to know what is

the force between these 2 parallel plates, whenever we apply a voltage potential between these 2

plates. Let us say we have connected a battery between these 2 plates, let us say the potential is V

for this battery, then what will be the force and the force can be obtained like we had done in the

case of mechanical modeling, if we recall we had a theorem called Castigliano’s theorem, where



if  you  take  the  partial  of  strain  energy, partial  derivative  strain  energy  with  respect  to  the

displacement, you will get the force in that direction. 

Similarly, here, if you want to get the force, we have to take an energy but that energy is called

electrostatic co-energy or co here stands for complementary energy, co-energy and that is given

by 1/2 CV Square. Normally, you all know that energy stored in a capacitor is 1/2 CV Square,

where C is capacitance and V is the potential between the 2 plates of the capacitor, so that is

called the electrostatic co-energy. 

Now, if you take partial of, that is respect to the displacement here we have 3 variables shown,

one is the length, that is the overlapping area between the plates, there is a length, there is a

width w, there is a length l, there is a width w and there is also a gap, so gap is g, length is l and

w is the width. If I take derivative of this co-energy, if I take partial of the co-energy with respect

to l here as it is shown and takes a negative sign that gives me the force in the length direction. 

So, if I have 2 plates like this and apply a potential between them, they try to align with each

other. Let say I fix the bottom plate,  let  the top plate move, top plate will move so that the

overlapping length will  increase and that force is given by negative dou E e, E sub e is the

electrostatic  co-energy by dou l  which = what  is  given here which is  -1/2 Epsilon 0 w/g V

Square. 

Epsilon 0 here is the permittivity of the free space that is there between the 2 plates, like air for

example.  Because capacitance of a parallel  plate capacitor is given by Epsilon 0 A/gap g, so

Epsilon 0, A here is w times l, width times length/g, that is what we have put here, so that is the

force in the length direction.

Similarly, if I want to know the force in the width direction that is negative of dou E e/dou w as it

is shown here. That =-1/2 Epsilon 0 l/g V Square and there is also a force in the gap direction,

which tries to bring the plates together and that is – 1/2 dou E e/dou g, which turns to be this

value. Again if we recognize that w l is simply A. We can write it as 1/2 Epsilon 0 A/g Square

times V Square that is the force. 



(Refer Slide Time: 09:04)

How do we get this formula? What is the basis for it? For that we need to review the basics of

electrostatics  itself,  a  very quick review. First,  whenever  we have conductors  as it  is  shown

generally in this, so here we have conductor 1 and there is conductor 2 here. Both of them are at

different potentials, the first one is at potential V1 and the second one is at potential V2 and as

you know, let us say V1 > V2 then the field lines going from here to there.

And if you have the field lines or field curves shown, we can see that there is a force that acts

between these 2 bodies, which is electrostatic force. First of all, the field has a potential which

we call Phi, we denote it by Phi, Phi is potential, electric potential or simply what we call the

voltage and E the electric field is the negative of the gradient of this Phi that means that this is a

vector, Phi is a scalar. 

E is a vector, the gradient  symbol here stands for, if I take this Phi, that Phi is going to be

different because the potential here is V1, is V2 in-between it is going to vary, so that variation

dou Phi/dou x, so if I take a co-ordinate system in this, this is x axis, this is y axis, out of plane is

let us say z axis. Dou Phi/dou x in the i th direction that is their unit vector in the x direction+dou

Phi/dou y j+dou Phi/dou z k all with the negative sign. 



So that is i, that is j, this unit vector j and this unit vector k that is the gradient. So once you know

potential which is a function of x, y and z. If you take gradient and put a negative sign, you get

the electric field, those are the lines that are schematically shown here, is not the exact lines for

these  problem they  are  schematically  shown,  how the  electric  field  is  going  to  be  for  this

problem. 

Now, what  you want  to  know is  electrostatic  force,  that  electrostatic  force  is  given by this

formula, this is also a vector and here what we see is 1/2 Psi Square surface normal, this is a unit

normal that is everywhere if I take the surface here, they will be normal to the surface and Hat is

what  we  denoted  divided  by  Epsilon,  which  is  the  permittivity  intervening  medium  that  is

permittivity of this medium. 

