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Good morning, today we have the lecture on Higher Order Sliding Mode Control. 
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The organization of today’s lecture will be as follows; first, we have the introduction to 

higher order sliding mode control; then we see the convergence of distance and time. So, 

that the state trajectory convergence to the equilibrium point in finite time will be having 

a proof in this lecture. And then we implement the higher order sliding mode control on 

Percutaneous Interventions using bevel tip needle. 

In that research study, we implement the higher order sliding mode control and see the 

performance how it is getting converged in finite time and finally, we conclude todays 

lecture based on the sliding mode performance on the percutaneous interventions. 
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Coming to the introduction; sliding mode control has several properties, finite time 

convergence, robustness, parameter variations, reduced order dynamics. The higher order 

sliding mode control retain most of these properties and is a generalization of the first order 

sliding mode control. Here in this higher order sliding mode control, higher order 

derivative is acted on the sliding variable 𝜎 instead of influencing first order dynamics. 

That is in the conventional sliding mode control; we have seen �̇� that is the �̇� is derived 

from the 𝜎 variable. 
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But here we go for �̈� that you see higher derivative is involved in the dynamics of the 

sliding variable. Now, coming to the introduction, continued with the introduction; so we 

have the sliding line is in such a way that we have two surfaces in perpendicular to each 

other; that is one surface is or one plane is 𝜎 = 0 and �̇� = 0 is another plane. 

And the intersection of these two planes will have a line and that is the sliding surface you 

can say; that is the sliding domain where the trajectory of the states should converge that 

is the line of interest where the trajectory of the states must sit on it and get into the 

equilibrium point that is �̇� = 0. And, how this trajectory is getting converged to the 

equilibrium point is through multiple twisting of the state trajectory. 

And each time we see that the twisting distance as well as the time to reach the intersecting 

line is reduced and that is the proof, we are going to see because we have taken from two 

planes; one is corresponding to �̇� = 0 and another one is 𝜎 = 0. When these two planes 

intersect; we have a line of intersection that is the line of interest which is where the 

trajectory of the states will get reached there and slide it to the equilibrium point. 
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So, now we see the proof for finite time convergence of the state trajectory. So, first we 

see distance proof like distance convergence; convergence that is we have the state 

trajectory 𝑥1, 𝑥2  such that accordingly; so that this distance and this distance, when you 

compare; this distance is lesser than the starting distance, then this distance and this 

distance we compare and then this distance is lesser than this distance. 



So, that this proves that the trajectory of the state is getting converged to the equilibrium 

point in finite time. So, how much time is taken is the second proof we are going to see 

through time convergence. So, eventually what we prove through this higher order sliding 

mode controller is; we have finite time convergence of the state variable to the equilibrium 

point which was not possible through the conventional sliding mode controller. 
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So, now we see the proof of distance convergence. So, we take here the quadrants  𝑥1, 𝑥2; 

this is the I quadrant, IV quadrant, II quadrant, III quadrant. So, in the I quadrant when 

you take the I quadrant with the state model 

�̇�1 =  𝑥2            (1) 

�̇�2 = 𝑢            (2) 

where the controller is coming in the state equation which is equation 1 and the �̇�2 is 

equation 2; then we have the control law for this higher order sliding mode controller is 

taken to be 

𝑢 = −𝑘1𝑠𝑖𝑔𝑛(𝑥1) − 𝑘2𝑠𝑖𝑔𝑛(𝑥2)         (3) 

So, the I quadrant both 𝑥1 and 𝑥2 are positive. So, from 1 we have �̇�1 equal to positive and 

�̇�2 is also positive; so �̇�1 positive implies, this is the direction of �̇�1 and �̇�2; here if you see 

i just made a mistake sorry that if you see that this is basically the �̇�2; it turns out to be 



negative because when we substitute 𝑥1 and the 𝑥2 positive in the 𝑢 equation 3; what we 

have is −𝑘1 into positive that is 1; −𝑘2 into plus 1, so eventually it is negative since 𝑘1 is 

greater than 𝑘2 which is positive values it is a constant nonzero values. 

So, we have �̇�1 trajectory being this one and �̇�2 trajectory is negative; thus the resultant is 

this direction. So, in the I quadrant what we have is �̇�1, �̇�2 ; so we have the direction of the 

state trajectory is in this way. Similarly, in II quadrant; what we have is 𝑥1 sorry we can 

take the IV quadrant because we come in this direction become we take I quadrant I and 

then quadrant IV. 

