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Simulation of Robot Manipulators 

 

Good morning, today we are going to see a lecture on Simulation of Robot Manipulators 

through MATLAB programming. 
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The outline of this lecture will be as follows first we see the kinematics both forward 

kinematics and inverse kinematics and then we see about the programming part of 

controlling a manipulator that is through inverse kinematic model based control and 

dynamics based control. 
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So, first we start with the kinematics part. As we know that kinematics can be further 

divided into forward kinematics and inverse kinematics. In between this we have the 

differential kinematics where the Jacobian part is coming into picture right. 

So, first we start with the programming of forward kinematics through MATLAB 

programming. So, first what we do with the forward kinematics what is Forward 

Kinematics? Forward kinematics is basically the input here is joint angle theta say for 

example and the output here is the end effector position; end effectors pose, that is 

basically position plus orientation. The orientation could be 𝛼, 𝛽, 𝑎𝑛𝑑 𝛿 or the Euler 

angles or the Euler angles. So, now we see how the program or first do the procedure for 

forward kinematics. 
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So, forward kinematics we know that for example for a 3 degrees of freedom manipulator, 

so will be having the transformation matrices homogeneous transformation matrices 

coming into. So, this the final homogeneous transformation matrix which is obtained by 

the product of 3 homogeneous transformation matrices, which defines the relationship 

between frame 0 and 1. Then frame 1 and 2, then the homogenous transformation that 

relates between the frames 2 and the final third frame which is placed at the end effector 

tip. 

So, now we compute each one of this 𝑇1
0  then 𝑇2

1 , then 𝑇3
2 . So, that we put it in the 

generalized standard DH parameter based homogeneous transformation matrix which is 

of size 4 × 4. So, this in this transformation matrix we substitute the DH parameters and 

then we get the respective homogeneous transformation matrices between the successive 

frames 0 to 1, 1 to 2 and 2 to 3. 

Then what we have to do here is we need to do one thing that is basically. For example, if 

𝑇1
0  is having certain cases like 

𝑇1
0 = [

0 0 1
𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃2 𝑎1𝑐𝑜𝑠𝜃1

] 

 something like that. If it has then we have to substitute in the MATLAB code itself with 

this notation 𝑇_01 equal to we have going to substitute a matrix in this way that is 



𝑇_01 = [0 0 1;𝑐𝑜𝑠𝜃1 … ] 

 Accordingly we have to 𝑐𝑜𝑠𝜃1 like that we need to substitute those values straightaway. 

And one important thing is if it is 0 and if it is one kindly you have to put the same values 

0 and 1 here. Instead of placing it say for example, a 1 into 𝑐𝑜𝑠𝜃1 instead of putting a 1 

into 𝑐𝑜𝑠𝜃1 which leads to 0. For example, 𝑎1 is 0 in the DH table. It is better to put 0 

straight away instead of having 𝑎1 declared as 0 first, why because the MATLAB will give 

you the output in terms of.  

For example, it will give the values 0 7 …. is something like 1016 numbers into 10−17 it 

gives like this for the value of 0. So, instead of having these big numbers existing in your 

homogeneous transformation matrix is better to put 0 or 1 the scalar values straight away 

in the declaring homogeneous transformation matrices. Then just bring into your new just 

erase this and then.  
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so now, if you see finally 𝑇3
0  is obtained by this equation say for example, it is one then 

we need to have 𝑇1
0  could be of simplify of 𝑇3

0 . So, that gives the simplified form of the 

homogeneous transformation matrix, which is going to define the end effector position 

with respect to the base frame. That is the third frame going to be defined with respect to 

the 𝑜𝑡ℎ frame. 



So, what I mean to say is this is the command that should be used in order to have the 

simplified expression of 𝑇3
0  which is going to be a pure scalar based homogeneous 

transformation matrix 4 × 4, instead of having the real this imaginary values and all 

existing as a matrix element. 

So, another step now we have to go for checking how the defined equation is going to give 

you the right you for forward kinematics. How to check it? That is a procedure that we 

need to see here now.  

(Refer Slide Time: 07:22) 

 

So, there are two steps to clearly check that. So, first one is that is checking the FK 

equation, whether it is right or wrong. So, this can be checked in such a way that for 

example if you have 𝑥 = 𝑙1𝑐𝑜𝑠𝜃1 + 𝑙2𝑐𝑜𝑠𝜃12 and 𝑦 = 𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2𝑠𝑖𝑛𝜃12 . Where 𝑐𝑜𝑠𝜃12 

nothing but cos(𝜃1 + 𝜃2), 𝑠𝑖𝑛𝜃12 is nothing but sin(𝜃1 + 𝜃2). When this equation is there 

as a final end effector equation that is for a kinetic equation, we need to test whether this 

is the right equation or not. 

