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Simple harmonic motion: examples 

 

Hello everyone, welcome to the lecture again. In the last class, we discussed about the 

simple harmonic motion. Today, we are going to solve couple of examples, but before that 

let me summarize the result of the previous class.  

 

So, simple harmonic motion. In general, we have a mass which is attached to a spring and 

to set up the motion, you displace it by applying a force 𝐹 and then the mass 𝑚 makes an 

oscillatory motion about the equilibrium position. So, the equation of motion of the mass 

𝑚 was 𝑚�̈� = −𝑘𝑥, then we define a quantity 𝜔 = √𝑘/𝑚, then the equation becomes �̈� =

−𝜔2𝑥. We saw that this equation has the solution and the solution can be 𝑥 = 𝐴𝑐𝑜𝑠𝜔𝑡 +

𝐵𝑠𝑖𝑛𝜔𝑡. The solution can also be written as 𝑥 = 𝐶𝑠𝑖𝑛(𝜔𝑡 + 𝜙) and here 𝐴 and 𝐵 and 𝐶 

and 𝜙 they are related. The time period of this motion 𝑇 = 2𝜋√
𝑚

𝑘
 and the potential energy 

was 
1

2
𝑘𝑥2. Now, we also saw that the velocity at a distance 𝑥 from the equilibrium position 



is 𝑣 = 𝜔√𝑎2 − 𝑥2  and therefore, the kinetic energy was 
1

2
𝑘(𝑎2 − 𝑥2). Now, since the 

potential energy is this and the kinetic energy is that, therefore, the total energy was 
1

2
𝑘𝑎2 

and this was independent of 𝑥.  

 

Now, let us look at one example. A particle is moving with simple harmonic motion in a 

straight line when the distance of the particle from the equilibrium position has the values 

𝑥1 and 𝑥2, the corresponding value of the velocity are 𝑢1 and 𝑢2. Find the time period. So, 

we already saw that when a particle is at a distance 𝑥 from the equilibrium, in that case, the 

velocity 𝑢 = 𝜔√𝑎2 − 𝑥2. Herein, it is given that when the particle is at a distance 𝑥1, its 

velocity is 𝑢1. So, therefore, 𝑢1 = 𝜔√𝑎2 − 𝑥1
2 and here 𝑎 is the maximum distance that 

the particle can go. And similarly, you have 𝑢2 = 𝜔√𝑎2 − 𝑥2
2. So, therefore, from here, 

we can find out the value of 𝜔. For that, let us do 𝑢1
2 − 𝑢2

2 = 𝜔2(𝑥2
2 − 𝑥1

2) or the value of 

𝜔 = (
𝑢1

2−𝑢2
2 

𝑥2
2−𝑥1

2 
 )

1/2

 and we already know the time period in terms of 𝜔. Time period 𝑇 =

2𝜋

𝜔
= 2𝜋√

𝑥2
2−𝑥1

2

𝑢1
2−𝑢2

2.  

Now, let us discuss the springs which are connected in series and parallel. So, the first one 

is the spring connected in series. So, let's say we have the following situation. We have a 

spring, then another spring, and then another spring, and a force 𝐹 is applied. So, when the 

force 𝐹 is applied, all the springs are going to experience an extension. Let's say the first 

spring experience an extension of 𝑥1, second one 𝑥2, and the third one 𝑥3. So, as I said, if 

an external force 𝐹 is applied, then the force exerted on each spring will be the  



 

same. So, here the force 𝐹 is acting, so that 𝐹 will give you an extension, so that will be 

determined by 𝑘1𝑥1. Similarly, 𝐹 = 𝑘1𝑥2 and here 𝐹 = 𝑘3𝑥3, where 𝑘1, 𝑘2 and 𝑘3 are the 

spring constant of spring 1, 2 and 3, okay. So, from here, you can see that 𝑥1 =
𝐹

𝑘1
 and 

𝑥2 =
𝐹

𝑘2
 and 𝑥3 =

𝐹

𝑘3
 and so on. Now, let's say the whole spring system behaves as a single 

one with let's say a spring constant 𝑘. So, in that case, so, you can see from the figure that 

the total deformation will be 𝑥 = 𝑥1 + 𝑥2  + 𝑥3 . Now, since the whole system we said is 

behaving as a single spring, so therefore, 𝑥 =
𝐹

𝑘
 and 

𝐹

𝑘
=

𝐹

𝑘1
+

𝐹

𝑘2
+

𝐹

𝑘3
. Now, 𝐹  will get 



cancelled. Therefore, the equivalent spring constant will be 
1

𝑘
=

1

𝑘1
+

1

𝑘2
+

1

𝑘3
+ ⋯. So, this 

is the case wherein the springs are connected in series.  

