
Mechatronics

Prof. Pushparaj Mani Pathak

Department of Mechanical and Industrial Engineering

Indian Institute of Technology, Roorkee

Lecture - 25

Microcontroller Programming Example

I welcome you all to NPTEL online certification course on Mechatronics. Today, we are

going to see Microcontroller Programming Examples. In the last two classes, we have

discussed the microprocessor and the microcontroller, their features and how do we

connect them to the peripherals, all those things we have seen. In this class, I would like

to take two examples of programming of the microcontroller.

The first example is on the security system, and the second example is on the snake robot.

In the first example, we will try to do with the help of a PIC microcontroller, and in the

second example, we will try to do with the help of an Arduino microcontroller.

(Refer Slide Time: 01:33)

So, let us take the first example, the Security Lock System. This case, I have discussed

while taking up the lecture on the logic circuits. In the next few slides, I will be repeating

the same that is then I will be stating the problem statement.

The first stage is to define the problem in words as we are trying to solve the alarm system

to create a high signal sounding the alarm for certain combinations of house sensors.

574

So, it is a house security lock system, and I have taken this example from the Mechatronics

book. So, we want the user to be able to select one of the three operating states. The first

state is an active state when the alarm will sound if the windows or doors are disturbed,

and this state is useful when the occupants are sleeping. The second user state could be an

active state, where the alarm will sound if the windows or doors are disturbed or if there

is motion in the house and this state is useful when the occupants are away, and the third

stage is a disabled state, where the alarm will sound, where the alarm will not sound, and

this state is useful during the normal household activity.

(Refer Slide Time: 03:36)

The Boolean variables could be I define A - state of the door and window center sensors,

B - state of the motion detector and C - output used to sound the alarm, and C D be the 2-

bit code set by the user to select the operating state, defined by 0 1 is the operating state

1 and 1 0 is the operating state 2 and 0 0 is the operating state 3.

In the first stage, only the door and windows are disturbed, and in the second stage, door

windows are disturbed as well as the motion is detected, and in the third space, nothing is

happening that is normal state.

(Refer Slide Time: 04:25)

575

So, the door and window sensors are assumed to be normally open switches that are closed

when the doors and windows are closed. And they are wired in series and connected to 5

volt through a pull-up resistor; therefore, if either switch is open, then signal A will be

high. Both the doors and windows must be closed for signal A to be low, and this is called

wired-AND configuration because it is a hardwired solution providing the functionality of

an AND gate.

(Refer Slide Time: 05:06)

Here, we can see this is my pin layout for PIC 16F84, and the windows push button switch,

this one; door push button switch, this one, and they are normally open. Here, we have the

motion detector, and for selecting the operating state, we have an SPDT that is a Single

576

Pole Double Throw switch, which is being used over here and here, the buzzer is connected

through R A0, and we have a crystal connected over here. So, these are the input ports

B0 to B7, the eight ports over here, and R A0 to R A4. These are five ports. I have discussed

a lot about these things in my previous lecture.

(Refer Slide Time: 06:26)

So, the motion detector produces a high on line B when it detects the motion, as I said this

one. And the single-pole, double-throw switches are used to set the 2-bit code that is CD

which I talked about. In the figure, the switches are both in the normally closed position;

therefore, code CD is 0 0. The alarm buzzer sounds when signal Y goes high, forward

biasing the transistor. And when Y is high, 1 k base resistor limits the output current to

approximately 5 milli Amps, which is well within the output current specification of

PORTA.

(Refer Slide Time: 07:28)

577

If we look at the PicBasic Pro Program for this case, so, these are the comment statement

the file comment statement over here. So, first, we define the variable for the input-output

pin. So, you can that, so door or windows PORT 0 motion that is the VarPORT 1 here,

the c VarPORTB.2, d is VarPORTB.3 and alarm is A.0.

So, this is how we are connecting this one. So, this is PORTB.0, and this is signal A, and

likewise, we have other signals and here, DETECTED Con 1 to indicate that motion is

detected.

(Refer Slide Time: 08:27)

And here, these are, as I said, the command statements.

578

(Refer Slide Time: 08:34)

So, our programming could be like this as I defined the c and d that are the condition states.

So, if c is 0 And d is 1, then naturally, it that is the operating state 1, occupants are sleeping,

and if door or windows are OPEN, Then it is alarm High else, it is a Low alarm.

(Refer Slide Time: 09:14)

And so, we have the Endif statement to close the bracket or else, we have the second

condition that is the second operating state that is if c is 1 and d is 0 that is the operating

state 2 that is occupants are away, then here if door or windows are OPEN or the motion

is DETECTED.

579

Then, we need to have the High alarm; otherwise, we need to have a Low alarm, and in

the case of Else, we have a Low alarm, that is the operating state 3. So, this way continue

to poll the inputs, and this way, this program executes fine.

So, this is again, and I am showing the schematic for this one.

(Refer Slide Time: 10:08)

The PIC microcontroller connected with all the devices such as we have the input devices

here, that is, switches, motion detector and for selection of the operating mode and we

have the output from over here.