Permittivity is a property of the material and that permittivity is given by Epsilon and sometimes

we write it as Epsilon r times Epsilon 0, epsilon 0 is the permittivity of free space and Epsilon r

is called the dielectric constant or we also call it relative permittivity. It is a basic slide but note

that whenever you have 2 conductors there can be more than 2 also, we need to first determine

the electric potential which will vary from point to point inside the conductor potential will be

the same.

Entire  conductor  will  be at  the same potential  like we have shown V1 and V2 here and in

between it is going to vary and if you take the gradient of the potential put the negative sign, we

get the electric field. Once we know the electric field, we can compute what is called the Psi,

which is a surface charge density, charge per unit area will determine what it is in terms of the

electric field now and we have to square it divide by 2 Epsilon.

And that is a magnitude of the force that acts on this conductor or any other conductor and this

force is going to act only on the surface, It is a surface force like water pressure if you dip a body

into water, this is going to pressure that, the body will feel only on the surface. So this is also a

surface force, so it is going to be force per unit area, that F e we have here it is the force per unit

area, it is a magnitude, which = Psi Square over 2 Epsilon and the direction along the normal to

the surface at that point. Sometimes we call this surface force as traction.



(Refer Slide Time: 14:15)

Now, let us see a little bit about electrostatics. We have to start with Coulomb’s law that is all of

us know, that if there are 2 charges q1 and q2 as shown here, the force between them is given by

q1 q2/4 Pi Epsilon 0 times r Square where r is the distance between the 2 charges, so here if I

have charge 1 and charge 2 between these if there is distance r, the force is given by let us say

this is q1 charge, q2 charge, q1 q2/4 Pi Epsilon 0 r Square times r 12 meaning that between this

charge and this charge.

If they have the same sign then they will repel meaning that the force applied by this charge on

this will be in the direction and this charge by this on this direction, you have the same sign, they

have opposite signs, this is the same sign for the 2 charges. If they have opposite sign, it will be

an attractive force, this is opposite signs. You know that like charges repel and unlike charges

attract. 

Now here if you say what is electric field to a point charge, this is the formula for it, you have

charge Q divided by 4 Pi Epsilon 0 r Square and  then it will be from the point joining this charge

location to the point, where you want electric field that is your r12 and the magnitude of that is r,

the electric field due to the single charge and potential due to that we have to say how much

work is to be done to bring a unit charge from infinity to that point that is a potential.



And if you use these 2 concepts you can derive that electric field is negative of the potential that

we wrote in the previous slide. Now there is another concept, which is D, which is called the

electric displacement vector. It is simply Epsilon 0 multiplied by E, Epsilon is the permittivity of

the medium multiplied by electric field and that is electric displacement. 

(Refer Slide Time: 16:42)

This electric displacement if I take the normal component of that, because electric displacement

is going to act everywhere in the domain because electric field everywhere when you come to the

boundary of the conductor that electric displacement if I take the normal of this D, dot product

with the, if I take normal component of D, which is simply the dot product of D and the normal

vector what we get is nothing.

But the surface charge that was there in the formula for force that we just discussed. So let us

study force is Psi Square/2 Epsilon in the direction of the normal. In electrostatics, we have a

fundamental  law besides  Coulomb's  law, which  is  Gauss’s law. Gauss’s law states  that  the

surface integral of this D vector, D. dS then the entire surface = the total charge enclosed in that

one. 

If I take some S here, let there be lot of conductors, dielectrics or whatever other things that

maybe there. If I do this over this surface S, if I take this D everywhere dot with dS and do this

integral over the surface, that will be = the total charge contained in this that is the integral form



of  the  Gauss’s  law.  Differential  form  if  you  use  the  Gauss’s  divergence  theorem,  where

something, which has a surface integral it converts to the volume integral. So this would have

been volume integral times dV.

And then this is Psi v dV so we just say that that = that and since d is Epsilon times E and E is

minus gradient of Phi, we get that this quantity = simply Del Square Phi and that = Psi V and if

there is no charge Psi V here is volumetric charge, that is charge per unit volume. If that = 0

which is most of the time we will not have charge there, what we need to do is we have to solve

this equation Del square Phi = 0. 