Now, let us see the case where spring are connected in parallel. So, here in the situation is 

like that, you have, let's say, three springs and on these springs, the force 𝐹 is applied, okay. 

So, if we apply a force 𝐹 then each spring will be stretched by the same amount. And let's 

say that amount is 𝑥 . So, because of this force 𝐹 , the spring get extended by 𝑥 . So, 

therefore, for the first spring, the force 𝐹1 = 𝑘1𝑥 and for the second spring, 𝐹2 = 𝑘2𝑥 and 

for the third spring, it will be 𝐹3 = 𝑘3𝑥. And total force 𝐹 = 𝐹1 + 𝐹2 + 𝐹3. So, 𝐹 = 𝑘𝑥, 

wherein again we have said that let's say the whole system behaves like a single spring of 

spring constant 𝑘, then 𝐹 = 𝑘𝑥 and this will be 𝑘𝑥 = 𝑘1𝑥 + 𝑘2𝑥 + 𝑘3𝑥 and from here we 

get 𝑘 = 𝑘1 + 𝑘2 + 𝑘3 + ⋯  if there are other springs. So, this is the effective spring 

constant when the springs are connected in parallel. 

 

Now, let us look at another problem statement. Two springs 𝑆1 and 𝑆2 are connected to a 

mass 𝑀 as shown in 𝑎, 𝑏 and 𝑐, if the spin constant are 𝑘1 and 𝑘2, find the expression for 

time period in the three cases. In the first case, you can see that the springs are connected 

in series. So, therefore, the spring constant 𝑘 will be 
1

𝑘
=

1

𝑘1
+

1

𝑘2
 because the spring are in 

series. So, therefore, 
1

𝑘
= (𝑘1 + 𝑘2)/(𝑘1𝑘2) and therefore, 𝑘 =

(𝑘1𝑘2)

𝑘1+𝑘2
 and we know that 

the time period 𝑇 = 2𝜋√
𝑚

𝑘
. So, therefore, 𝑇 = 2𝜋√

𝑚(𝑘1+𝑘2)

𝑘1𝑘2
. In the second case, the 

springs are connected in parallel. So, therefore, 𝑘 = 𝑘1 + 𝑘2 because the springs are in 



parallel. So, therefore, 𝑇 = 2𝜋√
𝑚

𝑘1+𝑘2
. Now, let us look at 𝑐. So, here if one spring will get 

stretched, then the other spring will get compressed. So, you can clearly see that if one 

spring will stretch, then the other spring will get compressed. Therefore, both the spring 

will exert the force in the same direction. And the total force 𝐹 = 𝐹1 + 𝐹2 wherein 𝐹1 is 

the force by the first spring and 𝐹2 is the force by the second spring. So, 𝐹 = 𝑘𝑥. So, this 

is the effective 𝑘𝑥 = 𝑘1𝑥 + 𝑘2𝑥 and therefore, 𝑘 = 𝑘1 + 𝑘2. So, this is same as the parallel 

case. Therefore, 𝑇 = 2𝜋√
𝑚

𝑘1+𝑘2
.  

 

Now, let us look at two-body harmonic oscillator. So, let's say I have two masses 𝑚1 and 

