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Euler’s equations of motion 

 

Hello everyone, welcome to the lecture again. Today, we are going to discuss the Euler's 

equation of motion. These equations are very important to study the dynamics of the rigid 

bodies. Now, to understand the Euler's equation of motion, we need the concept of rotating 

frame and to understand that, let us consider a plane motion of a particle relative to a 

rotating frame. 

 

Let us say I have a particle and this particle is moving in a plane. So, we have let us say 

this particle P and its position vector is let us say 𝑟 and let us say this X and Y, these are 

fixed frame. So, we have 𝑋 𝑎𝑛𝑑 𝑌 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  and we have another coordinate, let us 

say it is denoted by 𝑥 and 𝑦 . And this frame is rotating with an angular velocity Ω . 



So, we have  𝑥𝑦 ; these are rotating frames with angular velocity  Ω . And both these 

reference frames, they are centered at the same point, let us say O. then the angular velocity 

of the particle, so let me say it is 𝑣𝑝; this will be the 𝑣𝑝 = (𝑟̇)𝑋𝑌, okay? And if I want to 

write down the velocity of particle p in the 𝑥𝑦  frame, then (𝑟̇)𝑋𝑌 = (𝑟̇)𝑥𝑦 + Ω⃗⃗⃗ × 𝑟. Now, 

this is basically the vector sum of the velocities. 

The second term comes from 𝑣⃗ = 𝜔⃗⃗⃗ × 𝑟. And now, let us say we want to write down the 

velocity in the frame for which this point O is also moving. So, if point O is moving with 

velocity, let us say 𝑣𝑜. In that case, so the situation is following: we have some coordinate 

system, let us call it 𝑋′,  𝑌′, and then we have the fixed frame 𝑋,  𝑌 , and we have a frame 

which is rotating with angular velocity Ω  and the velocity of point O is 𝑣𝑜. So, in that case, 

the velocity of point P can be written as 𝑣𝑝 = 𝑣𝑜 + (𝑟̇)𝑥𝑦 + Ω⃗⃗⃗ × 𝑟. 

Now, this result we wrote for the velocity, but actually they can be generalized for any 

vector. So, let us say we want to find out the rate of change of any vector, let us say some 

𝑄⃗⃗ with respect to a rotating frame in three dimensions. So, remember earlier, we have the 

velocity 𝑣  in XY frame. 

 

So, this was nothing but (𝑟̇)𝑋𝑌. This was (𝑟̇)𝑥𝑦, the frame which is rotating plus Ω⃗⃗⃗ × 𝑟. 

Here, in three dimensions, we have a fixed frame 𝑋,  𝑌 𝑎𝑛𝑑 𝑍 . Then we have the rotating 

frame 𝑥,  𝑦,  𝑧,   and let us say I have some 𝑄⃗⃗, this is some 𝑄⃗⃗, and this 𝑥,  𝑦,  𝑧  frame they 



are rotating with angular velocity Ω . So, let us say this point is O and about 𝑂𝑂′, it is 

rotating with an angular velocity Ω . 

Let me again mention that there are two frames of references, and both of them are centered 

at the same point O. 𝑋𝑌𝑍  is the fixed frame, and 𝑥𝑦𝑧  is the frame which rotates about 𝑂𝑂′ 

with angular velocity Ω. So, I can write down from this equation the rate of change of 𝑄⃗⃗ 

with respect to the fixed frame. So, a fixed frame means  𝑋𝑌𝑍 . So, we have  𝑄̇ . So, 

remember this equation: 𝑋, 𝑌, 𝑍  will be (𝑄̇)
𝑥𝑦𝑧

+ Ω⃗⃗⃗ × 𝑄⃗⃗  which is 𝑄⃗⃗  here. Now, let us 

look at it by an example.  

 

So, let us say 𝑄 here is the angular momentum. So, again the same situation. We have a 

rigid body and let us say at its Center of mass G, I have the 𝑋𝑌𝑍  frame and then I have a 

𝑥,  𝑦 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠  and this axis is rotating with an angular velocity Ω  So, let us say it is 

rotating about this axis and the angular velocity is Ω . Then the angular momentum, so we 

are interested in angular momentum. 

So, let us say 𝑄 is the angular momentum, okay, L of the rigid body. And point O, so earlier 

we have this point O, this point O is here either any fixed point or the centre of mass point 

G. O is either any fixed point or the mass centre. So, in that case, note that this equation 

we had (𝑄̇)
𝑋𝑌𝑍

= (𝑄̇)
𝑥𝑦𝑧

+ Ω⃗⃗⃗ × 𝑄⃗⃗ . Here Q is the angular momentum, so therefore, we 

have (𝐿̇)
𝑋𝑌𝑍

= (𝐿̇)
𝑥𝑦𝑧

+ Ω⃗⃗⃗ × 𝐿⃗⃗ . Let me again emphasize that here (𝐿̇)
𝑋𝑌𝑍

 is the rate of 

change of angular momentum with respect to the frame 𝑋𝑌𝑍  which has fixed orientation. 