So, how to do that? First step is we need to put the joint angles. Say for example, 𝜃1, 𝜃2 

both 0 degrees and compute the end effector position. So, what is the value for 𝑥 and 𝑦? 

When it is 𝜃0, vector 𝜃0, = [𝜃10, 𝜃20,] which will be having the manipulator being in the 

horizontal plane. 



So, you know that it will be having the value only for 𝑥 which is 𝑙1 + 𝑙2 where 𝑦 = 0  that 

we know. From our physics based idea we could find we could really confirm that with 

𝜃1,  𝜃2 being 0 degrees, you will have the value existing the numerical value existing only 

for the 𝑥 parameter of the tip position and the 𝑦 = 0. 

Similarly, the next thing is to give 𝜃1 = 0 and 𝜃2 equal to another value which is a regular 

value 90 degree. Then test this, so that should be like this where we have the 𝑥 and 𝑦 this 

which is a regular value 𝑙1 this is 𝑙2 . We know from this idea or the imagination of this 

being bending as an elbow bent as 90 degree we could able to figure out the values and we 

can check it from the forward kinematic equation obtained from the product of the 3 

homogeneous or two homogeneous or 𝑛 number of homogeneous transformation matrices. 

Then we go for another regular value which is 𝜃1 equal to say 90 degree and 𝜃2 being 180 

degree. So, with this type of regular value says 0, 90 and 180 degrees we could be able to 

test or verify whether our a forward kinematics equation is right or wrong. These are the 

steps that we could be able to check or verify our forward kinematics equation. Because 

the forward kinematics equation has these steps first find the DH table. 

DH parameters the DH parameters could be found by obtaining or assigning the frames 

from 0 to 𝑛, 0 is for the base frame and the n is for the tip frame and then from the DH 

table find the respective frames. That it is fine the respective homogeneous transformation 

matrices that leads to 𝑇1
0  to 𝑇𝑛

𝑛−1 , this many number of homogeneous transformation 

matrices that corresponds to the row of each forward each DH table. We could able to 

obtain the final matrix which is product of each homogeneous transformation matrices. 

Once we obtain this homogeneous transformation matrix we could be able to figure out 

what stands for the tip and what stands for the orientation. Let me quickly tell you what 

stands for the position and what stands for the orientation from this 4 ×  4 sized 

homogeneous transformation matrix. For example, 𝑇2
0  is this one we obtained  

𝑇2
0 = [

𝑟11 𝑟12 𝑟13 𝑃𝑥

𝑟21 𝑟22 𝑟23 𝑃𝑥

𝑟31

0
𝑟32

0
𝑟33

0
𝑃𝑥

1

] 

So, this from this 4 × 4 homogeneous transformation matrix, we could say that the first 3 

columns and that two particularly the first 3 elements of the first 3 columns denote the 



orientation. That is 3 × 3 matrix gives you the orientation value for the end effector. 

Whereas, the last fourth column the first 3 elements of the fourth column gives you the 

position vector, which is basically 3 × 1 vector which gives the position value alone of the 

end effector. And these are the scale parameters that could be helpful why we have this 

scale parameter that you would have learnt in this beginning of this lecture itself, that these 

are meant to have a description of one frame. 

For example, the tool frame of the manipulator to be defined with respect to the end 

effectors or the manipulators base frame or the object frame can be defined with respect 

to the base frame of the end effector. In that situations the 0 0 1 scale parameter will be 

helpful through the homogeneous transformation matrix multiplication to get the proper 

and they define the value of the end effector tip or the object position and orientation with 

respect to any reference frame or the world a frame. 

So, this is the way that we could able to do the forward kinematics part and let me brief it 

quickly one more time, that once given here n degrees of freedom manipulator the first 

step is to obtain the DH table, then form the respective homogeneous transformation 

matrices and then compute the final homogeneous transformation matrix that is obtained 

by the product of successive frames based homogeneous transformation matrix. Then 

compute the position and orientation of the end effector from the final homogeneous 

transformation matrix. 

 Then the obtained for example, they obtained position whether it is right or wrong will be 

verified by this checking method. Which is nothing but substitute the joint variables either 

𝜃 or the distance value the translation notation given by D, either by changing by varying 

them gradually starting from say 0 degree, 90 degree, and 180 degree. We can gradually 

find out how that is going to be behaving or going to give the position as per our correct 

information or imagination that given 0 degree it must be lying on the horizontal plane. 