(Refer Slide Time: 10:33)

580

Next, let us take the example of Generation of a Snake Gait. The snakes usually have

different gaits, or snakes follow the different gaits, or they may be using a combination of

these gaits. So, these are serpentine or lateral undulation, Concertina, sidewinding,

rectilinear progression. So, most snakes are capable of executing all or several of these

forms of locomotion and generally switch as per requirement. In some situations, it may

even use the combination of more than one gait.

(Refer Slide Time: 11:24)

Let us look at the first one that is the Serpentine gait, and here, as you can see, this is an

S-shape movement, also known as the lateral undulation, and is used by most snakes on

land and water. On land, snakes usually find resistance points in the surface - such as rocks,

branches, or dents and use their scale to push on the points all at once, thrusting the snake

to move them forward, as you can see over here.

581

(Refer Slide Time: 11:57)

Then, there is another gait called Sidewinding. In the case of sidewinding, in an

environment with few resistance points, snakes may use a variation of the serpentine

motion to get around. Contracting their muscles and flinging their bodies, sidewinders

create an S-shape that only has two points of contact with the ground, and when they push

off, they move laterally. So, as you can see over here and much of the sidewinding snake’s

body is off the ground while it is moving.

(Refer Slide Time: 12:45)

582

The next gait is the Caterpillar or the rectilinear gait. So, this is a much slower method of

movement in Caterpillar or rectilinear locomotion, and I am going to talk about this gait.

The example of this gait I am going to take, and this technique also contracts the body into

the curves, but these waves are much smaller and curve up and down rather than side to

side. And in this gait, the top of each curve is lifted above the ground as the ventral scales

on the bottom push against the ground, creating a ripple effect.

(Refer Slide Time: 13:32)

The last gait which I am going to talk about is Concertina, and this concertina gait, the

snake, extends its head and the front of its body along the vertical surface and finds a place

to grip with its ventral scales. To get a good hold, it bunches up the middle of its body into

the tight curves as you can see over here, that grips the surface while it pulls its back end

up; it then springs forward again to find a new place to grip with its scales. So, this is how

the concertina gait works.

583

(Refer Slide Time: 14:21)

We made a snake robot using economy standards 4.5 kg centimeter servo motors and with

plastic gears and we used U shape brackets to connect these motors.

(Refer Slide Time: 14:41)

The controller used is Arduino Uno, and this is a microcontroller board based on

ATmega328P.

584

(Refer Slide Time: 14:55)

Here, the pin-out connections you can see that here you have A0 to A5; so, we have analog

pins. Ports are over here, and here as I said, atmega microcontroller has been used over

here.

(Refer Slide Time: 15:24)

It has 14 digital input-output pins out of which 6 can be used as PWM output, 6 analog

input, a 16 mega Hertz quartz crystal, a USB connection, a power jack, an ICSP header,

and a reset button. And with the help of Arduino positions of servo motor shafts are

controlled.

585

A code is written for the required gait and is initially verified for any errors. In the absence

of error, it is uploaded into the Arduino board, and the motion of the snake robot is

controlled through it. So, this is how the code for rectilinear gait is written.

(Refer Slide Time: 16:20)

We have to include the command to include library required to control the servomotor,

define omega, define delta, some angle, and then, Servo s1; this defines 1st servomotor,

which sweeps in the vertical plane, and these are put in command. So, these are not used

in this particular gait.

(Refer Slide Time: 16:49)

586

So, we have Servo s3, s5, s7, s9 over here, and the position of the servo shaft is put theta

1, theta 2, theta 3 to theta 9. A float t is defined over here.

(Refer Slide Time: 17:06)

And then, the program starts.

The s1 attach 3, attach 5, attach 7, 9, and 11, and we are assigning 3, 5, 1, 3, 5, 7, and 9

connects 1st servomotor to pin output number 3. Similarly, for third to pin output number

5, 5 to output pin number 7, and so on.

(Refer Slide Time: 17:36)

587

This is how servos are connected to the pins of that and then, serial we begin; then, we

give a delay over here and then, the t is defined here, runs repeatedly. The main code runs,

there is further a delay, and then theta one is defined like this.

(Refer Slide Time: 18:00)

And then, we have s1 theta 3, s3 and theta 5, s5 theta 7, s7, and theta 9 and s9. So, this

way, we calculate the angle and then, we give that command to the motor to rotate by that

many degrees.

(Refer Slide Time: 18:22)

588

This is the output motion which you can see which has been obtained over here, and this

is for the rectilinear motion which we have got, and this is the Arduino Uno board, and we

have used a power supply for this, and of course, as I said, the motors are connected to the

Arduino board, and by changing the program, likewise, we can get the other different gaits

which I have talked to you either serpentine or sidewinding or Concertina. So, all those

gaits can also be achieved.

(Refer Slide Time: 19:16)

These are the references. The first example I have taken from this book and yes and the

gaits I have taken, description of the gaits, I have taken from HowStuffWorks dot com.

The snake gait problem which I discussed was worked by one of the two of the interns in

Robotics and Control Lab, IIT Roorkee.

Thank you.

589