So, this 𝑋𝑌𝑍  is not rotating it is fixed. Similarly, (𝐿̇)
𝑥𝑦𝑧

 is the rate of change of angular 

momentum with respect to rotating frame of reference  𝑥𝑦𝑧  and what is  Ω ? Ω  Is the 

angular velocity of the rotating frame 𝑥𝑦𝑧 . Now, this is very important if the rotating frame 

is attached to the rigid body, its angular velocity Ω  will be equal to the angular velocity 𝜔  

of the body. So, if this is 𝑥𝑦𝑧  earlier it has an angular velocity of Ω . Now, I attach this 

𝑥𝑦𝑧  with the rigid body. So, that when the rigid body rotates 𝑥𝑦𝑧  also rotate in that case 

this angular velocity Ω . It will be equal to the angular velocity of the rigid body which is 

equal to 𝜔 . 

 

Now, keeping these concepts in mind, let us look at the Euler's equation of motion and let 

us consider the equation of motion of the rigid body in three dimensions. So, we know the 

governing equation. The governing equation are Σ𝐹 = 𝑚𝑎, where this equation tells you 

the motion of the center of mass of the body. And we have Σ𝑀 = 𝐿̇. 

And this moment can be calculated either about the center of mass G or any fixed-point O. 

So, this is any fixed point. Similarly, this 𝐿̇ can be the rate of change of angular momentum 

about the mass center G or any fixed-point O. Here, this 𝐿𝐺 , so let me call this as equation 

number (1). Here, this 𝐿𝐺  𝑜𝑟 𝐿𝑂, this is the angular momentum about the fixed frame 𝑋𝑌𝑍 . 

And Σ𝑀  is the resultant moment or the torque of the external force acting on the rigid body 

and 𝐿̇ 𝐺 𝑜𝑟 𝑂 is the rate of change of angular momentum about the mass center G. or any 

fixed-point O. Now, from here, I can write down what is (𝐿̇)
𝑋𝑌𝑍

 in terms of 𝑥𝑦𝑧  or the 



rate of change of angular momentum about the rotating frame. So, (𝐿̇)
𝑋𝑌𝑍

= (𝐿̇)
𝑥𝑦𝑧

+ Ω⃗⃗⃗ ×

𝐿⃗⃗ , where this Ω  is the angular velocity of a 𝑥𝑦𝑧  frame. 

So, here in we say that this 𝑥𝑦𝑧  coordinate has an angular velocity Ω . Now, I can plug this 

in equation number (1). So, then I have Σ𝑀 = (𝐿̇)
𝑥𝑦𝑧

+ Ω⃗⃗⃗ × 𝐿⃗⃗ . Now, I can write down 

this equation component by component. For that, let us say that 𝑖̂,  𝑗̂,  𝑘̂, these are the unit 

vector along 𝑥,  𝑦,  𝑧 − 𝑎𝑥𝑖𝑠 . So, in that case 𝑀 , let us look at this term, it will be Σ𝑀 =

(𝐿𝑥̇𝑖̂ + 𝐿𝑦̇𝑗̂ + 𝐿𝑧̇𝑘̂) + Ω⃗⃗⃗ × 𝐿⃗⃗ . Now, let us find out the value of Ω⃗⃗⃗ × 𝐿⃗⃗ .  

 

So, Ω⃗⃗⃗ × 𝐿⃗⃗ , it is a vector product. So, it will be 𝑖̂,  𝑗̂,  𝑘̂,  Ω𝑥,  Ω𝑦,  Ω𝑧,  𝐿𝑥,  𝐿𝑦,  𝐿𝑧 , and this will 

be 𝑖̂[Ω𝑦𝐿𝑧 − 𝐿𝑦Ω𝑧] − 𝑗̂[Ω𝑥𝐿𝑧 − 𝐿𝑥Ω𝑧] + 𝑘̂[Ω𝑥𝐿𝑦 − 𝐿𝑥Ω𝑦]. And we can put this over here. 

So, we have a Σ𝑀  equal to let us collect the component of 𝑖̂ or the coefficient of 𝑖̂. So, we 

have Σ𝑀 = [𝐿𝑥̇ − 𝐿𝑦Ω𝑧 + Ω𝑦𝐿𝑧]𝑖̂ + [𝐿𝑦̇ − 𝐿𝑧Ω𝑥 + 𝐿𝑥Ω𝑧]𝑗̂ + [𝐿𝑧̇ − 𝐿𝑥Ω𝑦 + 𝐿𝑦Ω𝑥]𝑘̂ . Let 

us say this is equation number (3), and this is the momentum equation about the fixed-

point O or about the mass center G. So, let me mention it that this is the momentum 

equation about a fixed-point O or about the mass center G. Now, let me mention it again 

that we have this rigid body, on this rigid body, we have the mass center G and 𝑋𝑌𝑍  are 

the fixed axis, and we have 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 , which are rotating with an angular velocity Ω . 