It means that in order to solve for Phi in this problem we have to, we know the boundary here the

entire conductor is at potential V1 this is at V2 in between if I want to get Phi is a function of x,

y, z. I need to solve this equation that is Del Square Phi = 0, that is the equation you need to

solve in computing Phi. Once you know Phi, we can compute E as negative of gradient of Phi.

And then we can take the electric field multiply by Epsilon get D and take the normal component

of D and that will be our surface charge. This normal component of the electric field is En and if

you multiply by Epsilon that will become Dn that = surface charge. Now if there is a small

charge here, because charge will be distributed on the conductor surface there will not be any

charge inside the conductor, now due to this charge there will be a force that will induce at other

places, so electric field is nothing but force per unit charge.

If you want to get the force, you have to multiply electric field by differential charge dq, Edq, we

just said that E normal component is Psi s/Epsilon, and there is a 2 that is coming here, that

comes because there is whenever the electric field is 0 inside the body, where as it is not 0

outside the body, when we take that interface one side to Other Side, this half comes because

there is a sudden jump in electric field from 0 value to either value. 

So there will be half the contribution this side, half the contribution on that side, of course these

arguments have to be carefully done in order to understand where this half comes from. For now

It is (()) (20:59) to say that the En component normally, the books will say there is E1n and then



E2n that is there is one side, this has side 1 and side 2, where you take the fact that electric field

suddenly jumps and that gives you the 2 here in this formula, Psi s/2 Epsilon times dq and we see

that dq is surface (()) (21:28) small area dA, Psi s/dA. 

If we take dA here this becomes force per unit area that = Psi s Square/2 Epsilon. So this is the

force  that  we  get,  that  is  how  we  compute  the  force  acting  on  the  body, which  is  in  the

electrostatic field.

(Refer Slide Time: 21:48)

Now we already said that for the intervening medium, we need to solve this equation, which we

call Laplace equation and inside the conductors there usually no charge, if they are worked to be

charged or on the conductor there want to be some charge we have to use this one, Del Square

Phi = some non-0 value, which we call Poisson equation. So that we can compute the potentials

and then from the (()) (22:27) electric field from that, the vector D and then the surface charge

and then the force. 

There is an alternate way to do this, which is to use the integral form of the Gauss’s law and find

what is called the Green's function solution, green's function for this one that is this is one of the

solutions for the integral form of the gauss’s law, which we have seen in this slide. This is the

integral form of the Gauss’s law. 



The solution for this, there is a Green's function solution, which is shown here you can use this

and solve it using BEM which is Boundary Element Method that can be used to solve this or if

you solve the differential equation we can use the Finite element method to solve the differential

equation, either one is fine. We can use Finite element method and solve the differential equation

or use Boundary element method and solve the integral equation. 

(Refer Slide Time: 23:46)

Now let us see how there is coupling between electrostatic field and the elastic field. For that let

us take a bulky conductor, let us call this a bulky conductor, intentionally shown to be very stiff

and rigid, other one is the slender conductor such as the one shown here. Normally in the micro

machined structures the substrate will be like a bulky conductor and the one that moves either it

is a beam or a plate or a membrane, whatever that we have there, which is free to move or which

is very flexible, there is Slender conductor or there is a bulky conductor. 

Now if we apply a potential between these 2 points, so we are showing some V between this

conductor and that conductor, then we can solve either the differential equation or the integral

equation to compute Phi and then electric  field and then D and then surface charge and the

surface charge can be shown. Let us say it is something like this positive here and negative over

there and when there is charge, there will be force between the 2 electrostatic forces and that

force will cause the slender structure conductor to deform as shown. 



So it has deformed from there to here. Now you see that because of the deformation the problem

has to be solved again in the electrostatic domain because originally it was over here and it has

come from there till here. So we have to solve this problem again then check charge distribution

and then we have to repeat it. 