So, the quadrant IV; what we have is 𝑥1 is positive and 𝑥2 is negative which leads to the 

resultant in such a way that �̇�1 = 𝑥2  and �̇�2 = 𝑢 which is a state variable; when you 

substitute here what we obtain is �̇�1 is negative and �̇�2 is given by negative. So, we have 

both coming out to be that is �̇�1 direction is this one and �̇�2 direction is down. So, the 

resultant is this one; that is the direction of the state variable is this one. So, I put here; this 

is �̇�1 and this is �̇�2, so the resultant is this one. 
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Next, we go to the III quadrant; what we have is both 𝑥1 and 𝑥2 are negative. So, from 

equations 1 to 3 which is �̇�1 = 𝑥2 and �̇�2 = 𝑢 and 𝑢 equal to 

𝑢 = −𝑘1𝑠𝑖𝑔𝑛(𝑥1) − 𝑘2𝑠𝑖𝑔𝑛(𝑥2) 



We have the direction that is �̇�1 equal to negative, similarly �̇�2 is equal to positive. So, we 

have this direction �̇�2 being positive and the �̇�1 be negative; so the resultant is in this that 

is a state trajectory direction is in this way.  

And similarly in the IV quadrant; we have the direction of �̇�1 is in this way positive and 

the �̇�2 in the; II quadrant, this one IV quadrant it is in the II quadrant and we have both 

�̇�1and �̇�2 are positive; so the resultant is this one that is the resultant which is a state 

trajectories direction. Therefore, we have the trajectory of the state variable coming out to 

be this direction. 

Then this direction then this direction then finally, this direction which shows that comes 

this way and goes this way, then goes this way goes this way. So, we need to prove that 

these trajectories of the state variables will converge to the equilibrium point in finite time. 

So, the distance must be now observed; whether it is each time getting reduced. 
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So, what we do here is we take the situation in such a way that 𝑠 = 𝑥1 and �̇� = 𝑥2. So,  

�̈� = 𝑢 which implies −𝑘1𝑠𝑖𝑔𝑛(𝑥1) which is 𝑠 in this case −𝑘2𝑠𝑖𝑔𝑛(�̇�). So, �̈� is in general 

given by 

�̈� =
𝑑�̇�

𝑑𝑡
 

which is equal to 



�̈� =
𝑑�̇�

𝑑𝑠
�̇� = −𝑘1𝑠𝑖𝑔𝑛(𝑠) − 𝑘2𝑠𝑖𝑔𝑛(�̇�) 

So, in the I quadrant; what we prove is, we have because 𝑠 = 𝑥1 and the �̇� = 𝑥2; we have 

𝑑𝑥2

𝑑𝑥1
𝑥2 = −𝑘1𝑠𝑖𝑔𝑛(𝑥1) − 𝑘2𝑠𝑖𝑔𝑛(𝑥2) 

which can be written like this, 

 𝑥2𝑑𝑥2 = −(𝑘1 + 𝑘2)𝑑𝑥1 

depending on the sign of 𝑥1 and 𝑥2 in the I quadrant; both are going to be positive and 

hence signum will give plus 1 values for that. 

So, integrating both sides we get 

∫ 𝑥2𝑑𝑥2

0

𝑥20

= ∫ −(𝑘1 + 𝑘2)𝑑𝑥1

𝑥1

0

 

which leads to − (
𝑥20

2

2
) = −(𝑘1 + 𝑘2)𝑥1 
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This is basically  

𝑥20
2 = 2(𝑘1 + 𝑘2)𝑥1. 



which is schematically, it is given by 𝑥1 this is 𝑥2; so here it is 1. So, here we start from 

𝑥20 and this; the O value; now say this is P; so, the I quadrant this is the situation. 

In the IV quadrant which is going to happen like this which is see this is 𝑃1 and this point 

is 𝑃1 and this is origin; so it is O. So, for the; I quadrant, the left hand side has the limits 

from 𝑥20 to 𝑥0 whereas, the right hand one has the limits varying from 0 to x 1. So, now 

what we have observed is 

𝑥20
2 = 2(𝑘1 + 𝑘2)𝑥1 

Similarly, in the II quadrant; we have in the similar procedure we have 

𝑥21
2 = 2(𝑘1 − 𝑘2)𝑥1 

So, basically it is not II quadrant, it is basically this quadrant which is basically the IV 

quadrant; I am just making the mistake sorry. So, this is basically the IV quadrant we have 

this relationship because 𝑘1 > 𝑘2 > 0. 