Then these are the momentum equation. Now, let us say we apply these equations to the 

rigid body wherein this 𝑥𝑦𝑧 −axis , they are fixed, or they are attached to the rigid body. 

In that case, when the body rotates with an angular velocity 𝜔 , then the 𝑥𝑦𝑧 − 𝑎𝑥𝑖𝑠  also 



rotates with the same angular velocity 𝜔 . So, we have the case wherein this rigid body is 

rotating with angular velocity 𝜔 . 

Therefore, the 𝑥,  𝑦,  𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑒𝑠  will also rotate with the same angular velocity 𝜔  

because now they are attached to the rigid body. So, now let us apply this equation to a 

rigid body. Where the 𝑥𝑦𝑧 −axis  are attached to the body. So, in that case, what will 

happen? In that case, this Ω  that we had earlier, this will become 𝜔 . 

So, we have  Ω = 𝜔 . And now, since 𝑥,  𝑦,  𝑧 − 𝑎𝑥𝑒𝑠  are attached to the rigid body, 

therefore, the moment and product of inertia will not vary with time. So, therefore, let us 

look at equation number (3). Under this condition, we have Σ𝑀𝑥. 

So, let us look at the x component. This will be Σ𝑀𝑥 = 𝐿𝑥̇ − 𝐿𝑦𝜔𝑧 + 𝐿𝑧𝜔𝑦. And Σ𝑀𝑦 =

𝐿𝑦̇ − 𝐿𝑧𝜔𝑥 + 𝐿𝑥𝜔𝑧. And Σ𝑀𝑧 = 𝐿𝑧̇ − 𝐿𝑥𝜔𝑦 + 𝐿𝑦𝜔𝑥. Let us call it equation number (4). 

 

Now, to rewrite these equations in the desired form, we need the relation between the 

angular momentum and moment of inertia, and this is something that we discussed last 

time that 𝐿 = 𝐼𝜔  wherein this I is the moment of inertia tensor. Therefore, component by 

component, we can write down 𝐿𝑥,  𝐿𝑦,  𝐿𝑧  equal to the moment of inertia 

tensor𝜔𝑥,  𝜔𝑦,  𝜔𝑧. And this moment of inertia tensor is 𝐼𝑥𝑥,  𝐼𝑦𝑦,  𝐼𝑧𝑧, then −𝐼𝑥𝑦,   − 𝐼𝑦𝑥,   −

𝐼𝑥𝑧 ,   − 𝐼𝑧𝑥,   − 𝐼𝑧𝑦,   − 𝐼𝑦𝑧. Now, we also saw that if we choose the 𝑥,  𝑦, and 𝑧 −axis  to be 

the principle of inertia axis, then in that case, the product of inertia is 0. So, in that 

case. 𝐿𝑥,  𝐿𝑦,  𝐿𝑧, they become 𝐼𝑥𝑥,  𝐼𝑦𝑦,  𝐼𝑧𝑧 and 𝜔𝑥,  𝜔𝑦,  𝜔𝑧, and all the product of inertia, 



they are 0 or I can write down 𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥, 𝐿𝑦 = 𝐼𝑦𝑦𝜔𝑦 and 𝐿𝑧 = 𝐼𝑧𝑧𝜔𝑧. Let us put this in 

equation number (4) . Equation number (4)  was Σ𝑀𝑥 = 𝐿𝑥̇ − 𝐿𝑦𝜔𝑧 + 𝐿𝑧𝜔𝑦 . So, 𝐿𝑥̇ 

because we have fixed our axis with the body. So, therefore, the product of inertia and the 

moment of inertia, they will not vary with time. Therefore, 𝐿𝑥̇ will be 

So, 𝐼𝑥𝑥 is independent of time. So, we have this, and then 𝜔𝑥̇ − 𝐿𝑦𝜔𝑧, 𝐿𝑦 = 𝐼𝑦𝑦𝜔𝑦 into 𝜔𝑧 

plus 𝐿𝑧 = 𝐼𝑧𝑧𝜔𝑧 into 𝜔𝑦 or I can write down Σ𝑀𝑥 = 𝐼𝑥𝑥𝜔𝑥̇ − (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝜔𝑦𝜔𝑧. Similarly, 

Σ𝑀𝑦 = 𝐼𝑦𝑦𝜔𝑦̇ − (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝜔𝑧𝜔𝑥  and Σ𝑀𝑧 = 𝐼𝑧𝑧𝜔𝑧̇ − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝜔𝑥𝜔𝑦 . These are the 

Euler equation of motion. 

And when we are using these equations, we must remember two things. Number 

one 𝑥,  𝑦,  𝑧 − 𝑎𝑥𝑖𝑠 , they are attached to the body and they coincide with the principal axis 

of inertia at the fixed point or at the mass center G. So, with this, let me stop here. See you 

in the next class. Thank you. 


