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Hello everyone, welcome to the lecture again. In the context of the dynamics of rigid 

bodies, in the last few lectures, we have discussed the fixed axis rotation, general plane 

motion, work energy equation and impulse momentum equation.  

 

Today, we are going to discuss the angular momentum of the rigid body. Let us say 𝑋𝑌𝑍  

are some fixed reference axis and then we have a rigid body and with this rigid body, we 

attach a 𝑥𝑦𝑧 . 

Okay, so 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍 , these are the fixed reference axes, and note that this rigid body is 

making a general plane motion. 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧  Are the axes that are attached to the body and 

let us say their origin is at the mass center of the rigid body? So, this is 𝐺 . Now, if we 

observe from the 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍  reference frame and let us say this rigid body has an angular 



velocity 𝜔 , in that case, the 𝑥𝑦𝑧   axis will also rotate with the same angular velocity 𝜔  

because these axes are fixed with the rigid body. 

So, let me mention this point that as observed from the fixed reference axis that means 

𝑋𝑌𝑍 , the angular velocity 𝜔  of the body it becomes the angular velocity of the 

𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠 because the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠 are fixed with the body. So, we are 

saying that let us say this rigid body is having an angular velocity 𝜔 and this also has a 

linear velocity let us say 𝑣 . So, what is the angular momentum about the mass center 𝐺 ? 

Angular momentum about mass center G will be 𝐿𝐺 =

𝑠𝑢𝑚 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑎𝑏𝑜𝑢𝑡 𝐺, okay. And to find out the sum of the moment 

of momentum, let us say I have, let us say 𝑖  of particles, its mass is 𝑚𝑖 and let us say its 

distance from G is 𝜌𝑖, okay. So, 𝐿𝐺  will be, so there are n particles, let us say, so 𝐿𝐺 =

∑ 𝜌𝑖
 
𝑖 × 𝑚𝑖𝑣𝑖. this is the moment multiplied by the momentum 𝑚𝑖𝑣𝑖, and since 𝑣 = 𝜔 ×

𝑟 = 𝜔 × 𝜌𝑖. So, therefore, this can be written as 𝐿𝐺 = ∑ 𝜌𝑖
 
𝑖 × 𝑚𝑖(𝜔 × 𝜌𝑖). Note that 𝜔  is 

independent of 𝑖  because the body is rotating about G. So, therefore, 𝐿𝐺  will be integral. 

So, I can write down summation into integral 𝐿𝐺 = ∫ [𝜌 × (𝜔 × 𝜌)]𝑑𝑚
 

 
. Let us call it 

equation number (1). Now, suppose instead of rotating about G, let us say the body is 

making a fixed axis rotation. So, in the same scenario, I have this rigid body, and let us say 

this rigid body is making a fixed axis rotation about O; then again, we have 𝑋, 𝑌, 𝑎𝑛𝑑 𝑍 −

𝑎𝑥𝑖𝑠 . And then we have 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 , which are fixed with the body. 

So, when the body rotates, the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠  will also rotate. So, let us say this is 

the 𝑥 − 𝑎𝑥𝑖𝑠, 𝑦 − 𝑎𝑥𝑖𝑠, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠 . Let us say the mass of the 𝑖𝑡ℎ particle is 𝑛𝑖, and its 

distance from O is 𝑟𝑖. So, as I said, 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠  they are attached to the body. 

Therefore, both the body and 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠  they have angular velocity 𝜔 . Now, in 

this case, what is the angular momentum about O? Well, again, it is a moment of 

momentum. So, 𝐿𝑂 = ∑ 𝑟𝑖
 
𝑖 × 𝑚𝑖𝑣𝑖  and  𝑣 = 𝜔 × 𝑟 . So, I can write down𝐿𝑂 = ∑ 𝑟𝑖

 
𝑖 ×

𝑚𝑖(𝜔𝑖 × 𝑟𝑖). And of course, this I can write down in the integral form. 

