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I welcome you all to this NPTEL online certification course on Mechatronics. Today we 

are going to talk about the Transfer Function and Frequency Response. In the last lecture, 

I discussed with you the dynamic response of the system of the first-order system, second-

order system, and we have seen the various performance measurement parameters also. 

Here I am going to discuss with you another way of seeing the dynamic response of the 

system where we transform our equations from the time domain to the Laplace domain 

that is s domain, and then we look at the response. We look at the response, of course, in 

the case of the frequency response. So, I am going to talk about all those things in this 

lecture. Let us look at the system transfer function. First of all, suppose I have got an 

amplifier. For that amplifier, I can define a gain as simply output by input. So, what does 

this means that suppose you have an amplifier with a gain of  5.  

(Refer Slide Time: 02:15) 

 

Then it means that for a given input of  4 millivolts, the output which you are going to get 

will be the 20 millivolts. Now for many systems, the relationship between output and input 

will not be as simple as this one. It will be rather in the algebraic form. 
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(Refer Slide Time: 02:38) 

 

These algebraic forms or differential equations describe the behavior of the system with 

time. And if these are differential equations can be converted into the algebraic form using 

the Laplace transform. And so, as I said, we are moving that way from the time domain to 

the s domain.  

The transfer function is defined as the Laplace transform of the output divided by the 

Laplace transform of the input. So, this is again a way of defining the transfer function. 

And a signal in the time domain is depicted by f (t), where a signal in the Laplace domain 

is dependently depicted by F(s).  

(Refer Slide Time: 03:39) 
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In the Laplace domain, we write the function always in the capital letter that is the universal 

convention, whereas, in the time domain, we would write it in terms of the small letter. 

(Refer Slide Time: 03:44) 

 

So, suppose I have got a transfer function G(s) and when this is subjected to input Y(s) 

and output is X(s). So, this is what it means that, 

G(s) = X(s)/ Y(s) 

Here we assumed the initial conditions to be zero, that is, zero output with zero input.  

(Refer Slide Time: 04:07) 
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Suppose I take the example of a transfer function. So, I can take a second-order system, 

which is a spring-mass damper system, and for this system we the dynamic equation is 

given by this one after drawing the free body diagram. And if I take the Laplace to 

transform for this is what I am going to get, and so, from here, I can find out the value ratio 

of the output by input. So, output here is X(s), and input is F(s). So, this is the transfer 

function. 

(Refer Slide Time: 04:50) 

 

So, what is  Laplace transform? And these Laplace transforms are used to convert the 

differential equations into an algebraic equation. We can convert functions such as 

sinusoidal and exponential into the algebraic function of a complex variable s.  
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And the differentiation and integration operations can be replaced by algebraic operations 

in the complex plane. It allows the use of graphical techniques for predicting the system 

performance without solving the differential equation. So, that is one of the very good 

advantages of the Laplace transform, and when we solve a differential equation using this 

method, transient and a steady-state component of the solution can be obtained 

simultaneously, which otherwise has to be done separately, as we have seen in the last 

lecture.  

(Refer Slide Time: 06:01) 

 

So, let f(t) be a function of time such that f(t) = 0, for t < 0 and the s is a complex variable, 

then and  L be the operational symbol indicating the Laplace transform of a function then 

the Laplace transform of function f(t) is this is how it is given as represented by, 

𝐿[𝑓(𝑡)] = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 

(Refer Slide Time: 06:21) 

700



 

The process of finding the function f(t) from the Laplace transform F(s) is called the 

inverse Laplace transform. That is, if you want to come back from the Laplace domain to 

the time domain, what we have to do is that we have to perform the inverse Laplace 

transformation, and this inverse Laplace transformation is represented by 𝐿−1And inverse 

Laplace can be found by inversion integral like this. So, this way, we can do the inverse.  

(Refer Slide Time: 06:55) 

 

So, the basic Laplace transform for the common input, which we have seen in my previous 

lecture. Such as if we have a uniform impulse at t = 0, it has a Laplace transform equal to 

1, and if it is a unit step signal defined by less than t for a t< 0, it is 0 and time > 0, it is 1 

this way then the Laplace transform for that is 1/ s.  
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And for unit ramp one, the Laplace transform is
1

𝑠2. And for unit amplitude sine wave signal, 

Laplace transform is  

𝐿[sin 𝜔𝑡] =
𝜔

(𝑠2 + 𝜔2)
 

where 𝜔 is the frequency of the sinusoidal signal. 