So we have to first take the problem and do the charge distribution causing electrostatic force of

attraction between the 2 and apply that force on the conductors, deform it and then deformation

has got changes there, charge distributions you have to go back here and keep on doing this

several  times  until  we  get  a  self-consistent  solution  between  electrostatics  and  the  elastic

deformation.

(Refer Slide Time: 26:03)

Let  us  see  that  in  the  form  of  equations.  Here  we  are  showing  the  integral  form  of  the

electrostatic equation. This is electrostatics and once we solve it we will get the potential and

then we will get the electric field and then will get the electric displacement, we get a surface

charge density Psi and that Psi goes here we get the electrostatic force. 

This is electrostatic force and that force goes in here as the traction or surface force of the elastic

body then the deformation changes and that has to be fed back here because the surfaces would

have changed because of you, surface geometry would have changed, you have to redo this and

do this again, again and again until this equation and this set of equations are satisfied together



that  is  we want a  self-consistent  solution between the 2 sets  of governing equation between

elastic and electrostatic fields.

(Refer Slide Time: 27:26)

All this may sound quite complicated at the first site indeed it is, in fact that is why the modeling

software for electrostatic micro systems are quite sophisticated and at the same time they do take

considerable amount of competition time if not analyze a complicated structure. And it turns out

that this coupling leads to some catastrophic phenomenon meaning that suddenly something that

you do not anticipate happens. So let us take a very simple one-dimensional lumped model to

analyze what is going on in this couple problem. 

For  that  let  us  imagine  like  a  pressure  sensor,  where  there  is  a  diaphragm and  there  is  an

electrode. Now if I apply voltage between these 2 that is a closed switch what happens to this

because of the force this going to deform and we need to analyze by solving all those equations

instead let us model this plate or a diaphragm as a spring of spring constant k and make this

diaphragm or a plate or just a flat  plate  that does not deform because we have captured the

deformation as this lumped spring. 

This is a lumped model. We just have put a spring and this plate, in the bottom plate that is this

one, we are simply giving it is a plate. There is a gap g 0 between them and A is the plate area, A

is the area of the plate and here the force, this is the electrostatic force is 1/2 Epsilon 0 A/g 0-x



square, where x is the displacement of this plate, this is x. Earlier we had seen that between 2

plates, parallel plates the force is how did we compute? That force was F e, electrostatic force is

negative of dou 1/2 C V Square/dou g. g here is whatever g 0 that we have-the displacement that

is shown downwards. 

Original cap is g 0, where this plate moves by an amount x. The gap is going to be g 0 – x. That

is the way we have got this. Now, for equilibrium between the elastic and electrostatic problem,

we need to have the mechanical force, which is k times the displacement. k x is the force to the

spring that should be = the electrostatic force. If we see, there is k x here and there is g 0 – x

square at the denominator, if I take it to this side, I get a cubic equation. 

A cubic equation can have all 3 real roots or one real root and 2 complex conjucative roots.  In

any case, there will be 3 roots, sometimes all real, sometimes a real root and 2 imaginary roots.

But, a real model such as this one, which solution does it take? Because, does it take the first root

or the second root or the third root? If I take this (()) (30:52) voltage is going to deform to one

position. It is not going to have any big duty whether as it should take this or that or that.

(Refer Slide Time: 31:07)

So, you have to analyse that we need to discuss the stability of the equilibrium solutions and to

see the stability, let us look at the forces. The mechanical force, which is shown as a straight line

here and the other curved one is the electro static force. You can see that when x = g 0, it is going



to blow up as it is (()) (31:25) over there. Now, as we saw the nature of the equation cubic, these

2 have 3 solutions. 

Here is 1, here is 2, here is 3. The third one is a material, because this point corresponds to g 0,

this is more that, that means that this plate has to penetrate this ground electro, which is not

feasible, so you do not need to worry about the solution, the third solution. Between these 2,

which one would we take, when we talk about stability?  

In order to discuss about stability, let us plot the potential energy of the system, which is given

by the spring mechanical force half kx square for this lumped model minus this epsilon 0 A/(g 0-

x), the half here and then V square, basically half CV square the negative sign because when you

take gradient and put a negative sign you get static force, whereas for the mechanical force you

do not need to put a negative sign. So, we take care of that in potential energy with a negative

sign here. 