So, this is 𝐿𝑂 = ∫ [𝑟 × (𝜔 × 𝑟)]𝑑𝑚
 

 
. Let us call it equation number (2), and you can see 

that equation number (2) and equation number (1), they have the identical form. So, in 

equation number (1), we calculated the angular momentum about the mass center G, and 

in equation number (2), we calculated the angular momentum about a fixed point O. So, 

equations number (1) 𝑎𝑛𝑑 (2) have identical forms. Okay. And I can also write down this 

equation as you know 𝐿𝑂  𝑜𝑟 𝐿𝐺 = ∫ 𝑑𝐿
 

 
. 



So, in this case, this 𝑑𝐿 = 𝑟 × (𝜔 × 𝑟)𝑑𝑚, okay. Now, to find out what is this quantity? 

Let us write down component by component. So 𝑟 × (𝜔 × 𝑟)𝑑𝑚. We are interested in 

finding out this quantity so that we can find out what is 𝐿𝑂  𝑜𝑟 𝐿𝐺. So, this I can write down 

as 𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂ in the Cartesian coordinate. So, this is (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂) ×. then we 

have 𝜔 . 𝜔  Also has 𝑥𝑦𝑧  component. 

So, (𝜔𝑥 𝑖̂ + 𝜔𝑦 𝑗̂ + 𝜔𝑧  𝑘̂) ×. And cross product with again 𝑟. 𝑟 = (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂), and 

then we have 𝑑𝑚 . So, first, let us calculate this cross product, and that is equal to 

(𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂)  cross product 𝑖̂,  𝑗̂,  𝑘̂,  𝜔𝑥,  𝜔𝑦 ,  𝜔𝑧 , 𝑎𝑛𝑑 𝑥,  𝑦,  𝑧,  and then we have to 

multiply it by 𝑑𝑚 . So, this becomes (𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂)  cross product. So, we have 

𝑖 ̂(𝜔𝑦𝑧 − 𝑦𝜔𝑧) − 𝑗̂ (𝜔𝑥𝑧 − 𝑥𝜔𝑧) + 𝑘̂(𝜔𝑥𝑦 − 𝑥𝜔𝑦) and then you have to multiply by 𝑑𝑚 . 

 

Now, again, this is a cross product of two vectors. So, 𝑎 × 𝑏  again, we can write down in 

the matrix form and we can evaluate its value. So, this becomes 𝑖̂,  𝑗̂, 𝑎𝑛𝑑 𝑘̂ and we have 

𝑥,  𝑦,  𝑧,   and then we have coefficients of 𝑖̂,  𝑗̂, 𝑎𝑛𝑑 𝑘̂. So, the first one is (𝜔𝑦𝑧 − 𝑦𝜔𝑧), and 

then the coefficient of y is −(𝜔𝑥𝑧 − 𝑥𝜔𝑧). So, this I can write down as (𝑥𝜔𝑧 − 𝜔𝑥𝑧) and 

then the coefficient of k which is (𝜔𝑥𝑦 − 𝑥𝜔𝑦), and then we have 𝑑𝑚 . So, let us calculate 

this also. So, this becomes 𝑖̂[𝑦(𝜔𝑥𝑦 − 𝜔𝑦𝑥) − 𝑧(𝑥𝜔𝑧 − 𝜔𝑥𝑧)]𝑑𝑚 − 𝑗̂[𝑥(𝜔𝑥𝑦 − 𝜔𝑦𝑥) −

𝑧(𝜔𝑦𝑧 − 𝑦𝜔𝑧)]𝑑𝑚 + 𝑘̂[𝑥(𝑥𝜔𝑧 − 𝜔𝑥𝑧) − 𝑦(𝜔𝑦𝑧 − 𝑦𝜔𝑧)]𝑑𝑚. 

