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Dynamic Response of Systems 

 

I welcome you all to this NPTEL online certification course on Mechatronics. Today, we 

are going to talk about the Dynamic Response of the systems. In the last three lectures, we 

have studied the modeling for mechanical systems, electrical systems, hydraulic and 

pneumatic systems, and in this lecture, I would like to explain the dynamic response of the 

system and what are the various response measuring parameters, which I am going to 

discuss at the end of this lecture. The most important function of a model is to predict what 

output be there for a particular type of input for the models which we have developed in 

last three lectures. So, the purpose of those models is to predict the output for a particular 

input.  

Now, here we are concerned about what happens in a static situation, that is, when a steady 

state is reached or how output changes with time when there is the change in input, or how 

output changes with time when there is the change in the input itself with time. So, these 

are the various concerns.  

(Refer Slide Time: 01:59) 
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(Refer Slide Time: 02:00) 

 

Various system output and input can be both a function of time, and we have seen that the 

differential equations are used to depict the relationship between the input and output, 

whether it is a first-order system or it is a second-order system. So, we see that 

𝑑𝑥

𝑑𝑡
 represents the first-order system and 

𝑑2𝑥

𝑑𝑡2  represents the second-order system. Now, let 

us see the example of a first-order system. 

(Refer Slide Time: 04:41) 

 

So, as I explained to you in the last lecture, suppose there is a tank, and there is a water-

filled up to a height h, and pressure at the top and bottom are 𝑝1 and 𝑝2 respectively and 
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there is a  wall through which the discharge takes place, and as 𝑝2 is the pressure hereafter 

the wall. So, we can write the expression for this as we have derived in the previous lecture. 

We can write the expression for flow through the wall, and the equation will be, 

𝑝1 − 𝑝2 = 𝑅𝑞 

 and this can be written in this particular form. So, this is our first-order differential 

equation. Here what you can see is that we are getting expression in terms of the height h 

of the water in the tank. And it is a natural response, so there is no forcing function here. 

So, we have the right-hand side equal to 0.  

(Refer Slide Time: 04:03) 

 

If I talk about force response, it can be considered if the flow is taking place with the help 

of there is some input over here 𝑞1 and the rest of the things are the same. So, as we have 

seen in the last lecture using the equation for the capacitor as well as the expression for the 

resistance through the wall. We can derive the equation like this. And here again, you can 

see that we have the equation that depicts the variation of h with time, and on the right-

hand side, we have 𝑞1 Which is nothing but the input to the tank over here. So, this system 

equation has got a forcing function.  

(Refer Slide Time: 05:01) 
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Now, the total response of any system is consists of the transient response as well as the 

steady-state response. Transient response is the one in which the change occurs when there 

is a change in the input to the system, and it dies away quickly. And the steady-state 

response remains, that is, the response that remains after the transients have died out. 

(Refer Slide Time: 05:30) 

 

The example of transient and steady-state response, we can just consider a  spring, and 

there is a hanger at the end of the spring, and if I add a certain weight to that hanger, then 

the spring will be getting displaced. So, this is how the displacement of the spring of if I 

plot with time, so this is how it is going to be. So, this is our transient response, and this 
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part is the steady-state response. So, this is what I mean by the transient and steady-state 

response. 

(Refer Slide Time: 06:12) 

 

Now, the various input types of input can be used to excite the system. So, it could be a 

step input, or it could be impulse input, or it could be a ramp input, or the input could be a 

sinusoidal input.  

(Refer Slide Time: 06:24) 
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So,  ramp input is defined as y = kt, sinusoidal we can define as𝑦 = 𝑘𝑠𝑖𝑛(𝜔𝑡), and 

similarly, this impulse at some time and step has a certain value, at time t greater than 0. 

So, this way, these are the various types of inputs.  

(Refer Slide Time: 06:51) 

 

Now, let us take the example of a first-order system. So, first-order system, suppose I have 

got a system there is some input y(t), and there is some output x(t). So, what we are 

interested in seeing is that for a given type of input, what my output varies, how my output 

varies. So, this is the form of the expression for the first-order system, which we have just 

seen over here.  

(Refer Slide Time: 07:40) 
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Now, if I talk about the natural response of the first-order system so, make the forcing 

function 0 here if I want to have the natural response. As it is a first-order differential 

equation, so its solution could be of form𝑥 = 𝐴𝑒𝑠𝑡, where A and s are constants. And this 

if we substitute it over here then we can get the value of s as this one. 

(Refer Slide Time: 08:17) 

 

Now, if I substitute the value of s, this is the solution of the equation that I get. Here there 

is an initial A constant that can be evaluated by the initial condition. So, suppose at time t 

= 0 and put x =1, so I will get A = 1 from here. So, this is the solution for the expression. 