If I take the derivative of this potential energy, I get back this equation. Let us see that because

we have PE, if I do dou PE/dou x, I will get half kx square. When I take the derivative, just

becomes kx and then if I take derivative of this, epsilon 0 A/2 remains as it is. 1/(g 0-x), it will

become (g 0-x) square and then -x will lead to -1. 1 over would have given 1- (-1), those 2 get

cancelled. So this –A remains the same and then we have the V square as it is. 

That is the equilibrium equation that is just force balance. To discuss stability, we need to take a

second derivation of the potential energy. So we need to take the second derivative, which is dou

square (PE)/dou x square. That will from here, it will simply be k and this will be epsilon 0 A V

square/ (g 0-x) cube. This have 2 in the denominator, will go away when you take derivative of

1/(g 0-x) and that is what we get for stability. 

If  this  is  positive,  that  cuts  most  to  the  minimum  of  the  static  energy. If  it  is  negative,  it

corresponds to the maximum. So between the 2, we know that that one that is the minimum is a

solution  because  potential  energy  when  it  is  minimized  that  corresponds  to  the  stable

equilibrium. The maximum corresponds to unstable equilibrium. 



(Refer Slide Time: 34:14)

So it is clear that between these 2 problems, that is between that these 2 solutions, which is the

first solution, second solution, the plate will choose this one that is closer with x = 0, the plate is

moving and it is (()) (34:25) this. And we have already said that third solution is more than g 0,

so we do not worry about it. Now let us say I increase this voltage from V 1 to let us say V 2,

which is larger than V 1. 

So, this placement has to be more, so this stable route will move to the right and it so happens

that the unstable route will move to the left. So, when I keep on increasing this voltage to let us

say volt V3, then this minimum and the maximum there, quails into one point. And that is the

transition point or a catastrophic point, where beyond which there is no real route other than one

that is more than g 0. 

These 2 become compressed conjugate and we do not have a solution, so what will happen then

is the plate, the moving plate, let us say the bottom plate is fixed, it will just move down and

touch  the  bottom  plate  and  it  will  cause  short  circuit.  So,  in  order  to  analyze  that  critical

condition for stability of this, we have to take the second derivative and equate it to 0. And also

we have the original equation, which is equilibrium as dou PE/, the first equation is dou square

PE/dou x square = 0.



The  second  equation,  which  is  just  one  is  dou  PE/dou  x  =  0.  When  you  solve  these  2

simultaneously, we will notice that x at this critical point is one third of the gap. And then the

potential, which is called the pull-in voltage, this is the pull-in voltage, that transferred to be 8

times g 0 cube/ 27 epsilon 0 A within square root. And this is the pull-in voltage. So as we

increase, if we go back to this problem, if I have this spring and when I apply voltage, when it is

pull-in, it will just move, x = g 0/3. And there will be gap, which is 2 times g 0/3. It will move

there. 

If it is more than the pull-in voltage, it will simply come and collapse, if it is more than the pull-

in voltage. Computing this pull-in voltage is very important because we do not want our micro

structure to be unstable. So we have to do it in such a way that whatever voltage is applied on it

or this structure is going to experience, should be below the pull-in voltage. Otherwise, there

would be catastrophic phenomenon, where the plates come together by themselves. 

(Refer Slide Time: 37:14)

Now what happens if there were to be a dielectric layer, as it  is shown here? So we have a

dielectric layer. This part is already marked, it is a dielectric layer, the thickness is td. Then if you

have to redo this calculation, meaning that we say dou PE/dou x = 0, where our PE is ½ kx

square as before – ½ C, C now is epsilon 0 A/the gap (g 0-x)+also this td should be there. But

that td will be, epsilon r has to divide this td times V square. Epsilon r here, this is the relative

permittivity of the dielectric layer. 



If we do that, pull in voltage will have a different formula as it is show here. Now the reason we

consider this is to explain another settle point here, which is, first as we increase the voltage, as

we are doing here, the displacement that is the displace of the plate keeps on increasing and

suddenly it pulls in right. Now, if this direct relay will not be there, it will go and touch the

bottom electrode, short circuit happens, that is the end of the story. But now, since there is a

dielectric, it has to stop there mechanically and there is no short circuit. 