So, only the x axis comes into picture, so in that situation your forward kinematics equation 

should not give the y value and this z value. Accordingly, you can verify by incrementing 

the angles to the regular values, say 90 degrees and 180 degrees even for particular or all 

the values of the joint angles. 
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Then we move on to certain examples; first we start with the SCARA manipulator. 

SCARA is a 4 degrees of freedom, first one it is revolute, second is revolute, third is 

prismatic and the last degrees of freedom is a revolute joint which is a end effector rotation 

part. So, here we see this simulation of it. 

(Refer Slide Time: 16:09) 

 

So, in this simulation graphical simulation, we show that the end effector is you can see 

that here the end effector is getting rotated, the rest portion is getting rotated. As you can 

see here it is only this angle given into the simulation part. So, by this graphical simulation 



through the MATLAB programming we can observe that how the system is actually 

behaving by giving the joint input. So, that the end effector or the whole system behaves 

how as per the given input joint angle. 

So, the next simulation is also of SCARA manipulator only, where you can see it is moving 

almost all the degrees of freedom of the manipulator. There you can see it is both it is all 

the joint variables that is the first joint 𝜃1, 𝜃2 and the prismatic one and also the fourth 

degrees of freedom all or getting buried and hence we have this type of simulation 

graphical simulation. From this we could observe that how the system actually behaves by 

this graphical information we get more inference than compared to the position plot or the 

orientation plot alone. 
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Next we see a 3 link manipulator with the angles getting incremented, this is a simulation 

where we move all the 3 degrees of freedom 𝜃1, 𝜃2 and 𝜃3 of this 3 link manipulator and 

we obtain this trajectory I repeat it. 
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Next we finally see the graphical simulation which is obtained by the MATLAB 

programming for a 3 link non planar manipulator, it is all of revolute; revolute; revolute 

and finally revolute as well the degrees of freedom. 
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Next we come into the inverse kinematics which is a very important part how we do the 

inverse kinematics through coding part, because for the inverse kinematics we generally 

deploy the MATLAB programming or any programming part just to track not only a set 



point it is to track a trajectory. Where the trajectory is of several waypoints contained in 

it, so where you can see this is the initial point and this is the destination point.  

So, with this trajectory you can see that there are so many way points in it, this trajectory 

has to be traced by a manipulator say for the 1 2 3. So, 3 degrees of freedom manipulator 

should track you should track this trajectory given trajectory. So, how to do that that is 

the task to be obtained by the inverse kinematics.  

So, inverse kinematics to for a given trajectory can be traced by this way, that is 

basically 𝜃̇ = 𝐽+𝑥̇𝑑 + (𝐼 − 𝐽+𝐽)𝑘. Where 𝑘1 or 𝑘 is equal to 𝑘𝑝 
𝜕𝑀

𝜕𝜃
  or simply we can say 

𝑘𝑝 𝜀. Where 𝜀 is a vector which is having the elements 𝜀 = [𝜀1 𝜀2 𝜀3 … 𝜀𝑛]. So, here 

if it is a non-redundant manipulator we can have the joint velocity expression being 𝜃̇ =

𝐽−1𝑥̇𝑑. Simply for a simple inverse kinematics this is the expression. 

Whereas if it is a redundant manipulator you will have the first term and the second term, 

the first term is meant to achieve the primary sub task sub task. The primary sub task is to 

track this given trajectory. Whereas, the secondary sub task is to utilize the redundancy 

involved in a manipulator, so that it can be utilized to achieve any additional application 

for us the additional work for us.  

The additional work could be if there is an obstacle here, this obstacle can be avoided by 

deploying the redundancy of the manipulator that is one way of utilizing the redundancy 

of a manipulator. And the second way could be utilizing the redundancy of the manipulator 

in order to avoid the singular configuration of the manipulator. 

When the manipulator is singular it means that it will not get the joint angles for a given 

particular end effector position. So, it gets struck there, it will not have any way to move. 

So, that is why redundancy is quite useful it has many advantages as we have discussed 

earlier. 