So, this is what I said as the natural response. So, this is the natural response for the first-

order system. 
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Now, let us see the response of the first-order system with the forcing function. So, suppose 

I have got a forcing function here𝑏𝑜𝑦, where y is the input, and 𝑏𝑜 is some constant. So, it 

is a solution. Let us assume that the solution has got a transient part u and steady-state part 

v. So, I can assume the solution of this form. I can substitute the solution in this expression, 

and then I can simplify it, so I get this form. So, if I assume this part is equal to 0, then 

naturally, this part happens to be equal to 1.  

(Refer Slide Time: 09:42) 
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So, now let us try to find out the solution for the first equation that is with corresponds to 

0 at the right-hand side over here. So, again it's the natural response. So, its solution is 

going to be this one. And for the force response, we can assume a step input,  at t, is equal 

to 0 with a step size of k. If I do that, this is what is my equation. 

(Refer Slide Time: 10:10) 

 

As I said, I can assume some solution for that v = B, which is a constant. If I substitute it 

over here, this term will become 0 because I am taking b as a constant. So, from here, I get 

the value of B. So, I get the solution. So, I can write the complete solution like this. This 

is the case for the solution of a first-order differential equation with a forcing function. 
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(Refer Slide Time: 10:54) 

 

So, I can get the value of A by substituting that t = 0, x = 0. So, if I put it over here,  I can 

get the value of a like this one. I can substitute it over here. 

(Refer Slide Time: 11:21) 

 

So, this is my final response. So, this is my step input which I said in my first-order 

differential equation with a forcing function. So, this is my response. So, here as you can 

see that if I take the value of t is equal to infinity. So, this value is going to be 0. So, I will 

be getting this value. So, this is what I am getting at 𝑡 → ∞ infinity, 
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𝑥 =
𝑏𝑜

𝑎𝑜
𝑘 

(Refer Slide Time: 11:59) 

 

So, the previous example which I have shown was a case of a tank on which water is filled 

up. We can have another example of the first-order system with a forcing function as that 

of a DC motor. So, in the case of DC motor, as we have seen in modeling of electrical 

systems, we have this as the these are the equations. It is the equation for the armature 

control motor where this is the voltage supply to the armature, and this is the back emf, 

and so and these are the voltage across the inductance, and this is across the resistance. 

And this is the equation for the load. So, here we can simplify these equations that are a 

substitute for 𝑖𝑎 from the first one and second one. So, this is what I can get. So, this is 

also a first-order differential equation of this form similar to what we have seen as the 

water being filled up in a tank. So, here you can see that output is 𝜔 and input is the voltage 

supplied to the armature. So, we can have a similar treatment way.  

(Refer Slide Time: 13:27) 

677



 

Now, if I look at this expression for the solution for the differential equation with a forcing 

function that is the first-order differential equation, this is my expression, and we have 

seen that this is the steady-state value. So, this is a steady-state value in this part. Now, 

here you see that if I write 𝑡 =
𝑎1

𝑎𝑜
, then these terms will be getting canceled, and we will 

have that is the value of x. And that will be  0.63 times the steady-state value. And this 

time is called the time constant. So, this is 𝜏 =
𝑎1

𝑎𝑜
 that is known as the time constant, and 

if I write it in terms of that, then this is my response to the first-order system for the step 

input. 

(Refer Slide Time: 14:32) 
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So, 𝜏=1 or 1 𝜏, this is 0.63. So, the fraction of steady-state value if I plot over time, so this 

is 0.63 at 1 𝜏, and this way I can have the response, so you can see that at time infinity I 

get the steady-state value that is 1 over here. 

(Refer Slide Time: 15:01) 

 

Next, let us talk about the second-order system. So, the second-order system, as we have 

seen that they have 
 𝑑2𝑥

𝑑𝑡2 . And the second-order system can consist of inertia, compliance, 

and damping for a mechanical system, and we have also seen on several occasions during 

this course the electrical system can have the resistor, inductor, as well as capacitor. They 

also represent the second-order system.  

(Refer Slide Time: 15:34) 
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So, let us take the second-order system, a simple spring-mass damper system over here. 

So, this spring mass damper system is excited by an external force F. So, in this case, my 

input is F, and the output is this displacement x over here. So, I can write the equation of 

motion for this system by drawing the free body diagram, and it is this,  

𝑚
 𝑑2𝑥

𝑑𝑡2
+

𝑐𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹 

(Refer Slide Time: 16:15) 

 

So, the variation of x with time depends on the amount of damping present in the system, 

and the force is applied as a step input, then. If there is no damping present in the system, 
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then the mass will keep on oscillating, and the damping causes the oscillations to die away 

unless the steady displacement of the mass is obtained. If damping is high, then there will 

not be oscillations and which means that the displacement of mass will slowly increase 

with time and move towards the steady displacement position. Now, first, let us consider 

the second-order differential equation with no damping. 