Now, if  we decrease the voltage,  what  would happen? Would it  just  jump back from there?

Actually it does not happen. It will stay there at that point for a while, that is we have to have to

reach another voltage called pull up voltage, which is over here, which is smaller than the pull in

voltage, comes back and then it will go to 0. So when I am increasing the curve will go like this,

increasing the voltage and then the pull in occurs. 

At that point, if you decrease the pull in voltage, there will be a point, where there will be pull up

voltage, it will move there and then it will follow back from here. So it goes from here like this,

like this jump up and then go from here to there. And this is like a hysteresis. It is not really

hysteresis, in terms of there being a loss of energy. It is just that the going forward and backward

has a different behavior in this case. 

(Refer Slide Time: 40:03)



And in fact, it has been exploited in some of the commercial devices and one of them is shown

here, where this company says that, if you think of the butterfly, why it has the iridescent colors,

that is because on its surface they say there are the small membranes that gap underneath and

even when that gap closes, the optics comes in here, where the gap between the top electrode and

bottom electrode is lambda/4, thickness of this is lambda/4, so from here to here it is lambda/4,

from here to lambda/4, the total is lambda  /2.

The light falling off of this and going, other one that reflects out the bottom one and going, they

both will be in phase or out of phase, depending on whether the plate has moved in as it is here

or not. That is actuated or not actuated, we can have constructive and destructive interference and

make the majors, the pixel correspondence to this portion to be dark or grey. 

And if you adjust this thickness and gaps according to the wavelength of red, green and blue, the

primary colors, we can actually create a starting image. So by addressing each of these mirrors

that is shown here, just like they say the butterfly gets its wonderful colors. We can also create

starting images, they say commercial product. In fact, the same principle or similar principle is

used in the electrostatic micro mirror.

There again in order to tilt the mirror, this way or that way, we have to apply a voltage that is

beyond pull in voltage. Of course, there is a k, it is like a torsional spring because there were, we

have 2 torsional beams, there is a mirror in between that can tilt one way or the other. There you

have to get torsional spring constant and do the same analysis we did, in order to get pull in

voltage. And if we apply voltage that is more than pull in voltage it will just tilt that way and this

way, we can tilt the beam very fast. 
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Now if  we  start  moving  away  from our  1D model,  we  look  that  1D model,  meaning  one

dimensional just lump spring and parallel plate, both in electrostatics and elastic feel, it is a lump

model. Now, if you want to get more accurate result, then you have to solve differential equation.

There is no other way, which we have discussed. Now let us say that we want to have a domain

in between, so it is not full scale tridimensional analysis of electrostatics and elastic field nor it is

as simple as just having a spring and a parallel plate approximation. 

In between, let us say we take this as a beam, then we have earlier  discussed the governing

equation for a beam, which is given as EI times 4th derivative of the transverse displaced. If this,

we assume that it is a beam, it is going to deform, so that is u affix everywhere, 4th derivative of

the respective x, so x is here in this direction, that is x, 0 here and L here, so here x = 0 and here

x = L. So EI d to the 4 u/dx to the 4 and this is the electrostatic force. 

So here if you notice, instead of A, we have put w that is for unit length. Length is this direction.

We have put epsilon 0 wV square/2(g 0-u). Earlier we have x. Note that this u is the function of

x. So we have to solve this equation. If you also want to put the residual stress, then we need to

include that as found, concept residual stress. Concept residual stress, the concept residual stress

we have discussed in one of the earlier lectures, we have to put this, this equation we need to

solve.  Clearly this equation cannot be solved generically, so you have to get a numerical solution

of this equation. 
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And if you want to solve the general 3D problem, if you want to know how the commercial

micro system modeling software programs solve this one, we have to look at the equation that

we had earlier, where we said integral form can be used solved using boundary element method,

something like this. And if you have to, in the boundary element method, in pantelment method,

we would discrete as the entire domain into small elements. 

