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Lecture - 30
Transfer Function and Frequency Response

I welcome you all to this NPTEL online certification course on Mechatronics. Today we
are going to talk about the Transfer Function and Frequency Response. In the last lecture,
| discussed with you the dynamic response of the system of the first-order system, second-
order system, and we have seen the various performance measurement parameters also.
Here | am going to discuss with you another way of seeing the dynamic response of the
system where we transform our equations from the time domain to the Laplace domain
that is s domain, and then we look at the response. We look at the response, of course, in
the case of the frequency response. So, | am going to talk about all those things in this
lecture. Let us look at the system transfer function. First of all, suppose | have got an
amplifier. For that amplifier, | can define a gain as simply output by input. So, what does

this means that suppose you have an amplifier with a gain of 5.

(Refer Slide Time: 02:15)

I @4
Introduction = System Transfer Function

* For an amplifier we define gain as

_ Output

 input _lnput Gain Output
yit) G x(t)

* Gain

* The physical meaning of this equation is that if the gain of an
amplifieris 5, then for an input of 4mV; the output will be 20 mV.

* For many systems the relationship between output and input is
not in algebraic form as above.

Then it means that for a given input of 4 millivolts, the output which you are going to get
will be the 20 millivolts. Now for many systems, the relationship between output and input

will not be as simple as this one. It will be rather in the algebraic form.
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(Refer Slide Time: 02:38)

* Ratheritisin form of differential equation, due to which
above formula can not be applied as differential equation
describes how system behaves with time.

* This differential equation can be converted into an algebraic
equation using Laplace transform.

* We say that conversion has been taken place from time
domain to s domain.

These algebraic forms or differential equations describe the behavior of the system with
time. And if these are differential equations can be converted into the algebraic form using
the Laplace transform. And so, as | said, we are moving that way from the time domain to
the s domain.

The transfer function is defined as the Laplace transform of the output divided by the
Laplace transform of the input. So, this is again a way of defining the transfer function.
And a signal in the time domain is depicted by f (t), where a signal in the Laplace domain
is dependently depicted by F(s).

(Refer Slide Time: 03:39)
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A
Transfer Function

* The relationship between output and input can be defined
using transfer function as

Laplace transform of output

* Transfer function = :
Laplace transform of input
f

* Signal in time domain indicated by ﬁt) v
* Signal in Laplace domain indicated by;@,

In the Laplace domain, we write the function always in the capital letter that is the universal

convention, whereas, in the time domain, we would write it in terms of the small letter.

(Refer Slide Time: 03:44)

Input Transfer function Qutput
 ——

V{\g/ Gls) v~ Xs) .

'y

* Letinput to a linear system has Laplace transform Y(s) and output
of linear system has Laplace transform X(s), then transfer function
G(s) of the system is defined as

* Hereall the initial conditions are assumed to be zero, i.e. zero
output with zero input.

So, suppose | have got a transfer function G(s) and when this is subjected to input Y(s)

and output is X(s). So, this is what it means that,
G(s) = X(s)! Y(s)
Here we assumed the initial conditions to be zero, that is, zero output with zero input.

(Refer Slide Time: 04:07)
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I 4
Example

Force due to spring
—

* Consider mass spring damper system
shown.

* Dynamics of system is described by

dz d Force due to damper

X X

*m—tc-thx=F"
dt dt

* Taking Laplace transform / G(s) = % - ﬁﬁ“
! ’ s ms cs o

. m_sZX (s) + csX(s) + kX(s) = F(s) - o

Suppose | take the example of a transfer function. So, | can take a second-order system,
which is a spring-mass damper system, and for this system we the dynamic equation is
given by this one after drawing the free body diagram. And if | take the Laplace to
transform for this is what | am going to get, and so, from here, | can find out the value ratio
of the output by input. So, output here is X(s), and input is F(s). So, this is the transfer

function.

(Refer Slide Time: 04:50)

I @499
Laplace Transforms

+ |t can be used for solving linear differential equation.

+ We can convert functions such as sinusoidal and exponential into
algebraic functions of a complex variable s.

+ Differentiation and integration operations can be replaced by
algebraic operations in the complex plane.

+ It allows use of graphical technique for predicting the system
performance without solving system differential equation.

+ When we solve differential equation using this method transients
and steady state components of the solution can be obtained
simultaneously.