Now, we can collect the coefficient of 𝜔𝑥 𝑎𝑛𝑑 𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧 inside 𝑖̂,  𝑗̂, 𝑎𝑛𝑑 𝑘̂. So, here I 

have 𝜔𝑥,  𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧. Let us collect their coefficient. So, this I can write down as 𝑖 . We 



have 𝑖̂[(𝑦2 + 𝑧2)𝜔𝑥 − 𝑥𝑦𝜔𝑦 − 𝑥𝑧𝜔𝑧]𝑑𝑚 + 𝑗̂[−𝑦𝑥𝜔𝑥 + (𝑥2 + 𝑧2)𝜔𝑦 − 𝑦𝑧𝜔𝑧]𝑑𝑚 +

𝑘̂[−𝑧𝑥𝜔𝑥 − 𝑧𝑦𝜔𝑦 + (𝑥2 + 𝑦2)𝜔𝑧]𝑑𝑚. So, now we have the value of 𝑟 × (𝜔 × 𝑟) and we 

can put that value in equation number (2) or equation number( 1). 

So, we have to just take the integral of that. So, L will be ∫ 𝑖̂[(𝑦2 + 𝑧2)𝜔𝑥 − 𝑥𝑦𝜔𝑦 −
 

 

𝑥𝑧𝜔𝑧] 𝑑𝑚  plus ∫ 𝑗̂[−𝑦𝑥𝜔𝑥 + (𝑥2 + 𝑧2)𝜔𝑦 − 𝑦𝑧𝜔𝑧]
 

 
𝑑𝑚  plus ∫ 𝑘̂[−𝑧𝑥𝜔𝑥 − 𝑧𝑦𝜔𝑦 +

 

 

(𝑥2 + 𝑦2)𝜔𝑧] 𝑑𝑚.  

 

Now, note that this 𝜔𝑥,  𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧, they are independent of the 𝑖𝑡ℎ particle because the 

body is making a fixed axis rotation. So, therefore, they can be taken outside the integral. 

Now, another important point is look at this quantity(𝑦2 + 𝑧2)𝑑𝑚 . Similarly, 𝑥𝑦𝑑𝑚  

and 𝑥𝑧𝑑𝑚 . So, you have to recall that that ∫ (𝑦2 + 𝑧2)𝑑𝑚
 

 
 is the moment of inertia about 

the x-axis. 



So, this is 𝐼𝑥𝑥. Similarly, ∫ (𝑧2 + 𝑥2)𝑑𝑚
 

 
 is the moment of inertia about the y-axis, and 

∫ (𝑥2 + 𝑦2)𝑑𝑚
 

 
 is the moment of inertia about the z-axis. Similarly, ∫ 𝑥𝑦𝑑𝑚

 

 
 is the product 

of inertia about the x, y-axis, and ∫ 𝑥𝑧𝑑𝑚
 

 
 is the product of inertia about 𝑥,  𝑧 − 𝑎𝑥𝑖𝑠  and 

∫ 𝑦𝑧𝑑𝑚
 

 
 is the product of inertia about the 𝑦,  𝑧 −axis . So, let us put that in the above 

equation. Keeping in mind that 𝜔𝑥,  𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧 are independent of the integral.  

 

So, we have L equal to (𝐼𝑥𝑥𝜔𝑥 − 𝐼𝑥𝑦𝜔𝑦 − 𝐼𝑥𝑧𝜔𝑧)𝑖 ̂. This is the first term because this 

becomes 𝐼𝑥𝑥. So, we have 𝐼𝑥𝑥𝜔𝑥 minus ∫ 𝐼𝑥𝑦
 

 
𝑑𝑚 becomes 𝐼𝑥𝑦. So, that is the second term 

and then you have 𝜔𝑦 similarly, 𝐼𝑥𝑧𝜔𝑧 plus, (−𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 − 𝐼𝑦𝑧𝜔𝑧)𝑗 plus (−𝐼𝑧𝑥𝜔𝑥 −

𝐼𝑧𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧)𝑘̂. 