(Refer Slide Time: 17:04) 

 

So, if there is no damping and there is no input excitation, I take here 0, and I have my 

input force 0, and I can take this c = 0. So, we will have because damping is not there, so 

we will have the continuous oscillations, and we can assume the solution of this form, 

𝑥 = 𝐴 𝑠𝑖𝑛𝜔𝑛𝑡 

(Refer Slide Time: 17:27) 

681



 

If I take the first derivative, so 

𝑑𝑥

𝑑𝑡
= 𝐴𝜔𝑛 𝑐𝑜𝑠𝜔𝑛𝑡 

And if I take the second derivative, then this is, 

𝑑2𝑥

𝑑𝑡2
= −𝐴𝜔𝑛

2 𝑠𝑖𝑛𝜔𝑛𝑡 

 Now, you see this is 𝐴 𝑠𝑖𝑛𝜔𝑛𝑡 is the same as that of x. So, I can write this as −𝜔𝑛
2𝑥 Or I 

can write it in this form. 

(Refer Slide Time: 17:53) 
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Now, if I compare this equation with the equation without damping, that is this one, then 

you can see that the,  𝜔𝑛
2 =

𝑘

𝑚
. So, I can write the solution as, 

𝑥 = 𝐴 𝑠𝑖𝑛√
𝑘

𝑚
𝑡 

 and this is the solution of the differential equation if there is no damping.  

(Refer Slide Time: 18:29) 

 

Now, what if there is damping? So, if damping is present, then this term is not going to be 

equal to 0, and we have the excitation force also F being over here. So, again here, I can 

take the solution to be composed of two forms is the natural response and the force 

response, and as we have done earlier, we can substitute this solution in this expression, 

and we can segregate the two parts over here. 
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(Refer Slide Time: 18:55) 

 

So, this part we can equate to 0, which will be giving the natural response, and this part 

will be going to equal to this one, and that will be giving us the force response. 

(Refer Slide Time: 19:11) 

 

So, if we look at the solution for the transient equation that is for the natural response, so 

here I have I can take, 𝑥𝑛 = 𝐴𝑒𝑠𝑡  as the solution, and if I substitute it back over here. So I 

get this one, and this cannot be equal to 0 because if I make it is equal to 0, this itself will 

become 0, so I make the other equal to 0. So, this is my auxiliary equation. So, from here, 

I can get the value of s. It is a quadratic equation. So, its solution is going to be this form. 
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(Refer Slide Time: 19:41) 

 

And if I define this,  𝜔𝑛
2 =

𝑘

𝑚
 as we have seen for the natural response and  I define, 𝜁2 =

𝑐2

4𝑚𝑘
, then𝜁 =

𝑐

2√𝑚𝑘
. So, I can substitute that over here, and I can get the root of this form. 

(Refer Slide Time: 20:08) 

 

Now, here there are 3 cases, we are going to have this if 𝜁is going to be more than 1, then 

these are the two solutions which I am going to get 𝑠1 and 𝑠2, so the general solution is 

going to be this one. And we see that the system is overdamped. 
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(Refer Slide Time: 20:33) 

 

And if the 𝜁 = 1, this is going to be the solution, these are going to be the roots both equal, 

and this is going to be the solution, and the system is said to be critically damped. And if 

𝜁 < 1, then the two roots that are complex are going to be there. We define this as the 

damped frequency, and the two roots can be represented like this. So, this is going to be 

the general solution. 

(Refer Slide Time: 21:03) 
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If I just substitute, I can further simplify this solution by representing the exponential 

function as cosine and sin functions. And this is going to be my natural response in that 

particular case.  

(Refer Slide Time: 21:23) 

 

So, this is the natural response, and this one is called the damped frequency of oscillation, 

as I have explained to you. 

(Refer Slide Time: 21:34) 
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Now, the solution for the forcing equation if you look at this one. So, as we have seen for 

a step of size F at time t = 0, we can take the solution 𝑥𝑓 = 𝐴. So, kA = F,  so the A = F/k, 

and 𝑥𝑓 =
𝐹

𝑘
.  

(Refer Slide Time: 22:06) 

 

So, my complete solution I can write for all the 3 cases that are for 𝜁 > 1. I edit up here 

overdamped case, for the critically damped case, I edit up here, and for the underdamped 

case, I edit it over here.  