So, what is Laplace transform? And these Laplace transforms are used to convert the
differential equations into an algebraic equation. We can convert functions such as

sinusoidal and exponential into the algebraic function of a complex variable s.
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And the differentiation and integration operations can be replaced by algebraic operations
in the complex plane. It allows the use of graphical techniques for predicting the system
performance without solving the differential equation. So, that is one of the very good
advantages of the Laplace transform, and when we solve a differential equation using this
method, transient and a steady-state component of the solution can be obtained
simultaneously, which otherwise has to be done separately, as we have seen in the last

lecture.

(Refer Slide Time: 06:01)

I @4
Laplace Transform

* Let f(t) be a function of time t such that f(t_)=0, for t<0
* sbeacomplex variable”

+ L be an operational symbol indicating the Laplace transform
of function

* Laplace transform of function f(t) is given by

o LIFO)=F(s) =[] (et

So, let f(t) be a function of time such that f(t) = 0, for t < 0 and the s is a complex variable,
then and L be the operational symbol indicating the Laplace transform of a function then

the Laplace transform of function f(t) is this is how it is given as represented by,

LIF(D)] = F(s) = f F(De-stdt
0

(Refer Slide Time: 06:21)
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* The process of finding the function f(t) from the Laplace
transform F(s) is called inverse Laplace transformation.

* Inverse Laplace transform is represented as !

* Inverse Laplace transform can be found from F(s) by inversion
integral as

o LUFE) = £ == [ F(s)etds, fort > 0

mj Yc=joo
* Here cis the abscissa of convergence, is a real constant and is
chosen larger than the real parts of all singular points of F(s)

The process of finding the function f(t) from the Laplace transform F(s) is called the
inverse Laplace transform. That is, if you want to come back from the Laplace domain to
the time domain, what we have to do is that we have to perform the inverse Laplace
transformation, and this inverse Laplace transformation is represented by L~*And inverse

Laplace can be found by inversion integral like this. So, this way, we can do the inverse.

(Refer Slide Time: 06:55)

I 4949999999
Basic Laplace Transforms for Common Input

* Unitimpulse attimet=0hasa
transform of 1

Size

* Aunit step signal defined by L
1(t) = 0,fort < 0 0 ’
=1fort>0

Size

[y

e L)) = [ e de =+

§

0 t

So, the basic Laplace transform for the common input, which we have seen in my previous
lecture. Such as if we have a uniform impulse at t = 0, it has a Laplace transform equal to
1, and if it is a unit step signal defined by less than t for at< 0, itis 0 and time >0, itis 1

this way then the Laplace transform for that is 1/ s.
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(Refer Slide Time: 07:26)

* Unit ramp function
f(t) = 0,fort <0,
=tfort>0

” 1
L) = f te~tdt = 5"
0 S
*Unit amplitude sine wave signal

f(t) = 0,fort <0,
=sinwt,fort >0

L[sinwt] = F(s) =j sinwte 'dt =

Y Slope=1
3

0 1 t

¢ 4 w? O

—

And for unit ramp one, the Laplace transform isslz. And for unit amplitude sine wave signal,
Laplace transform is

. w
L[sm (Ut] = m

where w is the frequency of the sinusoidal signal.

(Refer Slide Time: 07:47)

* Unit amplitude cosine wave signal
f(t) =0,fort <0,
=coswt,fort >0

L t] = F(s) = te S'dt =
[5959 | =F(s) Jn coswt e T

Similarly, the Laplace transform for,
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L[cos wt] = m

(Refer Slide Time: 08:00)

I @@
Basic rules in working with Laplace transform

» LIAf(t)] = AF(s)
¢« L)+ f(0)] = Fi(s) + Fy(s)

* Laplace transform of 1% derivative of a function is

e L %(:—)] = sF(s) - f(0) however with transfer function all
itial values are taken to be zero.

« L % =s2F(s)—5f(0)—$

* Laplace transform of an integral of a function is

s Ll f (c)dt] =~F(s) |
@wowc ]

So, there are certain basic rules in working with Laplace transform that are given here.