So, these are the component of the angular momentum along the 𝑖 − 𝑎𝑥𝑖𝑠 , along the 𝑗 −

𝑎𝑥𝑖𝑠  and along the 𝑘 − 𝑎𝑥𝑖𝑠  or unit vectors. This I can very nicely write down in the 

matrix form. So, 𝐿𝑥,  𝐿𝑦,  𝑎𝑛𝑑 𝐿𝑧 , it can be written as 𝐼𝑥𝑥,   − 𝐼𝑥𝑦,   − 𝐼𝑥𝑧 ,   − 𝐼𝑦𝑥,  𝐼𝑦𝑦,   −

𝐼𝑦𝑧 ,   − 𝐼𝑧𝑥,   − 𝐼𝑧𝑦,  𝐼𝑧𝑧. and 𝜔𝑥,  𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧. And note that this matrix over here is what? 

This is the inertia matrix that we introduced when we discussed the moment of inertia and 

product of inertia part. 

So, this is the inertia matrix or you also call it inertia tensor. Okay. And therefore, I can 

write down this in more compact form, 𝐿 = 𝐼𝜔 , okay. Here, this I is the inertia tensor. 

Now, you have to note that as we change the orientation of the 𝑎𝑥𝑖𝑠 𝑥,  𝑦,  𝑧,   then the 



moment and product of inertia also changes because we have fixed them with the rigid 

body. So, relative to the body, then the moments and products of inertia will also change.  

And we have also discussed that you will always find unique orientation of the body or of 

the 𝑥,  𝑦,  𝑧 − 𝑎𝑥𝑖𝑠  for which the product of inertia will vanish and this is called the 

principal axis. So, this also we know that there is one unique orientation of 𝑥,  𝑦,  𝑧 − 𝑎𝑥𝑖𝑠  

for which the product of inertia vanishes, okay? And this is called the principal axis, okay? 

So, in that case, the inertia tensor will be 𝐼𝑥𝑥,  𝐼𝑦𝑦 ,  𝐼𝑧𝑧 and all the product of inertia, they 

will be 0. Now, if that happens, in that case, the total angular momentum 𝐿 = 𝐼𝑥𝑥𝜔𝑥𝑖̂ +

𝐼𝑦𝑦𝜔𝑦 𝑗̂ + 𝐼𝑧𝑧𝜔𝑧𝑘̂. 

 

Therefore, in this case, your 𝐿𝑥 ,  𝐿𝑦 𝑎𝑛𝑑 𝐿𝑧, they become 𝐼𝑥𝑥 ,  𝐼𝑦𝑦 ,  𝐼𝑧𝑧 and the product of 

inertias are 0 into 𝜔𝑥,  𝜔𝑦 𝑎𝑛𝑑 𝜔𝑧. And this tells you that if the coordinates x, y, and z, they 

coincide with the principal axis of inertia, then the angular momentum about the mass 

center G or about a fixed point O will be L equal to, so let us multiply that. We have 𝐿 =

𝐼𝑥𝑥𝜔𝑥𝑖̂ + 𝐼𝑦𝑦𝜔𝑦 𝑗̂ + 𝐼𝑧𝑧𝜔𝑧𝑘̂. 

Now, we have also shown that for general plane motion, and this is something that we 

proved that the kinetic energy 𝑇 =
1

2
𝑚𝑣

2
  +

1

2
𝐼 𝜔2, where this 𝐼 is the moment of inertia 

about the mass center, and 𝑣 is the linear velocity of the mass center. Now, for fixed axis 



rotation, there is no 𝑣. So, 
1

2
𝑚𝑣

2
 term will not be there. So, therefore, 𝑇 =

1

2
𝐼 𝜔2 and just 

now we have seen that 𝐿 = 𝐼𝜔 . 