So, when 𝑡 → ∞ above equation leads to x =F/ k, which is the steady-state solution over 

here. So, here you can see that this is the overdamped case, critically damped case, and 

this is the underdamped case, and this is F /k is the steady-state solution. 
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(Refer Slide Time: 22:49) 

 

Another example, as I was telling you in the electrical system, it is a simple RLC circuit 

which is an example of the second-order system. We can, for a given step input I can write 

the Kirchhoff’s Voltage Law, which is a KVL, and I can write this voltage across resistor, 

inductor, capacitor, and iR, Ldi/dt and 𝑉𝑐 respectively. I can write it like this. So, this way, 

I can write an expression like this one. 

(Refer Slide Time: 23:27) 

 

Then, there are various performance measures parameters, and these parameters are how 

the system is responding. Those parameters can be measured with the help of delay time, 
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rise time, peak time, maximum overshoot, and settling time. So, with the help of these 

parameters, we can measure the performance of the dynamic system.  

(Refer Slide Time: 23:51) 

 

So, what is the delay time? So, if I plot x vs 𝜔𝑡over here, it is the time required for the 

response to reach half of the final value at the very first time. So, this is my steady-state 

value that is the final value, so 0.5 of 𝑥𝑠 it reaches over here. So, this time is what I am 

calling the delay time. The rise time is the time taken for the response to rise from  0 to the 

steady-state value. So, this is a steady-state value. So, this is the rise time that is moving 

from here to, moving from here to here whatever time is taking that is the rise time. And 

its measure of how fast a system responds to the input.  

690



(Refer Slide Time: 24:49) 

 

And it is the time for oscillatory response to complete a quarter of a cycle. So, this 𝜔𝑡𝑟 =

𝜋

2
. So, this way we can find out the rise time. And for overtime system 𝑡𝑟 is considered as 

the value for the rise of response from some percentage of the steady-state value, so  10 

percent to another specified percentage  90 percent.  

(Refer Slide Time: 25:29) 

 

Then another parameter is the peak time, and it is the time taken for the response to rising 

from 0 to the first peak value. So, here you can see that the first peak value is coming over 
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here. So, it is this time. This is your peak time. And it is the time of the oscillation response 

to complete one half of the cycle. So, this is how it is written as 𝜋 over here.  

(Refer Slide Time: 25:51) 

 

Then, you have the maximum overshoot. So, this is from the steady-state value. Whatever 

value response, how much is the maximum value from the steady-state that is what is 

called the overshoot. So, it is the maximum amount by which the response exceeds the 

steady-state value. And it is amplified, the amplitude of the first peak. And this overshoot 

is written as a percentage of the steady-state value. The maximum percentage overshoot 

directly indicates the relative stability of the system. And this maximum overshoot can be 

derived to be like this in terms of the steady-state value. And in terms of the maximum 

percentage overshoot, it could be derived like this. 
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I am not working on the derivations over here. You can refer to the reference books which 

I will be telling you towards the end of this lecture. So, the percentage of the peak 

overshoot is going to be as you can function of the damping ratio over here. So, for the 

damping ratio, 0.2 overshoot is 52.7, and so on. So, as you can see, as we are increasing 

the damping ratio, the overshoot is decreasing. So, that is one of the observations which I 

wanted you to observe.  

(Refer Slide Time: 27:20) 
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Then, the subsidence ratio or the decrement is again another major performance parameter. 

This provides information about how fast the oscillations are decaying, and it is defined as 

the ratio of the second overshoot to the first overshoot. So, the first overshoot occurs 

at 𝜔𝑡 = 𝜋, the second overshoot will be occurring at omega t is equal to 𝜔𝑡 = 2𝜋.  

So, the first overshoot can be written like this expression. The second overshoot expression 

can be written like this. So, the decrement expression can be derived in this way.  

(Refer Slide Time: 28:03) 

 

Then, the settling time. You see that for a system reaching the exact steady-state value 

may not be possible. So, when do we say that the system has reached the steady-state 

value? So, there is a certain percentage of the steady-state value of 2 percentage. If your 

system reaches two percent of the steady-state value, within that limit, if it is there, we that 

the system has got settled. So, the settling time this 𝑡𝑠 for you can see that this zone is two 

percent of the 𝑥𝑠. Wherever this has been achieved, that time is called the settling time, 

and it is measured by the time taken by the response to fall and remain within some 

specified percentage of the steady-state value. And this, for the 2 percent of the settling of 

𝑥𝑠, this value can be worked out as,𝑡𝑠 ≈
4

𝜁𝑤𝑛
.  

(Refer Slide Time: 29:18) 
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Then another performance parameter is the number of oscillations, and this is given by the 

settling time divided by the periodic time. So, the settling time of 2% settling time divided 

by periodic time, if I substitute it over here, this is how to get the expression for the number 

of oscillations which is again the function of the damping ratio.  

(Refer Slide Time: 29:44) 

 

So, these are the further references you can look at if you want to read it further. 

Thank you very much. 
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