=

(Refer Slide Time: 09:01)

Inverse Laplace Transform

1 !! g

* When algebraic —=

. . s+a

manipulation has been a -2t

done in s domain then the s(s +a)

results can be brought back b-a gmat _ g-bt

to time domain using Gros+y)

inverse Laplace transform. s (1-at)e™®

* Some important inversions (s +a)? -

are & (1-¢)

si(s+a) t= 7=

And if we look at the inverse of the Laplace transform. So, if these are the Laplace

transform, here is the inverse of that.
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(Refer Slide Time: 09:38)

I 49
First Order System

dx e
¢y tax= byy

+ LT of this with allinitial conditions zero is
© a;5X(s)+ agX(s) = byY(s)

. B @_ bop'
G(s) = ¥(s) ~ aystag o
—
v G(s) = X(s) _ _bojag  _ G

T¥(s) T (ayfag)stl TSl <
* Where G is gain of the system when there is steady state condition
* (ay/ap) is time constant of the system.

So, now, let us look at the first-order system. So, this is the first-order system, as we have
seen in the previous lecture. So, Laplace transforms for this with initial condition zero. |
can simply write like a,. This one | can write as sX(s). This is a,X(s) is equal to b, Y (S).

So, | can write the relationship between output,

X(s) b,
Y(s) a;s+a,

X(s)_ G
m_15+1

where G is the gain of the system when there is a steady-state condition, and % is the time

o

constant of the system.
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(Refer Slide Time: 10:26)

* [ffirst order system is 6()
. oK) =
subjected to unit step input s(5+1)
then 1
)
CGls) =X 6 * K(s)=—
G(s) —(@— — s(s-f-%)
« X(s)=G(s)Y(s) * Taking inverse Laplace
CX(s) = 61, transform ~
TS+l v y= G(l _ e-[;“t)

Now, if the first-order system is subjected to a unit step input, then we can take this Y(s)
=1/s. So, | can take write this X(s) = G(S)Y(s). So, this is 1/ s | am doing it | can write it
in this form, and if | take the inverse Laplace of this, then this is what we get. So, you see
that by taking the inverse Laplace transform, we are coming back to the time domain.

So, here is what we have done we have this expression in which the first-order system
dynamic equation is in the form of a first-order differential equation. So, with the help of
Laplace transform, we converted it into the algebraic expression, and then after algebraic
conversion into algebraic expression, we went back to the time domain by using the inverse

Laplace transform.

(Refer Slide Time: 11:29)
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Example: Resistor-capacitor system

V= CR% s T S
* V(s) = CRSV(—(S] +Ve(s) ¢ o
v .
. Ves) _ 1 C Ve
G(s)= V(s) T CRs+l g Appled L,

Voltage

So, again the resistor-capacitor system is an example of the first ordered system. So, we

can write the expression for this one, and this could be simplified in this way.

(Refer Slide Time: 11:44)

A
TF of 2" order system

* Fora 2" order system, the relationship between input y and
output x is given by differential Equation of the form

Yo ) 5 + i gy~

* Here ay, a;, ag and by are constants.

+ Taking the Laplace transform of Eq_uation with all initial
conditions as zero, gives

* 082K (S) + 13K (s) + agK(s) = bo¥ (s),
Now, let us look at the second-order system. So, in the case of a second-order system, the
relationship between the input and output is given by this one, as we have seen in the
previous lecture. Where these a,, a,, a, and b, are constant. Now, if | take the Laplace of

this is a second derivative. So, this is s2X(s) is first derivative, so sX(s), and here it will
be only X(s) and Y(s).

(Refer Slide Time: 12:13)
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o ay52X(s) + agsX(s) + agX(s) = byY(s),

X(s)" b
60 =10 T e g
P 5t 5ty
* Alternative way of writing the differential equation for a 2" order
system is

d%x dx -
a,—+a—+ax=5h
2z T g, T QX = Doy

+ For this system w, and { can be defined as
AN B
ST

So, now I can find out the relationship between X(s) and Y(s), and it is this one. So, here
you can see that we have a quadratic term in s over here. There is an alternate way of
writing this differential equation of the second-order system, and that we can do by

defining these terms w? and ¢? like this.

(Refer Slide Time: 12:39)

+ Simplifying yields
dx dx 2. _ 2

ot Z'Qw,ld—1 twpx = (bD/@)w,ﬂ,

* Where { is the damping ratio and w,, is the natural angular
frequency with which system oscillates.

