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Lecture 49 

Harmonic oscillator: simple harmonic motion 

Hello everyone, welcome to the lecture again. Today, we are going to discuss the harmonic 

oscillator, particularly the simple harmonic motion.  

So, remember for stable equilibrium, we have discussed that the potential energy should 

be minimum. So, this we already know that for a stable equilibrium, the potential energy 

should be minimum. This implies that if 𝑉 is the potential energy then 
𝑑𝑉

𝑑𝑞
= 0, where 𝑞 is 

the coordinate and 
𝑑2𝑉

𝑑𝑞2 > 0. So, if let's say this is the 𝑥-axis or this is 𝑞 and we have 𝑉, then 

the particles remains at minimum potential energy. So, let's say the particle is here and we 

have taken this as 𝑉0. This can also be 0 depending upon where you set the reference and 

now let's say you displace this particle by an amount 𝑥0. So, in that case a force is going to 

act on the particle to bring it back to the equilibrium. So, let me state it here if we displace 

the particle from a stable equilibrium, then a restoring force and the value of the restoring 

force will be −
𝑑𝑉

𝑑𝑞
, 𝐹 = −

𝑑𝑉

𝑑𝑞
  will act on the particle to bring it back to the equilibrium 

position. Now, this 𝑉 = 𝑓(𝑥) because 𝑉 is varying as a function of 𝑥. Now, this function 

of 𝑓(𝑥), I can expand using the Taylor expansion about let's say 𝑥 = 0. So, in general, this 

𝑉 which is equal to 𝑓(𝑥) can be expanded about 𝑥 = 0. This is the position wherein we 



have stable equilibrium using the Taylor expansion. And in general, any function 𝑓(𝑥) 

using Taylor expansion can be written as: 𝑓(𝑥) = 𝑓(𝑎) +
𝑥−𝑎

1!
𝑓′(𝑎) +

(𝑥−𝑎)2

2!
𝑓′′(𝑎) + ⋯ 

wherein 𝑓′ =
𝑑𝑓

𝑑𝑥
. Here as I said we are expanding it around the stable equilibrium. So, 

therefore, your 𝑎 = 0. Now, 𝑉(𝑥) = 𝑉0 + 𝑥 (
𝑑𝑉

𝑑𝑥
)

0
+

𝑥2

2!
(

𝑑2𝑉

𝑑𝑥2) + ⋯. Now, as I already said 

that for the stable equilibrium your 
𝑑𝑉

𝑑𝑞
= 0. So, herein you have 

𝑑𝑉

𝑑𝑥
 at 𝑥 = 0 because that 

is where I have the stable equilibrium. So, therefore, this has to be 0 and 
𝑑2𝑉

𝑑𝑥2
|𝑥=0 > 0. And 

let's say its value is equal to 𝑘.  

 

 
 

So, therefore, I have 𝑉 equal to, so we are looking at this equation, we have 𝑉 = 𝑉0 +

𝑘
𝑥2

2!
+ 𝑘1

𝑥3

3!
+ ⋯ − − − − − −(1). Now, we have also seen that the force that is acting on 

the particle when you move it from the stable equilibrium is −
𝑑𝑉

𝑑𝑞
. So, 𝐹 = −

𝑑𝑉

𝑑𝑥
 and from 

here I can find out what is the force that is acting on the particle. So, therefore, let us 

differentiate equation number 1. 𝑉0 is a constant value. So, therefore, that 𝐹 = 0 − 𝑘𝑥 −
𝑘1𝑥2

2
−

𝑘2𝑥3

6
… − − − − − −(2). Now, assume that the displacement is small. So, here in 

when we move this particle, let's say we move it by a small amount in that case. So, let me 

write down if the displacement is small, then the higher power of 𝑥 can be negligible 

because 𝑥 is small. So, therefore, 𝑥2 and 𝑥3, they will be even smaller. So, we can drop 

this term under the assumption that the displacement is small. So, in that case, we have 

𝐹 = −𝑘𝑥 and your 𝑉 = 𝑉0 +
1

2
𝑘𝑥2. Now, let us look at simple harmonic motion. Let's say 



I have a spring and the spring constant of the spring is 𝑘 and a mass 𝑚 is attached to the 

spring and this spring is stretched by 𝑥0. So, in that case, now we can analyze the motion. 