So, now how to do this programming part, so what are the sections involved in 

programming in order to achieve this inverse kinematics. The inverse kinematics the first 

two role are the first part is the desired trajectory. So, if we need to feed the desired 

trajectory through the manipulator. So, the first step is generate desired trajectory that is 

the first one. It can be generated one way is to generate through interpolation. As you have 

seen in this lectures previously before 20 lectures before the twentieth lecture you would 



have seen this how to perform interpolation. The simplest one is cubic interpolation given 

say 𝑥𝑑(1) and 𝑥𝑑(𝑑). For example, this is 𝑥𝑑(𝑖) let us say that is 𝑥𝑑 initial point and 𝑥𝑑 

final point we will get a trajectory, based on cubic polynomial by the interpolation method. 

So, the first step to write the program part is to generate the desired trajectory by giving 

the initial position and the final position. And through cubic interpolation methodology 

you can obtain here cubic spline trajectory, that will be the desired trajectory for the 

manipulator this is the step one for programming part. And then comes the step two which 

is basically going for this equation, that is the generalized solution for the joint velocity 

that is the second part that part. If you see that is the first term and the second term. 

So, the first term is 𝐽−1𝐽+𝑥̇𝑑. So, you have here first in step one you have generated 𝑥𝑑. 

For example, 𝑥𝑑(𝑡) where 𝑡 varies from initial time to the final time, there is so many 

values in between it and the first term of the equation of joint velocity is having desired 

tip position velocity. 

So, how will you get this? So, you need to do 𝐽+ how will you do this by MATLAB we 

use this common 𝑝𝑖𝑛𝑣(𝐽) of the Jacobian matrix J. Where you have the Jacobian 

expression already defined in your coding part. Then 𝐽𝑝 = 𝐽+ = 𝑝𝑖𝑛𝑣(𝐽), that gives the 

Jacobian inverse pseudo inverse this portion and how will I get this velocity. So, velocity 

will get by simple numerical differentiation of the desired positions. How to do that? 
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We say that 𝑥𝑑(𝑡) city is say for example five second, at five second what is that. So, 𝑥𝑑(𝑡)  

equal to 

𝑥̇𝑑(𝑡) =
𝑥𝑑(𝑡) − 𝑥𝑑(𝑡 − 1)

∆𝑡
 

instead of this I let us me put in a generalized way by ∆𝑡, where ∆𝑡 is nothing but where 

∆𝑡 equal to 𝑡 at this instant −𝑡 at the previous instant current instant time minus previous 

instant. 

So, this is varied by the sampling period say, for example the sampling period involved in 

this inverse kinematics. So, that in general we take 5; 5 millisecond or 1 millisecond we 

generally take for simulation. So, this ∆𝑡 generally comes how to be the time which is the 

sampling period say 5 millisecond or 1 millisecond so that comes here. So, with this you 

can able to obtained all the velocities given the position of the end effector decide position, 

then we can see that this one is the first term over. 

Now, we have 

= (𝐼 − 𝐽+𝐽)𝑘𝑝 𝜀 

where 𝜀 = [𝜀1 𝜀2 𝜀3 … 𝜀𝑛], of course which is 𝑛 × 1 vector. So, in the second term we 

have this we have already computed 𝐽+, I is identity. 𝑒𝑦𝑒(3) you will get the 3 × 3 identity 

matrix this is the command for that and 𝑘𝑝  is a scalar constant scalar value which is a 

positive scalar value in order to have this term getting increased and epsilon is given by 

this vector. 

So, it is epsilon is an expression which is going to be obtained. So, this is for identity 

matrix and 𝜀 expression 𝜀1(𝜃). Similarly 𝜀2 is also a function of 𝜃 and 𝜀3 as well. 
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So, how to get this expression now? So, the important point now here is open a new file; 

open a new m file and then declare all the variables in the symbolic expression expressions. 

That is 𝑠𝑦𝑚𝑠 𝑡1 𝑡2 𝑡3 𝑙1 𝑙2 𝑙3 𝑟𝑒𝑎𝑙. That means, none of these variables are going to be 

having the complex terms. So, you explain express or declare all these variables in the 

symbolic expression in this new file, then you have the expression for Jacobian that you 

know how to do. 

Then we know that 𝐽𝑝 = 𝑝𝑖𝑛𝑣(𝐽), then we need to have the expression for already we 

know that expression for 𝜀 =
𝜕𝑀

𝜕𝜃
. So, 𝑀 expression is nothing but the manipulability which 

is given by is the manipulability, which is given by 

𝑀 = √𝐽𝐽𝑇 

And then now we go for this expression I write here we go for the expression of this one. 