+ Laplace transform is of form

(o) 19T et~
T ¥(s) - sL4 2w, 5+l
* When this system is subjected to unit step input i.e.,

L) =)

And if I simplify write this expression in terms of ¢ and w,, | can write it like this, and if |
take the Laplace, then | can write X(s)/ Y(s) is equal to this one. So, this way, | can write,

and if I subject it to a unit step input, then the transfer function for input is 1/ s.
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(Refer Slide Time: 13:03)

. _ (bo/agdei
X(s) = s(s2+2lwpstwd) T )

. X(s) = (bo/a)wi .~
5({&’1)({":21) &
' Where@ and@are the roots of the equation

© P+ 2wstwi=0"

-2 wpt (4 wi 4w}k

tp: ; =

So, | can substitute in this one, and | can see the response for that. So, | have 1/s term over

here. So, this is my output in the s domain, and this is my output in the s domain. | can
write this always because it is a quadratic equation. So, they are going to be the two poles.
So, | can write it in the form of s + p; and s + p, and where these p; and p, are the poles
are the roots of the equation. So, | can find out these p; and p, values by equating this is

equal to 0 and then writing the solution of this second-order equation yes.

(Refer Slide Time: 13:42)

p=~{un £y o =wn
p=~{untonF-1

* P = —(wy +wy (2_1

P2 = (W = (- 1 -

* Overdamped case ({>1) -~

e

bnmﬁ
G P )

X(s) =
_’.:?‘
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So, this is what is that one, and | can simplify this one this is there, and then | can take

write the expression response for ¢ > 1 in terms of the p; and p,.

(Refer Slide Time: 14:10)

By applying inverse Laplace transform to the partial fractions, we get

by
a,,w”1_ P2 ot 4 4

PPz Pz— M P2—M
If, ¢=1,
¢ p=—{wytw,{t-1

P1=P=wy
by, by,
a iy 2 Wy

X(s) = =

s(s+wy)(s+awy)  s(stwy)’

And then, by applying the inverse Laplace transform to the partial fraction, we can get

x(t) = e Pt

back to the time domain. So, this is my expression in the time domain similarly. If | have
¢ =1, then this is what my expression is going to be. So, these are my roots. Both are

going to be equal. So, this is my response in the s domain.

(Refer Slide Time: 14:40)

* Expanding by partial fraction

. X(S) :@wz E_L_L] -
n 2
a, s stwy  (stwy)

. x(i)=%w§ [1-ent — te=0nt]"

* Underdamped case ({<1)
. = @ _ﬂ i _72
x= a [1 Jl-—{2 Sm(wmj (1 ( )t + ¢)
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And again, by partial fraction, I can convert it into the time domain. So, this is how we get

the response of the system in the time domain using the Laplace transform. Similarly, if

it's an underdamped case, then this is my response which I am going to get.

I can explain one example indicating the state of damping of a system having the transfer

function this one and subjected to the unit step input function. So, the unit step input

function means your Y(s) =1 /s, and G(s) = X(s)/Y(s). So, your X(s) is 1/s, and you can

see that this is s+4, and s+ 4.

(Refer Slide Time: 15:31)

Example

* Indicate the state of
damping of a system having
the transfer function G(s) =

1 .
; and subjected to a
(54+85+16) .

unit step function.””
* For unit step input ¥ (s) | %
X(s), .
§)=—=
V(S)L

_ 1
X6) = e

Roots of s2+8s+16 are p,=-4
and p,=-4,

The roots are real and equal,
hence system is critically
damped.

So, in this case, your roots are going to be equal to this one. So, the roots are real and

equal, and hence the system is critically damped. So, this way, we can tell the behavior of

the system.

(Refer Slide Time: 15:47)
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I @400
Effect of pole location on transient response

x

Consider afirst order system with
__1 v

(s+1)
Let the input be impulse

L A0 =yl
Then (s#1)  Y(s) X(s) (s+1) :
Hence x=e "t v Voo . ;

Cu-t HE
andast — o, x—0 — -
— _ -

Then let us look at the effect of pole location on the transient response. So, if we consider
a first-order system is something like this and if the input is impulse. Then | can write this
as 1/( s+1) because Y(s) is going to be one only. So, if | take the inverse Laplace of this,
then | will get the time responses to this one, and what does this mean that? This means

that ast — oo, x — 0.