So, we have the equation of motion ∑ 𝐹𝑥 = 𝑚�̈�. So, herein the force that is acting on the 

spring is −𝑘𝑥. So, we have 𝑚�̈� = −𝑘𝑥 − − − − − (3). Now, also note that this 𝑉0 = 0 

by choosing an appropriate reference. So, for example, here in if this curve 𝑉 touches the 

𝑥-axis in that case 𝑉0 = 0. So, to analyze this equation of motion, let us define a quantity 

𝜔 = √
𝑘

𝑚
. So, in that case, the equation of motion becomes �̈� = −𝜔2𝑥 − − − − − (4). 

Now, its solution will be 𝑥 = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵 𝑠𝑖𝑛𝜔𝑡 . Now, we can check whether this 

solution is correct or not. So, for that, let us find out what is �̇�. �̇� =
𝑑𝑥

𝑑𝑡
. So, that will be 

−𝐴𝜔 𝑠𝑖𝑛𝜔𝑡 + 𝐵𝜔 𝑐𝑜𝑠𝜔𝑡. Similarly, �̈� = −𝐴𝜔2 𝑐𝑜𝑠𝜔𝑡 − 𝐵𝜔2 𝑠𝑖𝑛𝜔𝑡 and from here I can 

take 𝜔 as a common factor. So, −𝜔2𝑥. Therefore, the solution 𝑥 = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵 𝑠𝑖𝑛𝜔𝑡 

satisfies equation number 4. Now, the values of this constant 𝐴 and 𝐵 can be determined 

from the initial condition. So, let's say at 𝑡 = 0, this is the situation that we have. And let 

us put our reference axis over here. So, at 𝑡 = 0, we have 𝑥 = 𝑥0. And let's say at this 

instant, the velocity of the mass is 𝑥0̇. So, this is the initial condition. Let us put it in the 

solution. So, we have at 𝑡 = 0, we have 𝑥 = 𝑥0 and �̇� = 𝑥0̇. Therefore, if I put it in this 

solution, at 𝑡 = 0, 𝑠𝑖𝑛𝜔𝑡 = 0 and 𝑐𝑜𝑠𝜔𝑡 = 1. So, therefore, 𝑥0 = 𝐴  and let us put the 

value of �̇� over here. So, at 𝑡 = 0, again this term will be 0 and 𝑐𝑜𝑠𝜔𝑡 = 1. So, therefore, 

we have 𝑥0̇ = 𝐵𝜔 and put this in the solution.  

 

 
 

So, we have 𝑥 = 𝑥0𝑐𝑜𝑠𝜔𝑡 +
𝑥0̇

𝜔
𝑠𝑖𝑛𝜔𝑡 − − − − − − − (5). Now, note that we have taken 

𝑥 = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵 𝑠𝑖𝑛𝜔𝑡 as the solution of equation number 4  and we have seen that 



indeed this solution satisfied the equation number 4. We can also choose another solution 

of equation number 4, which is �̈� = −𝜔2𝑥 and let us choose this solution 𝑥 = 𝐶 sin (𝜔𝑡 +

𝜙) . Let us find out what is �̇�  in this case. So, �̇� = 𝐶𝜔 cos (𝜔𝑡 + 𝜙)  and �̈� =

−𝐶 𝜔2 sin(𝜔𝑡 + 𝜙) and this I can write down as �̈� = −𝜔2𝑥 . So, this implies that 

𝐶 sin (𝜔𝑡 + 𝜙) satisfies the equation �̈� = −𝜔2𝑥. So, therefore, that is also a valid solution. 

Here, the constant are 𝐶  and 𝜙 and their values can again be find out from the initial 

condition, and remember the initial condition we have at 𝑡 = 0, we have 𝑥 = 𝑥0 and �̇� =

𝑥0̇. So, let us put this above in the equation. So, at 𝑡 = 0, we have 𝜔𝑡 = 0. So, therefore, I 

have 𝑥0 = 𝐶 𝑠𝑖𝑛𝜙 − − − − − (𝑎) and we have �̇� = 𝑥0̇. So, herein let us put 𝜔𝑡 = 0. So, 

we have 𝐶𝜔 𝑐𝑜𝑠𝜙 or 
𝑥0̇

𝜔
= 𝐶 𝑐𝑜𝑠𝜙 − − − − − (𝑏). So, we have two equations and we 

have two variable that we want to find out 𝜙 and 𝐶. So, for that let us square and add them, 