So, the distance ratio 
𝑜𝑃2

𝑜𝑃1
, we have 

𝑥21

𝑥20
 which is equal to 

𝑥21

𝑥20
 =√

𝑘1−𝑘2

𝑘1+𝑘2
 which is equal 

𝑥21

𝑥20
 =√

𝑘1−𝑘2

𝑘1+𝑘2
= 𝑞 < 1 

 to a variable q; it is a constant which is less than 1. Therefore, we generalize;  

𝑥2(𝑖+1)

𝑥2𝑖
= 𝑞 < 1. 

So, here between 𝑥20 and 𝑥21; we have the relation 𝑥21 = 𝑞𝑥20. Since 𝑞 < 1; 𝑥21 < 𝑥20. 

So, we prove that; we are proving that this distance that is the distance traveled from this 

to this, by the state trajectory is greater than the distance traveled from this point to this 

point 𝑃2; from the 𝑥1 axis is greater. So, the distance 𝑂𝑃2 is lesser than distance𝑂𝑃1 that 

is proved here; likewise we can prove that accordingly from each quadrant to quadrant. 
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Now, coming to the time convergence; we have proved now in the state trajectory, the 

distance is converged whereas the time convergence is another parameter to be proved in 

order to reinforce this statement that it is converging in the finite time. So, now coming to 

the I quadrant; what we have is from 

∫ 𝑑𝑥2

0

𝑥20

= ∫ −(𝑘1 + 𝑘2)𝑑𝑡
𝑡0

0

 

which implies  

𝑡0 =
𝑥20

(𝑘1 + 𝑘2)
           (1) 

In quadrant 4,  

∫ 𝑑𝑥2

−𝑥21

0

= ∫ −(𝑘1 − 𝑘2)𝑑𝑡
𝑡0

0

 

because of the signs of the variables 𝑥1 and 𝑥2; we have this one which further giving the 

value of 

𝑡1 =
𝑥21

(𝑘1 − 𝑘2)
           (2) 
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See which is equation 2 or we can take 

𝑡1 =
|𝑥21|

(𝑘1 − 𝑘2)
 

But whatever being 𝑥21; negative or positive; it will give the positive value only; that is 

why we taken the; we were taken the absolute value. Now, the total time 𝑇1 = 𝑡0 + 𝑡1  

which is given by 

𝑥20

(𝑘1 + 𝑘2)
+

𝑥21

(𝑘1 − 𝑘2)
 

where we take 𝑥20 outside. Why? Since the 𝑥21 = 𝑞𝑥20. 

So, we can take 𝑥20 common; so 

𝑥20 [
𝑞

(𝑘1 − 𝑘2)
+

1

(𝑘1 + 𝑘2)
] 

which implies 𝑇1 = 𝜂𝑥20 this full part is a constant. Similarly, 𝑇2 = 𝜂𝑥21; which implies 

𝑇2 = 𝜂𝑞𝑥20 which can be generalized in this way that 𝑇𝑖+1 = 𝜂𝑞𝑖|𝑥20| which implies 

𝑇𝑖+1 =
𝜂|𝑥20|

1−𝑞
  which implies convergence of time. 
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Thus we have proved that both convergence of distance as well as convergence of time for 

the state variable trajectory in this higher order sliding mode which proves finite time 

convergence. 
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So, now we come to the implementation of this higher order sliding mode control strategy 

on the research study; on our research study on Percutaneous Cancerous Interventions 

using bevel tip needle. So, what is a bevel tip needle? So, this is the bevel tip needle where 

the tip is having this shape; bevel shape, the bevel angle is given by this one which can 



vary from say 45 degrees to 75 degrees. So, that once the tissue reaction is happening here; 

once it is this needle is inserted into the tissue domain, the tissue reaction force happens 

on the beveled surface on the surface of the needle tip. So, the needle will undergo this 

type of bending because of the tissue reaction force on the bevel surface. 

Then the needles can be spinned along the needle axis in order to have the direction change 

either upper direction or lower direction depending on the spinning of this needling surface 

or around the needle axis; the needle must be rotated in order to have the direction of 

curvature. So, here we have two inputs; one is the insertion input, another one is the 

rotation input the rotation input for the needling system. 