So you see that this is s =-1. So, your root is equal to root is a in the left half of the s plane

or the pole is in the left half of the s plane.

(Refer Slide Time: 16:52)

2. Let TF 5D and subjected to unit r uns

A A\ —
impulse o
1 _X6
Then =y =6 =
L T L
x(s)_(s-l) :
Hence x=e'

Y

andast —» ©,X—® 0
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And if your transfer function is 1/ (s-1) and subjected to unit impulse, then again this one,
and if | write the take the inverse Laplace of this and go in the time domain, this isx = e®.
And this means that as t — oo., your response will be going x — oo. So, this is an example
of an unstable system. So we can conclude that if your root is here, in this case, you see
where is the pole s is equal to 1. It means that if your pole is on the right half of the s plane,
your system is going to be unstable, and if your pole is on the left half of the s plane, your

system is going to be stable. So, this is what we can conclude from that.

(Refer Slide Time: 17:55)

* For 2" order system with

'!l‘] ?
TFG(s) = m when subjected to an unit impulse

input i.e., Y(s)=1
h—n:‘lll‘;I hjmz
X(s)= A Ronstad) - 5Fp)6+7) , Where pl

and p2 are roots of characteristic equation

For a second-order system. Similarly, we know the response is this one. When subjected
to a unit impulse, I can see that Y(s)=1. | can write X s as this one, or | can write it in terms

of the two roots, where p; and p, are the roots of this characteristic equation.

(Refer Slide Time: 18:25)
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o 524 2w,s + wk =0.

~2w, + /4(%5 — 4

p= 7

2
p=—{w, i,’( w% - w%

Depending on the value of the {, p can be real or imaginary and
imaginary term involves oscillations.

So, again here | can write these roots like this one as we have seen, and depending on the

value of ¢, p can be real or imaginary terms that involves oscillation. So, that way, we can

predict the behavior.

(Refer Slide Time: 18:40)

+ Example: Consider a 2 order system

with TF
1 [
6(s) = ————
®) = e
Here, p=-24j..~
+ When the system subjected to unit 0
impulse t
665) =29 =  xps):6(s)
Y(s) L
1 e
¢ Xs)p—m——— -
b (=24 (2= — \
o "o Y(/)=¢ " sinf

So, if I consider a second-order system something like this, so, its roots are you can see
that -2+j and -2-j over here. And when this is subjected to unit impulse, your X(s) = G(s).
And here, if | take the inverse Laplace of this, this is what | am going to get.
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And so, in this case, we can see that there is an exponentially decaying envelope on this
one on the sin function over here. And this way, oscillations are going to gradually

decrease, and your system is going to be stable.

(Refer Slide Time: 19:30)

-

1
G(s)= - ,
(s=C@+)))s=-(2=))_
Here, p:_Z_i_j.
When the system subjected to unit impulse
_X(s)

6(5) = 3 = Xs)6ls)

]

- Y

—

1 .
. X ——)
ez )
* x(t) =[e*sint

And if you have a root like this. So, this one, then your poles are 2 + j. So, when this

system is subjected to unit impulse again, you are going to get X(s) = G(s) because unit
impulse Y(s) =1 and if | take the inverse Laplace of this is | am going to get the response.
So, here you can see that we have an exponentially increasing term over here, and this is
enveloping the sinusoidal functions. So, that makes the system unstable.

(Refer Slide Time: 20:18)
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I 4
Compensation

* The output from a system might be unstable
* Orresponse may be slow
* Orthere is too much overshoot

* System response to an input can be altered by including o
compensators.

* Acompensator is a block which is incorporated in a system so
that it alters the overall TF of the system to get the desired
characteristic

Now we have seen the response of the system for input. Now, as | said, the output from a
system might be unstable, the response may be very slow, or there may be too much of an
overshoot. So, such system behavior can be altered by including the compensator. So, a
compensator is a block that is incorporated into a system so that it alters the overall transfer
function of the system to get the desired characteristic.

(Refer Slide Time: 20:57)

I 49099999099
Frequency Response

* Sinusoidal input is an important input in design and analysis
of system
+ Consider a 1* order system described by

dx
. ala+a0x=buy 0

* Here yis input and x is output
* Let unit amplitude sinusoidal input be given by y = sin wt

dx .
* S0t agx = by sin wt

So, after seeing that let us try to learn the frequency response. So, till now, | had talked
about the step input to a system, but our input to the system could be sinusoidal as well.