𝑎  and 𝑏 . So, we have  

𝑥0
2 +

𝑥0̇
2

𝜔2 = 𝐶2 sin2 𝜙 + 𝐶2 cos2 𝜙 . 𝐶2  I can take outside and sin2 𝜙 + cos2 𝜙 = 1. So, 

therefore, we have this equation. Therefore, 𝐶 = √𝑥0
2 +

𝑥0̇
2

𝜔2  . Now, remember earlier we 

have find out the values of 𝐴 and 𝐵. So, 𝐴 = 𝑥0 and 𝐵 =
𝑥0̇

𝜔
. So, therefore, I can write 

down the relation between 𝐶 and 𝐴 and 𝐵. So, you can see that 𝐶 = √𝐴2 + 𝐵2. Now, to 

find out the value of 𝜙, so let us divide 𝐴 and 𝐵. So, we have 𝑡𝑎𝑛𝜙 =
𝑥0

𝑥0̇
𝜔. And again, 

you can see that 𝜙 is also related with 𝐴 and 𝐵 because 𝐴 = 𝑥0 and 𝐵 =
𝑥0̇

𝜔
. So, therefore, 

𝜙 = tan−1 𝐴

𝐵
. And let us put the values of 𝐶 and 𝜙 above in the solution. So, we have 𝑥 =

√𝑥0
2 +

𝑥0̇
2

𝜔2 sin (𝜔𝑡 + tan−1 (
𝑥0𝜔

𝑥0̇
)) − − − − − −(6). 

 



So, we have find out two solution of the simple harmonic motion. One is given by equation 

number 5 and the another one is given by equation number 6. Since they represent the 

solution of the same simple harmonic motion, therefore the solution has to be the same. 

So, let me write down that equation number 5  and 6 , they represent the same time 

dependent motion. Let me just summarize the result. So, we have the equation of motion 

of simple harmonic motion which was �̈� = −𝜔2𝑥 , wherein this 𝜔 = √
𝑘

𝑚
. One of the 

solution was 𝑥 = 𝐴 𝑐𝑜𝑠𝜔𝑡 + 𝐵 𝑠𝑖𝑛𝜔𝑡 . And the another solution we have taken 𝑥 =

𝐶 sin (𝜔𝑡 + 𝜙). Now, let us plot the motion. So, on the horizontal axis, now we have time 

𝑡. Initially, at 𝑡 = 0, we have 𝑥 = 𝑥0. Now, the maximum value of 𝑥 can be when, you 

know, 𝑠𝑖𝑛 is maximum and its maximum value is 1. So, therefore, 𝑥 can be 𝐶 at max. And 

since it is a 𝑠𝑖𝑛 function, so, therefore, the motion will be something like this. Now, one 

complete oscillation is called the time period 𝑇. And let us find out this time period T. So, 

we have 𝑥 = 𝐶 sin (𝜔𝑡 + 𝜙). Let us increase 𝑡 by 
2𝜋

𝜔
 and see what happens. So, we have 

𝑥 = 𝐶 sin (𝜔 (𝑡 +
2𝜋

𝜔
) + 𝜙). So, this I can write down as 𝑥 = 𝐶 sin(𝜔𝑡 + 𝜙 + 2𝜋) and 

sin(2𝜋 + 𝜃) = 𝑠𝑖𝑛𝜃. So, we have 𝑥 = 𝐶 sin (𝜔𝑡 + 𝜙). So, this is the same value that we 

have earlier. So, that means if I increase 𝑡 by 𝑡 +
2𝜋

𝜔
, we get the same value. So, this implies 

that 
2𝜋

𝜔
 is nothing but the time period. So, therefore, 𝑇 =

2𝜋

𝜔
 and remember 𝜔 = √

𝑘

𝑚
. So, 

therefore, this becomes 𝑇 = 2𝜋√
𝑚

𝑘
.  