(Refer Slide Time: 07:47) 

 

Similarly, the Laplace transform for, 
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𝐿[cos 𝜔𝑡] =
𝑠

(𝑠2 + 𝜔2)
 

(Refer Slide Time: 08:00) 

 

So, there are certain basic rules in working with Laplace transform that are given here.  

(Refer Slide Time: 09:01) 

 

And if we look at the inverse of the Laplace transform. So, if these are the Laplace 

transform, here is the inverse of that. 
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So, now, let us look at the first-order system. So, this is the first-order system, as we have 

seen in the previous lecture. So, Laplace transforms for this with initial condition zero. I 

can simply write like 𝑎1. This one I can write as sX(s). This is 𝑎𝑜X(s) is equal to 𝑏𝑜Y(s). 

So, I can write the relationship between output, 

𝑋(𝑠)

𝑌(𝑠)
=

𝑏𝑜

𝑎1𝑠 + 𝑎𝑜
 

  

𝑋(𝑠)

𝑌(𝑠)
=

𝐺

𝜏𝑠 + 1
 

where G is the gain of the system when there is a steady-state condition, and 
𝑎1

𝑎𝑜
 is the time 

constant of the system.  
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Now, if the first-order system is subjected to a unit step input, then we can take this Y(s) 

=1/ s. So, I can take write this X(s) = G(s)Y(s). So, this is 1/ s I am doing it I can write it 

in this form, and if I take the inverse Laplace of this, then this is what we get. So, you see 

that by taking the inverse Laplace transform, we are coming back to the time domain.  

So, here is what we have done we have this expression in which the first-order system 

dynamic equation is in the form of a first-order differential equation. So, with the help of 

Laplace transform, we converted it into the algebraic expression, and then after algebraic 

conversion into algebraic expression, we went back to the time domain by using the inverse 

Laplace transform.  

(Refer Slide Time: 11:29) 
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So, again the resistor-capacitor system is an example of the first ordered system. So, we 

can write the expression for this one, and this could be simplified in this way.  

(Refer Slide Time: 11:44) 

 

Now, let us look at the second-order system. So, in the case of a second-order system, the 

relationship between the input and output is given by this one, as we have seen in the 

previous lecture. Where these 𝑎2, 𝑎1, 𝑎𝑜 𝑎𝑛𝑑 𝑏𝑜 are constant. Now, if I take the Laplace of 

this is a second derivative. So, this is 𝑠2𝑋(𝑠) 𝑖𝑠 first derivative, so sX(s), and here it will 

be only X(s) and Y(s).  

(Refer Slide Time: 12:13) 

706



 

So, now I can find out the relationship between X(s) and Y(s), and it is this one. So, here 

you can see that we have a quadratic term in s over here. There is an alternate way of 

writing this differential equation of the second-order system, and that we can do by 

defining these terms  𝜔𝑛
2 and 𝜁2 like this. 

(Refer Slide Time: 12:39) 

 

And if I simplify write this expression in terms of 𝜁 and 𝜔𝑛 I can write it like this, and if I 

take the Laplace, then I can write X(s)/ Y(s) is equal to this one. So, this way, I can write, 

and if I subject it to a unit step input, then the transfer function for input is 1/ s. 
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So, I can substitute in this one, and I can see the response for that. So, I have 1/s term over 

here. So, this is my output in the s domain, and this is my output in the s domain. I can 

write this always because it is a quadratic equation. So, they are going to be the two poles. 

So, I can write it in the form of 𝑠 + 𝑝1 and 𝑠 + 𝑝2 𝑎nd where these 𝑝1 and 𝑝2 are the poles 

are the roots of the equation. So, I can find out these 𝑝1 and 𝑝2 values by equating this is 

equal to 0 and then writing the solution of this second-order equation yes.  

(Refer Slide Time: 13:42) 
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So, this is what is that one, and I can simplify this one this is there, and then I can take 

write the expression response for 𝜁 > 1 in terms of the 𝑝1 and 𝑝2. 