And the sinusoidal inputs are an important input in the design and analysis of systems. So,
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if the first order system which we have considered over here. If | have a sinusoidal input

likey = sinwt, this is how my system expression is going to be.

(Refer Slide Time: 21:45)

* Since sinusoidal function have property that when
differentiated the result is also sinusoid with the same
frequency.

* Thus output is expected to be of same frequency but different
amplitude and phase than input.

Now, since the sinusoidal function have the property that when differentiated, the result is
also sinusoidal with the same frequency. Thus the output is expected to be of the same
frequency but may be of different amplitude and phase than that of the input. So, there, the
frequency response is generalized with the help of a phasor, and the sinusoidal signals are

better represented by a phasor.

(Refer Slide Time: 22:21)

L.
Phasor,

* Sinusoidal signals are better represented by a phasor

* Forasinusoidal v = Vsin(wt + ¢), B

* Where Vis amplitude, w is angular frequency and ¢ is phase
angle. o

* Phasor can be represented by a line of length |_V_|, making an
angle ¢ with the phase reference axis.
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So, for asinusoidal v = V sin(wt + ¢) V is the amplitude and w is the angular frequency,
and ¢ is the phase angle. So, the phasor can be represented by a line of length magnitude

of V, making an angle phi with the phase reference axis.

(Refer Slide Time: 22:46)

Representing a sinusoidal signal by a phasor

Angle rotated .
(g TORIC( Angular velocity A
intime 1 is

e S e -

R ——

Y

| | ] -
270036005 4307

A @ -
Starting wi 90 180

imtial phase

Angle relative
angle ¢

toaxis OA,

———————————————————————— \/_,-' hence time

So, here you can see that you have a sinusoidal signal over here. And starting with initial
phase angle ¢ and you have the angle related to x is OA hence time this one. So, this is

how it can be represented by a phasor of magnitude V and the angle ¢.

(Refer Slide Time: 23:10) ¢

+ Phasor can be described by complex number.
+ Complex no is represented by x+jy

+ Onagraph with imaginary component as the
y axis and real part as the x axis, x and y are
the Cartesian coordinates of the point which o
represent the complex number. 0

+ We join this point to the origin to represent
the phasor.

0

Imaginary

Real

(@)
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So, as | was saying, so, phasor can be described by a complex number, and the complex
number is represented by x+jy. So, here you have a phasor of magnitude V and at an angle
¢. This I can describe by complex number x+jy. So, here on the graph with imaginary
component as the y axis and the real part at the x-axis x and y are the Cartesian coordinate
of the point which represents the complex number. We joined this point to the origin to

represent the phasor.

(Refer Slide Time: 23:53)

+ The phase angle of the phasor is \
represented by tan ¢ = f P iy

+ Length of the phasor
=yt
* Sincex = |V|cos ¢,
+ y=[Vising

¢ l_ff:x+j:‘,f:|lf|(cos¢+jsin¢) Real

Imaginary

{a)

Now, the phase angle of the phasor is represented by the tang = y/x, and the length of the

phasor is,

V= x2 +y?

And since x =|V| cos¢ and y = |V| sin ¢, | can write this v = x+jy, and this is how it can
be written. So, this is how | can represent a phasor as a complex number. So, here you can

see the phasor. So, if a complex representation of phasor at here.

(Refer Slide Time: 24:36)
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Phasor

Imaginary

140
— L4
(a) Complex representation of a phasor, (b) 0°, (c) 90°, (d) 270°, (e) 360°

So, if it is 0 degrees, then this is 1+ jO in the complex one if it is over here. So, this is
only j real component is not there. And if it is over here, then we have a real component.
An imaginary is 0. So, this is -1, and here it has got only imaginary, so - j. So, here you

can see that if the angle is O or so, this is this one.

So, when we are turning it by 90°, we are getting this one. So, we are moving from the
real to the imaginary if we turn by it 90° or imaginary to real so that way. So, the phasor
equation, as we have seen x = sinwt. So, the first derivative is wcos wt, and this I can write

as wsin (wt+90°)

(Refer Slide Time: 25:57)

Phasor Equation

, v
* x =sin(wt)

dx
+ = wcos(wt) -

¢ S = osin(ot +90)

* So differentiation has resulted in a phasor with length
increased b(@timesyd it has been rotated 90° wrt original
phasor.
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So, what has happened is that the differentiation has resulted in a phasor with length

increased by w times, and it has been rotated 90° with respect to the original phasor.