 
 



So, total energy will be the kinetic energy plus the potential energy, 𝐸 = 𝑇 + 𝑉 − − − − −

(7). Now, we already know the potential energy of the harmonic oscillator 𝑉. 𝑉 =
1

2
𝑘𝑥2 

because 𝑉0 = 0. So, we have 
1

2
𝑘𝑥2 and the kinetic energy 𝑇 =

1

2
𝑚𝑣2. So, 𝑣 = �̇�. Now, we 

have to find out what is �̇�. So, remember the equation of motion. So, equation number 4, 

we have x double dot equal to minus omega square x. So, we have �̈� = −𝜔2𝑥. This was 

the equation of motion. Let us multiply this equation of motion by 2�̇� . So,  
𝑑2𝑥

𝑑𝑡2
× 2

𝑑𝑥

𝑑𝑡
= −𝜔2𝑥. 2

𝑑𝑥

𝑑𝑡
. Now, let us integrate this with respect to 𝑡 . So, we have  

∫
𝑑2𝑥

𝑑𝑡2  2
𝑑𝑥

𝑑𝑡
 𝑑𝑡 = ∫ −𝜔2𝑥. 2

𝑑𝑥

𝑑𝑡
 𝑑𝑡 . And this integral is nothing but (

𝑑𝑥

𝑑𝑡
)

2

= −𝜔2𝑥2 + 𝐴. 

So, therefore, we have that. Now, let us find out 𝐴 from the initial condition, So, let's say 

we have this spring mass system and when the spring is stretched by an amount 𝑎, in that 

case the velocity becomes 0. So, let's say at 𝑥 = 𝑎, 
𝑑𝑥

𝑑𝑡
 which is the velocity that is equal to 

0. So, we have 0 = −𝜔2𝑎2 + 𝐴 and that gives you 𝐴 = 𝜔2𝑎2. Let us put it back. So, we 

have (
𝑑𝑥

𝑑𝑡
)

2

= −𝜔2𝑥2 + 𝜔2𝑎2. And this is the velocity square. So, �̇�2, this I can put it over 

here to find out the kinetic energy. So, 𝑇 =
1

2
𝑚𝜔2(𝑎2 − 𝑥2). And what is 𝑚𝜔2, remember 

𝜔 = √
𝑘

𝑚
. So, let me just mention that 𝜔 = √

𝑘

𝑚
. So, therefore, 𝜔2𝑚 = 𝑘. So, this I can 

write down as 𝑇 =
1

2
𝑘(𝑎2 − 𝑥2). And let us put the kinetic energy and the potential energy 

in equation number 7. So, 𝐸 =
1

2
𝑘(𝑎2 − 𝑥2) +

1

2
𝑘𝑥2. This will get cancelled with that and 

we have 𝐸 =
1

2
𝑘𝑎2. So, therefore, the total energy of the harmonic oscillator is independent 

of 𝑥. Let us plot the kinetic energy, potential energy and total energy as a function of 𝑥. 



So, we have 𝑥 and the maximum value of 𝑥 is +𝑎 or −𝑎, 
1

2
𝑘𝑥2 is a parabola and 𝑎2 − 𝑥2 

will be the inverted parabola and the total energy which is the sum of both that will be 

constant. So, this is the potential energy 𝑉. This is the kinetic energy 𝑇 and this is total 

energy 𝐸. 

 

So, you can see that since the friction etc, are not involved therefore, the total energy 

remains conserved and when the mass m moves then the potential energy get converted 

into the kinetic energy and the kinetic energy gets converted into the potential energy. Now, 

let us look at the same system, okay, but let's say we rotate this configuration by 90°, okay. 

So, let us look at the rotated system by 90°. So, now the configuration that we have is 

following. We have a mass which is hanged by a spring. And let's say when you hang the 

mass, then we have the equilibrium. So, this implies that if the mass is not there, then the 

natural length of the spring will be smaller and let's say this length is 𝛿. Now, you stretch 

this spring so that we set up the motion and let's say from the equilibrium we stretch it by 

an amount 𝑥 . So, herein we have defined 𝑥  as the displacement from the equilibrium 

position, okay. Now, let us look at the equation of motion of this system. So, the equation 

of motion will be ∑ 𝐹𝑥 = 𝑚�̈�. So, we have 𝑚�̈� equal to let us look at the forces that are 

acting on the spring. So, that will be 𝑚�̈� = −𝑘(𝛿 + 𝑥) + 𝑚𝑔 − − − −(1). Now, in the 

equilibrium case, the forces will be balanced. So, 𝑚𝑔 = 𝑘𝛿. Let us put it above. So, we 

have 𝑚�̈� = −𝑘𝛿 − 𝑘𝑥 + 𝑘𝛿. Therefore, we have 𝑚�̈� = −𝑘𝑥 and this equation of motion 

is identical to the horizontal case that we have studied. There is no difference when you 

study the spring-mass system in the horizontal configuration or in the vertical 

configuration. So, the equation of motion remains unchanged.  

With this, let me stop here. See you in the next class. Thank you. 