So, how to do that? So now, we say 𝑑𝑒𝑙1 is given by 𝜀1 is given by 𝑑𝑖𝑓𝑓(𝑀, 𝑡1) and 𝑑𝑒𝑙2 =

𝑑𝑖𝑓𝑓(𝑀, 𝑡2). And similarly say 𝑑𝑒𝑙3 equal to 𝑑𝑖𝑓𝑓(𝑀, 𝑡3). 

Then you run this code this new file you run this then in the command prompt type 𝑑𝑒𝑙1 

you will get the expression copy that, 𝑑𝑒𝑙2 get the expression copy 𝑑𝑒𝑙3 type it get the 

expression copy it and go back to the main file. This is a main file where you have done 

all these things here you can substitute those values and continue this looping. Where you 

have up to the expression for theta dot which is this one. 



Then how will you compute theta velocity from this, simplest way is 

𝜃 = 𝜃 + 𝜃̇∆𝑡 

This is the previous value of joint angle and the previous are the previously computed ∆𝑡 

and it is a sampling period which is the same value. But this we will get the next value of 

joint angle and this procedure continues for all the way points. That is how we do the 

inverse kinematics in the MATLAB programming. 
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Now, we move on to the dynamic model based control. So, in this way we could be able 

to perform the inverse kinematics based control and now coming to the dynamic model 

based control, what we have seen earlier in my lecture is this portion in the dynamic model 

is basically the Servo law; Servo law. Servo stands for the meaning track and this is the 

portion which stands for the model based law. That is why this is getting partition and 

hence it is called control based on partition rule or control partition scheme you can say.  
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So, this one let me quickly put forward we have the inverse dynamics and the Forward 

dynamics. The inverse dynamics is having the joint trajectory is given as input and we 

obtain the joint torque as the output. Whereas, the forward dynamics is the reverse one we 

give the joint torque and obtain the joint actual trajectories that is what we do in this 

forward. And inverse dynamics part you can see here it is a combination of both inverse 

dynamics and forward dynamics, how? Yes. 

So, in the control part we give this joint trajectory the desired joint trajectories in terms of 

the joint velocities. Then we do the servo law which is obtain from the feedback, then we 

get this 𝜏′  as you have seen in the dynamic model base control in the last lecture. Then 

we obtain finally 𝜏 that is the control part which is the control law that goes into the 

manipulator. 

So, we obtain this 𝜏 from the joint torque from the joint angular trajectories. So that means, 

here is a control part done, now we need to obtain the actual values. How will we do this? 

So, this actual value of the joint trajectories can be obtained from the joint torque by the 

simulation procedure. What is that? Because we know that 𝜏 equal to  

𝜏 = 𝐵(𝑞)𝑞̈ + 𝑐(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) 



So, we have at present we have 𝜏 getting into the input 𝜏 we have, we do not know what 

is 𝐵(𝑞)𝑞̈ and we do not know 𝑞̇, but we do we know 𝐵(𝑞), 𝑐(𝑞, 𝑞̇) this one. So, from this 

we can take 

𝑞̈ = 𝐵−1(𝑞)[𝜏 − 𝑐(𝑞, 𝑞̇)𝑞̇ − 𝐺(𝑞)] 

So, from this we obtain the actual acceleration, from that we could able to get velocity by 

the integration of double dot and then finally 𝑞 with the integration of velocity. So, with 

this way we get the actual values and get feedback to the Servo law, in order to get this 𝜏′ 

which is basically 𝜏′ is Servo law which is given by 𝜏′ = 𝜃̈𝑑 + 𝑘𝑝𝜃 or 𝑘𝑝𝐸 + 𝑘𝑣𝐸̇ , where 

𝐸 stands for 𝜃𝑑 − 𝜃 and 𝐸̇ = 𝜃̇𝑑 − 𝜃̇. So, with this way we can similarly do the MATLAB 

based programming of it. 
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And finally, we could for example, we have done the same procedure for the two linked 

planer manipulator x and y. So, theta 1 theta 2 being this, so given here decide theta d we 

obtain the tau. So, these are the given desired trajectories and we could be able to obtain 

the desired trajectories and the actual trajectories being merged. But classic joining as you 

can see here and with this we wind up today’s lecture. In this lecture we have seen how 

we could program in order to simulate a simple or even complex n degrees of freedom 

manipulator. 



We started this lecture with forward kinematics how we program it and we have seen 

certain simulations graphical simulations showing how they behave with given joint angle 

values and then we see quickly the procedures how to program for inverse kinematics with 

tendency and non-relent manipulators. And then finally we have seen the dynamic model 

based control scheme with the control a partitioning how we could program it and get the 

actual values 

Thank you so much.  