(Refer Slide Time: 14:10) 

 

And then, by applying the inverse Laplace transform to the partial fraction, we can get 

back to the time domain. So, this is my expression in the time domain similarly. If I have 

𝜁 = 1, then this is what my expression is going to be. So, these are my roots. Both are 

going to be equal. So, this is my response in the s domain.  

(Refer Slide Time: 14:40) 
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And again, by partial fraction, I can convert it into the time domain. So, this is how we get 

the response of the system in the time domain using the Laplace transform. Similarly, if 

it's an underdamped case, then this is my response which I am going to get.  

I can explain one example indicating the state of damping of a system having the transfer 

function this one and subjected to the unit step input function. So, the unit step input 

function means your Y(s) =1 /s, and G(s) = X(s)/Y(s). So, your X(s) is 1/s, and you can 

see that this is s+4, and s+ 4. 

(Refer Slide Time: 15:31) 

 

So, in this case, your roots are going to be equal to this one. So, the roots are real and 

equal, and hence the system is critically damped. So, this way, we can tell the behavior of 

the system.  

(Refer Slide Time: 15:47) 
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Then let us look at the effect of pole location on the transient response. So, if we consider 

a first-order system is something like this and if the input is impulse. Then  I can write this 

as 1/( s+1) because Y(s) is going to be one only. So, if I take the inverse Laplace of this, 

then I will get the time responses to this one, and what does this mean that? This means 

that as𝑡 → ∞, 𝑥 → 0.  

So you see that this is s = -1. So, your root is equal to root is a  in the left half of the s plane 

or the pole is in the left half of the s plane.  

(Refer Slide Time: 16:52) 
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And if your transfer function is 1/ (s-1) and subjected to unit impulse, then again this one, 

and if I write the take the inverse Laplace of this and go in the time domain, this is𝑥 = 𝑒𝑡. 

And this means that as 𝑡 → ∞., your response will be going 𝑥 → ∞. So, this is an example 

of an unstable system. So we can conclude that if your root is here, in this case, you see 

where is the pole s is equal to 1. It means that if your pole is on the right half of the s plane, 

your system is going to be unstable, and if your pole is on the left half of the s plane, your 

system is going to be stable. So, this is what we can conclude from that.  

(Refer Slide Time: 17:55) 

 

For a second-order system. Similarly, we know the response is this one. When subjected 

to a unit impulse, I can see that Y(s)=1. I can write X s as this one, or I can write it in terms 

of the two roots, where 𝑝1 and 𝑝2 are the roots of this characteristic equation.  

(Refer Slide Time: 18:25) 
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So, again here I can write these roots like this one as we have seen, and depending on the 

value of 𝜁, 𝑝 can be real or imaginary terms that involves oscillation. So, that way, we can 

predict the behavior.  

(Refer Slide Time: 18:40) 

 

So, if I consider a second-order system something like this, so, its roots are you can see 

that -2+j and -2-j over here. And when this is subjected to unit impulse, your X(s) = G(s). 

And here, if I take the inverse Laplace of this, this is what I am going to get.  
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And so, in this case, we can see that there is an exponentially decaying envelope on this 

one on the sin function over here. And this way, oscillations are going to gradually 

decrease, and your system is going to be stable. 

(Refer Slide Time: 19:30) 

 

And if you have a root like this. So, this one, then your poles are  2 + j. So, when this 

system is subjected to unit impulse again, you are going to get X(s) = G(s) because unit 

impulse Y(s) = 1  and if I take the inverse Laplace of this is I am going to get the response. 

So, here you can see that we have an exponentially increasing term over here, and this is 

enveloping the sinusoidal functions. So, that makes the system unstable.  

(Refer Slide Time: 20:18) 
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Now we have seen the response of the system for input. Now, as I said, the output from a 

system might be unstable, the response may be very slow, or there may be too much of an 

overshoot. So, such system behavior can be altered by including the compensator. So, a 

compensator is a block that is incorporated into a system so that it alters the overall transfer 

function of the system to get the desired characteristic. 

(Refer Slide Time: 20:57) 

 

So, after seeing that let us try to learn the frequency response. So, till now, I had talked 

about the step input to a system, but our input to the system could be sinusoidal as well. 