 

Therefore, I can write down kinetic energy𝑇 =
1

2
𝜔𝐿𝑜. With this introduction, now let us 

look at an example and the problem statement is following. The Bent plate has mass of 70 

kg per square meter of surface area and revolves about the z-axis at the rate 𝜔 = 30 
𝑟𝑎𝑑

𝑠𝑒𝑐
, 

determine (a), the angular momentum L, of the plate about point O. And (b) the kinetic 

energy T Of the plate. And it is given that neglect the mass of the hub and the thickness of 

the plate compared with its surface dimensions. So, in this question, we have been asked 

to find out the angular momentum L of the plate about point O. So, about point O, this is 

making a fixed axis rotation, and first, we have to find out what is the inertia matrix. So, 

the inertia matrix I am not calculating because it is something that we have done earlier. 

Let me write down the final answer for the moment of inertia matrix for this geometry, the 

dimensions argument and I come out to be 0.0257,   − 0.00369,   − 0.00221,   −

0.00369,  0.0130,   − 0.01012,   − 0.00221,   − 0.01012 𝑎𝑛𝑑 0.01834.   So, note that this 

is the moment of inertia about the 𝑥,  𝑦 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠  and these are the rest of them are the 

product of inertia. Now, in this question, it is given that 𝜔𝑧 or the angular velocity about 

the z-axis is 30 
𝑟𝑎𝑑

𝑠𝑒𝑐
.  And there is no rotation about 𝑥 𝑎𝑛𝑑 𝑦 − 𝑎𝑥𝑖𝑠.   So, therefore, 

𝜔𝑥 𝑎𝑛𝑑 𝜔𝑦 = 0 . Now, the angular momentum about the  𝑥,  𝑦 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑖𝑠 , we have 

already found out.  



So, this is the angular momentum about the x-axis, this one is the angular momentum about 

the y-axis and this one is the angular momentum about the z-axis. So, let me just write it 

down. The angular momentum about the x-axis is 𝐿𝑥 = 𝐼𝑥𝑥𝜔𝑥 − 𝐼𝑥𝑦𝜔𝑦 − 𝐼𝑥𝑧𝜔𝑧 , 𝐿𝑦 =

−𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 − 𝐼𝑦𝑧𝜔𝑧 and 𝐿𝑧 = −𝐼𝑧𝑥𝜔𝑥 − 𝐼𝑧𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧. Okay. Now, the values of 

𝜔𝑧 ,  𝜔𝑥 𝑎𝑛𝑑 𝜔𝑦 is known and also the moment of inertia and the product of inertia. 

So, we can put the values. So, 𝐿𝑥 = 30(−0.00221) because the 𝜔𝑥 𝑎𝑛𝑑 𝜔𝑦 = 0. So, this 

term will not be there. That term will not be there. 

We have only 𝐼𝑥𝑧  𝑎𝑛𝑑 𝜔𝑧. And 𝐼𝑥𝑧 is 0.00221. So, let me just write down this was your 𝐼𝑥𝑥. 

This was 𝐼𝑦𝑦. This was 𝐼𝑧𝑧 and this was −𝐼𝑥𝑦 , −𝐼𝑥𝑧 and so on, okay. So, similarly, 𝐿𝑦 =

30 × (−0.01012), and 𝐿𝑧 = 30 × (0.01834).  Therefore, the angular momentum about 

point O 𝐿𝑜 = 30[−0.00221 𝑖̂  − 0.01012 𝑗̂ + 0.01834 𝑘̂] 𝑁𝑚𝑠. Now, let us find out the 

kinetic energy T of the plate. So, since this plate is making a fixed axis rotation, so 

therefore, kinetic energy 𝑇  =
1

2
𝜔 𝐿𝑜 and 𝐿𝑜, we have found out. 𝜔  Is also known. This 

is 30 𝑘̂. 

So, it will be 𝑇  =
1

2
30𝑘̂. 𝐿𝑜 and 𝐿𝑜 is here. So, this comes out to be 8.250. With this, let 

me stop here. See you in the next class. Thank you. 