(Refer Slide Time: 26:04)

* Soin complex notation differentiation means multiplication of original
phasor by jw as multiplication by w will multiply the magnitude by w
and multiplication by j will rotate phasor by 90° wrt previous phasor.

+ Thus differential equation
i

,-"d.r\
. a,'@z& agx = byy
* (Can'be written asphaseﬂuation_as

(X +agX = by¥
X

X ‘I

Y B f&Jﬂ1+ﬂ0

So, in complex notation, differentiation means the multiplication of the original phasor by
w as multiplication by w will multiply the magnitude by w. And multiplication by j will
produce the rotate phasor by 90° with respect to the previous phasor. Thus this differential
equation | can write as a phasor equation. So, this differentiation dx/dt | am replacing by

jw . So,
jwa X +a,X =b,Y

(Refer Slide Time: 26:54)
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* Frequency response function or frequency transfer function
for steady state condition can be defined as

; Output phasor -
¢ ((ju)=——
Input phasor P

So, the transfer function was,

X b,

Y _ja)a1 +a,

So, what has happened is the frequency response function or frequency transfer function

for a steady-state condition can be defined as,

Output phasor

G(jw) =

Input phasor

(Refer Slide Time: 27:24)

L.
Frequency response for a first order system

A first order system has TF

* G(s) = rlw(r is time constant)
* Frequency response function

* GGo) = 1+j§m

* 16(0)] = =
y_

ttang=7=-tw
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So, the frequency response of the first order system if I look at. So, this,

G(s) =

1+ 7ts

So, in the frequency response here, you can see that what is done is this s is being replaced
by this jw. So, here what we do is that this is in the Laplace domain. If | want to go into
the frequency response, | just replace this s/ jw over here, and then | find out the magnitude

| find out the phase of it.

(Refer Slide Time: 27:56)

|
Frequency response for a second order system

« 2" order system with TF
« G(s)= ek
§24 20 wpstwh
* Frequency domain response function

2

¢ Gjw) = -t

(jw)+ 2 wp(ju) +of

" G(j) = \18 () |
- -2

2|

And for the second-order function system, this is the transfer function. So, again frequency

domain response function | can write here by replacing s with j omega, | can write it, and

then | can write it off this form in the complex form.
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(Refer Slide Time: 28:18)

A
Bode Plot

* Frequency response

* Asetof values of the magnitude |G(jw)| and phase angle ¢
that occurs when a sinusoidal input signal is varied over a
range of frequencies

* Itis expressed by two graphs
“*Magnitude |G(jw)| versus angular frequency
“*phase angle ¢ versus angular frequency @

Bode plot is used for the frequency response. So, a set of values of the magnitude |G (jw)|
phase angle ¢ occur when a sinusoidal input signal is varied over a range of frequencies.
And it is expressed by two graphs that is one is the magnitude versus angular frequency,
and another is the phase angle versus the angular frequency. So, magnitude and angular

frequency are plotted using the logarithmic scale, and such a plot is called the bode plot.

(Refer Slide Time: 28:53)

+ Magnitude and angular frequency are plotted using
logarithmic scale

* Such aplot is called Bode Plot

* Magnitude is expressed in decibel units (dB)

 [6(jw)] in dB=20log, [G(jw)| '

And the magnitude is expressed in the decibel unit. So, this,
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|G(jw)] indB =201log(|G(jw)|
(Refer Slide Time: 29:07)

A
Examples of Bode Plots '

WigK

* Bode plot for system having TF
G(s) = K (K=constant)

. S I S — .
* Frequency response function o 0w

wirad/s)

Magnitude (dB)

G(jw) =K
* Magnitude |G(jw)| = K
* |G(jw)|in dB= 20log,, K
* Phaseanglep =0

So, let us take an example of the bode plot. Suppose | have got the bode plot of a system
having transfer function K = constant. So, the frequency response G (jw) = K only, and
the magnitude of that will be K only. So, the magnitude in terms of decibel will be
201log;, K And the phase angle is going to be 0. So, this is the bode plot for this one G(s)
=K.