And the sinusoidal inputs are an important input in the design and analysis of systems. So, 
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if the first order system which we have considered over here. If I have a sinusoidal input 

like𝑦 = 𝑠𝑖𝑛𝜔𝑡, this is how my system expression is going to be.  

(Refer Slide Time: 21:45) 

 

Now, since the sinusoidal function have the property that when differentiated, the result is 

also sinusoidal with the same frequency. Thus the output is expected to be of the same 

frequency but may be of different amplitude and phase than that of the input. So, there, the 

frequency response is generalized with the help of a phasor, and the sinusoidal signals are 

better represented by a phasor. 

(Refer Slide Time: 22:21) 
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So, for a sinusoidal 𝑣 = 𝑉 sin(𝜔𝑡 + 𝜙) V is the amplitude and 𝜔 is the angular frequency, 

and 𝜙 is the phase angle. So, the phasor can be represented by a line of length magnitude 

of V, making an angle phi with the phase reference axis.  

(Refer Slide Time: 22:46) 

 

So, here you can see that you have a sinusoidal signal over here. And starting with initial 

phase angle 𝜙 and you have the angle related to x is OA hence time this one. So, this is 

how it can be represented by a phasor of magnitude  V and the angle 𝜙. 

(Refer Slide Time: 23:10) 𝜙 
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So, as I was saying, so, phasor can be described by a complex number, and the complex 

number is represented by x+jy. So, here you have a phasor of magnitude V and at an angle 

𝜙. This I can describe by complex number x+jy. So, here on the graph with imaginary 

component as the y axis and the real part at the x-axis x and y are the Cartesian coordinate 

of the point which represents the complex number. We joined this point to the origin to 

represent the phasor.  

(Refer Slide Time: 23:53) 

 

Now, the phase angle of the phasor is represented by the tan𝜙 = y/x, and the length of the 

phasor is, 

|𝑉| = √𝑥2 + 𝑦2 

 And since x =|𝑉| cos𝜙 and y = |𝑉| sin 𝜙, I can write this v = x+jy, and this is how it can 

be written. So, this is how I can represent a phasor as a complex number. So, here you can 

see the phasor. So, if a complex representation of phasor at here.  

(Refer Slide Time: 24:36) 
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So, if it is  0 degrees, then this is  1+ j0 in the complex one if it is over here. So, this is 

only j real component is not there. And if it is over here, then we have a real component. 

An imaginary is 0. So, this is -1, and here it has got only imaginary, so - j. So, here you 

can see that if the angle is 0  or so, this is this one.  

So, when we are turning it by 900, we are getting this one. So, we are moving from the 

real to the imaginary if we turn by it 900 or imaginary to real so that way. So, the phasor 

equation, as we have seen x = sin𝜔𝑡. So, the first derivative is 𝜔cos 𝜔t, and this I can write 

as 𝜔sin (𝜔t+900) 

(Refer Slide Time: 25:57) 
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So, what has happened is that the differentiation has resulted in a phasor with length 

increased by 𝜔 times, and it has been rotated 900 with respect to the original phasor.  

(Refer Slide Time: 26:04) 

 

So, in complex notation, differentiation means the multiplication of the original phasor by 

𝜔 as multiplication by 𝜔 will multiply the magnitude by 𝜔. And multiplication by j will 

produce the rotate phasor by 900 with respect to the previous phasor. Thus this differential 

equation I can write as a phasor equation. So, this differentiation dx/dt  I am replacing by 

j 𝜔 . So, 

j 𝜔𝑎1X + ao𝑋 = 𝑏𝑜𝑌 

(Refer Slide Time: 26:54) 

720



 

So, the transfer function was, 

𝑋

𝑌
=

𝑏𝑜

𝑗𝜔𝑎1 + 𝑎𝑜
 

So, what has happened is the frequency response function or frequency transfer function 

for a steady-state condition can be defined as, 

𝐺(𝑗𝜔) =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑝ℎ𝑎𝑠𝑜𝑟

𝐼𝑛𝑝𝑢𝑡 𝑝ℎ𝑎𝑠𝑜𝑟
 

(Refer Slide Time: 27:24) 
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So, the frequency response of the first order system if I look at. So, this, 

𝐺(𝑠) =
1

1 + 𝜏𝑠
 

 So, in the frequency response here, you can see that what is done is this s is being replaced 

by this 𝑗𝜔. So, here what we do is that this is in the Laplace domain. If I want to go into 

the frequency response, I just replace this s/ 𝑗𝜔 over here, and then I find out the magnitude 

I find out the phase of it. 