Here also we divide into small elements, but only on the surfaces. That is advent in the boundary

element method, we only work with the boundaries. So there the elements, we can call them

panels, small triangles. If I have some domain like this, I would divide this whole thing into

small triangles like this, some panels, something like this. We can divide this into small triangles.

Each panel is a boundary element. Then we can make this integration, become summation or

this, because si s q/area of the panel, q i/a i and then this greens function can be written in this

form, thus = potential of that phase, which we know, potentials are known, we need to compute

the charges on each panel, we need to solve this equation. If you work this out and assemble in

the form of a matrix that is going to look like this. 

The p, the potential vector = the P matrix and the charges, which you do not know. So if you

want to solve it, we have to get this or C trans p. If we arrange it, p inverse goes that side, there is



nothing but the capacitance because we know that for a pallet freight capacitor, Q = CV. So this

is the high dimensional version of Q = CV. Q is the charge, V is of course the voltage, this is the

capacitance, this is the capacitance in the higher dimensions. So we can, once p’s are known, we

can compute q, using C p = q relationship. 

If you come to the elastic domain, this force, this is Si square by 2 epsilon in the normal direction

to the surface there. And if you put this into our loading of the problem for mechanical, just as

we had C p = q, the linear modeling, this elastic for linear modeling K U = F, K we call this as

stiffness matrix and U is the displacement as you call to the applied loads. We can compute it,

but then because of U.

This thing will change again because capacitance depends on the geometry. We need to solve it

again, go here, go here, go here, so by going back and forth between these 3, we can solve this

problem eventually. 
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But if you want to do it little bit more efficiently, that is this kind of relaxation, that is we have to

solve the refractive problem, solve the mechanical problem, go back and forth, this is called the

relaxation approach, that is finally as we literate between elastic and electrostatic, after a while it

would converge, but it will take a very long time to converge and especially in the vicinity of the



pull  in  voltage,  when  the  voltage  that  you  applied  is  very  close  to  pull  in  voltage  of  that

particular system, then it would take a long time to converge. 

So you can, you need to find better approaches for doing it, which is done by taking derivatives,

which is one what is called a surface Newton, where you compute the gradients only on the

surfaces of the boundaries, surfaces of the conductors. And there is another one, where you can

go the Newton method, where you take the sensitivity is not only surface nodes, but also the

interior nodes.

So you can have the coupling turns between the mechanical and electrostatic fields as it is shown

here and we need to protop the displacements or the charges on the 2 and try to finally make

these 2 residuals 0. So you can use these also, which is what is being done in the commercial

micro systems modeling software now. 
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So if we have a comb drive, a structure accelerometer, gyroscope, comb drive, pressure sensor,

RF switch, any of these devices, if you take, if they are using electrostatic force or they are using

capacity sensing technique, we need to use the modeling that we have just discussed. 
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So if we take the comb drive, there is just one view of the comb drive, where whatever is hatched

here is anchored, it is fixed. Rest of the portion, which is in this color, is going to deflect. And

this  portion is  what  we called  folded beam suspension.  Again that  is  anchored  here,  that  is

anchored here. Now if there is voltage potential applied between this moving structure and the

ground, it experience static force at every pair of this comb fingers, here, here, everywhere. For

that, we know much force will be exerted, when things move inside like this.
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For that, we need to first estimate, let us say before we go to derivational modeling, we have to

just estimate the pull in voltage, for that we try, we treat this suspension as 4 beams on this side,

which are fixed and guided, fixed and guided, a lump modern technique that we have discussed



in one of the earlier chapters. And look at whether the series are parallel, finally reduced this hole

suspension into  just  one  spring  or  spring  constant  k  and then  we will  have  a  plate  for  the

electrostatic one, a parallel place capacitor, so just as k is a lumped constant of the mechanical

behavior  of  the  structure.  Parallel  place  capacitor  is  the  lumped  model  for  the  electrostatic

behavior. 
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So if you compute that k and try to see what the pull in voltage is, we get a value and if we go to

faradenmal  software  and  plot  it,  here  what  we  are  plotting  is  potential  here,  so  we  have

electrostatic comb drive, which has a suspension, which is this portion and then there are combs

over here. When we apply a potential between these 2, there will be a potential that will exist in

the entire domain and also the electric field, then the force and so forth. 
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So on to compute, the pull in voltage for the 3 dimensional structure, such as this, we have to

start with some initial V value, voltage we have to start some value and then raise it to another

value, raise to another value and then see how this placement looks like. If the pull in is going to

occur, so what we would find is that this placement initially will increase like that and sudden at

some point, it just goes to infinity. 