(Refer Slide Time: 29:47)

w(rad/s)

. plot for system having TF G(s) =
15

* Frequency response function G(jw) = ~ -} N\
1/jwso G(jw) = —j/w

* Magnitude |G(jw)| = 1/w

’ IG(I(U)I Iw= 20 lOglO l/w v 900 F

* |G(jw)|in dB= -20 log110 W

Q)

+ Phaseangletang = —% - ¢ =-90
s 0 y

Magnitude (dB)

v

(rad/s)

Phasc

0 1 10 100
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Now, if my G(s) =1 /s, then again, | can find out G(jw) = ]iw and | can write it in the
complex form like this. And its magnitude will bel/w, or | can write it like this.
So, if | plot it with w, the magnitude this is what | am going to get, and you that at omega

is equal to 1, this is going to be equal to 0. So, this plot is intersecting over here. Similarly,

I can find out phase as,

tangp = —= - —90°

olel~

so | can plot it like this.

(Refer Slide Time: 30:35)

* Bode plot for first-order system ' @ ;

System having TF G (s) = zo

1 1

* Frequency response function G(jw) = ——=—— -
equency response function G (jw) ke

. Wt
J

141202 Yy 1
. . 1 ! fy
* Magnitude |G(jw)| = N eyw

* Magnitude in dB=201og;, (ﬁ) v

And the bode plot for the first order system if | want G(s) :ﬁ. So, | replace this s by j
w over here, and | write it in the form of the complex notation that is X + j y. So, | write it

in this form over here, and then | can find out the magnitude as, \/x? + y?2, and this can be

written in the decimal form like this.
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=

Break pont
or corner frequency

! 1 [
T L
| [

|

* Magnitude in
1

82010,y (=) *

[
T

Magnitude (dE)

1
t
i
:
Vitriwd : Straight
A 1 40 | | line approximation
. Whenmr«lt.e.,m«; | ! :
I I
* Magnitude in dB=0 J ! !
0° | !
. 1
. - I I
Whenwt » 1ie,w» - » e | ur b
* Magnitude in z \m
o907 k- Straight line

dB=20logyo (=) = ~20logyorw |y mumin
And so the magnitude is this one. Now here you see if this wt << 1 or what we can see

that w <<%. Then what happens? | can neglect this term. So, this becomes log,, 1. So, this

magnitude is going to be 0. So, this is what | am going to get for less than 1 value this

magnitude is going to be equal to 0.

If wr >>1, w >>%. So, in this case, the magnitude will be turning out to be like this, which

is a straight line approximately. So, this is my plot this frequency breakpoint or the corner

frequency it is called.
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o

* Frequency response function

GU(U‘)_ 1 1 .wr

T jwrtl = Tt =] 1+ttw?
* Phase of first order system
v tang = —wt
+ Atlow frequencies w < 0.1/1, =0
¢ At high frequencies w > 10/1, ¢ =
=90

* Between these frequencies phase
can be approximated as straight line

[
=
T

Magnitude (dI3)

&
=

Phase

\_ﬂ!
0} Straight line

Break point
or corner frequency

ol JI. [
|
|

=

[}

Straight
line approximation

0e o Ure o M0/

approximation

And similarly, | can have this one the phase also. So, this is the frequency response

function. So, for the phase for this is a tan

if | do that. So, it will be—wt, and we can

see that as the w < 0.1/t. This value is going to be 0, and at a higher frequency, this is

going to be—90°. So this is what we are going to get an in-between this is for high value,

this is for low value, and in between, we can approximate with a straight line.

(Refer Slide Time: 33:13)

Performance specifications

* Peak resonance &
Bandwidth

* Peak resonance is the
max value of magnitude

* Bandwidth is frequency
band between which the
magnitude does not fall
below -3dB

Magnitude (dB)

[
|

Bandwidith

So, the performance specification for the system can be given by the two parameters, is

the peak resonance and the bandwidth. The peak resonance is the maximum value of the



magnitude. So, the maximum value of the magnitude over here is the peak resonance, and

bandwidth is a frequency band between which the magnitude does not fall below -3 dB.

So if this is the -3 dB, so, this is going to be the bandwidth. And this concept is used in the
case of the census the bandwidth of the census. So, these are the references for your further

reading.

Thank you.
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