𝑚2 and they are attached by a spring. To formulate the problem, let's say that the first mass 

is at a distance 𝑥1 and the second mass is at a distance 𝑥2 and the natural length of the 

spring is 𝑙.  Now, to set up the motion, you stretch the spring. Therefore, let's say on the 

mass 𝑚1, the force 𝐹 is acting in that direction, then the force on the second mass will act 

in this direction. So, the extension of the spring which is 𝑥 = (𝑥2 − 𝑥1) − 𝑙. Now, for the 

first mass, the equation of motion is 𝑚1𝑥1̈ = 𝑘𝑥 − − − − − (1)  and for the second 

mass 𝑚2𝑥2̈ = −𝑘𝑥 − − − − − (2). Because the forces are acting in opposite direction, 

okay ,then we can combine this equation. If we multiply equation number 1 × 𝑚2 =

2 × 𝑚1 and subtract them, then we have 𝑚1𝑚2
 𝑑2

𝑑𝑡2
(𝑥1 − 𝑥2) = 𝑘𝑥(𝑚1 + 𝑚2) . Or I can 

rewrite this as (
𝑚1𝑚2

𝑚1+𝑚2
)

𝑑2

𝑑𝑡2
(𝑥2 − 𝑥1) = −𝑘𝑥 . Let us define this quantity (

𝑚1𝑚2

𝑚1+𝑚2
) = 𝜇 

which is called the reduced mass of the system. It is called reduced mass because the value 

of 𝜇 will be smaller than either 𝑚1 or 𝑚2 and we have this quantity. 
𝑑2

𝑑𝑡2. And from here, 



this is nothing but 𝑥. So, therefore, it can be written as 
𝑑2

𝑑𝑡2
𝑥. So, therefore, the above 

equation becomes 𝜇
𝑑2𝑥

𝑑𝑡2 = −𝑘𝑥. So, this equation you can see that it is identical to the 

single harmonic oscillator. Let me write it down. This is identical to the single body 

harmonic oscillator. The only difference is your 𝑚 is getting replaced by 𝜇 and 𝑥 here is 

the relative displacement of the two masses from the equilibrium. Therefore, the time 

period or the time period of the oscillation 𝑇 will be 𝑇 = 2𝜋√
𝜇

𝑘
 .  

 

Now, let us discuss simple pendulum which is also an example of simple harmonic motion. 

So, in simple pendulum is you have a heavy mass point like mass which is suspended with 

an string and then the motion is set up by displacing it slightly. So, you have a heavy 

particle or the point mass suspended from an inextensible weightless string whose one end 

is fixed. So, let's say this is the string and you have the weight which is suspended through 

it and then the motion is set up by displacing it little bit, let's say by an amount 𝑥. Let's say 

the length of the string is 𝑙 and this angle is 𝜃. So, 𝜃 is small. Then the mass of the particle 

𝑚𝑔 or the weight of the particle is going to act downward. Since that angle is 𝜃, this angle 

will also be 𝜃. The tension 𝑇 is going to act upward and the restoring force is going to act 

which will be perpendicular to the strength. So, you can see from the figure that 𝑇 =

𝑚𝑔 𝑐𝑜𝑠𝜃 and the maximum value of 𝑐𝑜𝑠𝜃  can be 1. Therefore, 𝑇𝑚𝑎𝑥 or the maximum 

tension in the string will be 𝑚𝑔 and this is the case when 𝜃 is 0°. So, that means when the 

particle is over here, then the tension in the string will be the maxima. Now, let's say this 

is the +𝑥 direction. Now, the force 𝐹 − 𝑚𝑔 𝑠𝑖𝑛𝜃 and since 𝜃 is small, therefore, 𝑠𝑖𝑛𝜃 =

𝜃 and you can see from the geometry that 𝑠𝑖𝑛𝜃 =
𝑥

𝑙
. Therefore, 𝜃 =

𝑥

𝑙
 . So, I can write 



down 𝐹 = −𝑚𝑔𝜃 or 𝐹 = −
𝑚𝑔𝑥

𝑙
. So, here this is in the form of 𝐹 = −𝑘𝑥, where this 𝑘 =

𝑚𝑔

𝑙
. Therefore, the simple pendulum is a simple harmonic oscillator because it is in the 

form of 𝐹 = −𝑘𝑥. Now, we know for the simple harmonic oscillator, the time period 𝑇 =

2𝜋√
𝑚

𝑘
. Now, let us put the value of 𝑘, 𝑇 = 2𝜋√𝑚/(𝑚𝑔/𝑙). So, 𝑚 will get cancelled, you 

get 𝑇 = 2𝜋√
𝑙

𝑔
 which is very famous result. So, time period is independent from the mass 

of the particle. 

With this, let me stop here. See you in the next class. Thank you. 