So this  is  displacement  verses  voltage potential.  Where does it  occur?  We have derived the

lumped model. If I take this spring constant here, I know the thickness, width of the beams,

length of the beams, if I know this k, then using the formula for pull in voltage, we can compete

the pull in voltage as well as pull up voltage that were to be electric and then we can go back and

do detailed fundamental stimulation such as this one and get the result. 

What is shown here, the potential or equi potential line, if I take this yellow, it is in the same line,

there is an equi potential line.  And the electric field always will be normal to this. And between

the 2 co fingers, if we really zoom in or here we can see that field lines here are going to be

parallel. That is perpendicular to the conductors, but field lines themselves will be parallel to

each other. 

And around the corners, we have some crowding of the field line, which is called the Fringe field

effect. And there are waste to account for this fringing field effects in the lump model by putting



a correction factor, but in general, if we have access to a parent element or bond element solver,

we can solve the problem numerically, as it  is  shown here in  a  commercial  software called

Femlab, its name now is Comsol, there are lot of others answers and also they are customized

modeling software for micro systems called Coventoware, Intelisweet and Softmemes and many

others. And we can use them to solve the coupled equation. 
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What we have done in this lecture now is to discuss, how we can start with a Columb’s equation,

Columb’s law and go all the way to electrostatic force, we get the couple problem, so that in a

comb drive problem such as this, if I apply voltage between these 2, we can see, if you focus on

this portion, where it was and where it has moved. That is, this comb fingers, which were at

some point like this, after a while this moves up here, this finger would have moved up little to

that.

And that is what we see for solving this. This is interrelative process, you have to solve the

electrostatic problem, do the elastic problem and again do this and do that. There is a very strong

coupling  between  the  electrostatic  field  and  the  elastic  field  because  electrostatic  field  is

dependent on the geometry of the conductors. But then, due to the force, electrostatic force, the

geometry of the conductors change.



That  is  the deform and distort  of the field,  so we have to recompute  that  and then the first

changes  you  would  recompute  the  deformations  and  then  that  could  have  changed  the

electrostatic field and then we have to keep on inter relating between the 2 fields, that is why we

have a very strong coupling. 
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And in fact, there is this pull in phenomenon that we discussed earlier, where you can think of

this.  This  is  the  potential  energy  curve  that  we  have  seen,  that  there  is  a  minimum and  a

maximum. But if you think of what happens in reality, if there is a ball here and that energy =

this maximum energy. It will roll down here, go there and if its voltage is slightly more than that,

it will just flop it over. 

That is there is something called a dynamic pull in voltage. The formula for that also can be

derived,  just  as  we have derived the static  pull  in  voltage  formula.  Here remember  that  the

energy at the beginning = the energy at the maximum. Some way that, we can do and we look at

the dynamics of this model, which we will discuss in the next lecture. Now we have discussed

the statics and the pull in occurs. But now in the next lecture, we will discuss the dynamics,

where we will consider what happens, if the voltage is applied itself, is time varying V(t)
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Just to summarize what we have discussed today. Coupling between elastic  and electrostatic

fields  is  very strong and it  leads  to this  strange phenomena called pull  in and then pull  up,

hysteresis like behavior, which is exploited in certain devices. And we discussed the methods to

solve this problem, both with 1 D model, to understand why this happens and how to solve it.

And in the general be equation or the 3D models, what equation it will be solved in order to

compute this pull in voltage or pull up voltage. 

And we find that lumped modeling is a very useful tool to get in sighted to the problem and also

in design. So next lecture, we will discuss the dynamic effects of a coupling between elastic and

electrostatic  problem.  If  you  have  any  questions,  you  can  send  me  in  email  at

suresh@mecheng.iisc.ernet.in. Thank you.