(Refer Slide Time: 27:56) 

 

And for the second-order function system, this is the transfer function. So, again frequency 

domain response function I can write here by replacing s with j omega, I can write it, and 

then I can write it off this form in the complex form.  
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Bode plot is used for the frequency response. So, a set of values of the magnitude |𝐺(𝑗𝜔)| 

phase angle 𝜙 occur when a sinusoidal input signal is varied over a range of frequencies. 

And it is expressed by two graphs that is one is the magnitude versus angular frequency, 

and another is the phase angle versus the angular frequency. So, magnitude and angular 

frequency are plotted using the logarithmic scale, and such a plot is called the bode plot. 

(Refer Slide Time: 28:53) 

 

And the magnitude is expressed in the decibel unit. So, this, 
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|𝐺(𝑗𝜔)| in dB = 20 log10|𝐺(𝑗𝜔)| 

(Refer Slide Time: 29:07) 

 

So, let us take an example of the bode plot. Suppose I have got the bode plot of a system 

having transfer function  K = constant. So, the frequency response 𝐺(𝑗𝜔) = K only, and 

the magnitude of that will be K only. So, the magnitude in terms of decibel will be 

20 log10 𝐾 And the phase angle is going to be 0. So, this is the bode plot for this one G(s) 

= K.  

(Refer Slide Time: 29:47) 
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Now, if my G(s) =1 / s, then again, I can find out 𝐺(𝑗𝜔) =
1

𝑗𝜔
, and I can write it in the 

complex form like this. And its magnitude will be1/𝜔, or I can write it like this.  

So, if I plot it with 𝜔, the magnitude this is what I am going to get, and you that at omega 

is equal to 1, this is going to be equal to 0. So, this plot is intersecting over here. Similarly, 

I can find out phase as, 

tan 𝜙 =  −

1
𝜔
0

→ −900 

 so I can plot it like this.  

(Refer Slide Time: 30:35) 

 

And the bode plot for the first order system if I want  G(s) =
1

𝜏𝑠+1
. So, I replace this s by j 

𝜔 over here, and I write it in the form of the complex notation that is x + j y. So, I write it 

in this form over here, and then I can find out the magnitude as, √𝑥2 + 𝑦2, and this can be 

written in the decimal form like this.  
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And so the magnitude is this one. Now here you see if this 𝜔𝜏 << 1  or what we can see 

that 𝜔 <<
1

𝜏
. Then what happens? I can neglect this term. So, this becomes log10 1. So, this 

magnitude is going to be 0. So, this is what I am going to get for less than 1 value this 

magnitude is going to be equal to 0.  

If 𝜔𝜏 >>1, 𝜔 >>
1

𝜏
. So, in this case, the magnitude will be turning out to be like this, which 

is a straight line approximately. So, this is my plot this frequency breakpoint or the corner 

frequency it is called. 
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And similarly, I can have this one the phase also. So, this is the frequency response 

function. So, for the phase for this is a tan−1 𝑦 

𝑥
 if I do that. So, it will be−𝜔𝜏, and we can 

see that as the 𝜔 < 0.1/𝜏. This value is going to be 0, and at a higher frequency, this is 

going to be−900. So this is what we are going to get an in-between this is for high value, 

this is for low value, and in between, we can approximate with a straight line.  

(Refer Slide Time: 33:13) 

 

So, the performance specification for the system can be given by the two parameters, is 

the peak resonance and the bandwidth. The peak resonance is the maximum value of the 
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magnitude. So, the maximum value of the magnitude over here is the peak resonance, and 

bandwidth is a frequency band between which the magnitude does not fall below -3 dB. 

So if this is the -3 dB, so, this is going to be the bandwidth. And this concept is used in the 

case of the census the bandwidth of the census. So, these are the references for your further 

reading.  

Thank you.  
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