So, the objective of this research study is to keep this needling system in the plane of 

interest; desired plane of interest. So, this is the plane of interest, once a needle is inserting; 

inserted in the tissue region, the needle must be lying in the desired plane of interest; it 

must not be diverted away from this need the plane of interest; so that is the objective. 

So, must the decide objective; objective is the needle must lie in the desire plane of interest 

while maneuvering inside the tissue region; this is the important objective of this research 

study. 
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And we have taken or considered the system states; in the needling system states in order 

to satisfy the objective or the system states or the distance away from the plane that is 



shown in the figure, in the blue plane is the plane of interest and the distance away from 

the plane is first state which must be controlled so, that a distance should be minimized or 

made it to be 0. 

Finally, the state variable must lie on the plane which implies this state variable 𝑆1 = 𝑦 =

0. Another state variable second state variable is the first state variable, the second state 

variable is the rotation around the z axis which you say alpha must be minimized; if it is 

rotated around this axis, then the out of the plane of the needle happens. 

So, the angle around the 𝑧 axis 𝛼 must be minimized that is the second state variable must 

be converged to 0; this variable. Similarly, the third state variable which must be 

converged to 0 in the finite time is the rotation around the 𝑥 axis, which is 𝛾. So, the three 

state variables are distance away from the plane of interest and rotations around 𝑧 axis 𝛼 

and the rotation around the 𝑥 axis 𝛾; these are the three state variables that must be 

converged to 0 in the finite time. 
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So, the results we have obtained in implementing the higher order; sliding mode control 

strategy or as follows. First, we have implemented conventional sliding mode strategy on 

our system model; kinematic model based on the bicycle modeling of the passive needle 

which is with the bevel tip of 45 degrees; bevel angle. 



So, the state first is getting converged on the second states that is the angle; the first is the 

distance state shown separately and the angle states S 1 and S 2 are shown here where we 

denote them by 𝑟1, 𝑟2 and 𝑟3 and the controller is having the chattering high frequency 

control input; which is this chattering effect that can be shown. And we see that a sliding 

variable is getting converged in finite time; oh sorry you have seen here with the 

conventional sliding mode strategy. 
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So, here we see the conventional sliding more strategy without the presence of disturbance. 

So, this can be the same system performance the evolution of the states and the control 

input without a chattering can be observed by a simple state feedback controller 𝑢 = −𝑘𝑥 

can also be used to observe this because there is no distance disturbance in this control 

problem. 
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So, when we give disturbance; what happens with the conventional sliding mode control 

strategy. The control input is feasible without any chattering; the states you see the 

convergence is suffering. Thus distance state is not getting converged; likewise, when we 

zoom this we have the other states angle states are also not converging. 

So, when the disturbance is given with the conventional sliding mode controller strategy; 

we have the evolution of the states and control input in such a way that the states are not 

getting converged at all in finite time. 

(Refer Slide Time: 32:05) 

 



So, we go for the strategy called integral sliding mode control strategy. So, the integral 

control mode sliding strategy is with the nominal control plus discontinuous control. When 

we have the discontinuous control with the interval sliding mode control strategy, we have 

the high frequency components existing in the control input. 

So, even though the states are converged in finite time; finite time convergence is observed 

with the integral sliding mode strategy. But the controller is having a chattering problem 

because of the high frequency component here which is not feasibly acceptable in the 

clinical scenario of percutaneous needling interventions. 
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So, the discontinuous part in the integral sliding mode controller; this is nominal control 

plus super twisting controller is used; instead of the discontinuous part of the integral 

sliding mode control, we have used the super twisting mode control where this controller 

replacing the discontinuous part in the integral sliding mode control gives finite time 

convergence of state variables and chattering free control input; chattering free control 

input which is desirable in the clinical scenario. 
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And the experimentation is shown here with this strategy implemented on the real system 

we have observed that the needling system can be inserted with the bevel tip, so that the 

angle diversion from the plane that is the line of insertion is shown here. 

So, that this video confirms that due to integral sliding mode control with super twisting 

algorithm the needle lies within the desired plane of interest with the bevel angle coming 

into picture because of the tissue reaction force. 
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Thus we conclude that higher order sliding mode control confirms finite time convergence 

of the system states and we have also by this lecture we proved that both time convergence 

and the distance convergence in order to reinforce the statement given for the higher order 

slide one control in terms of convergence.  

And we have performed this robust control strategy on the percutaneous needling system 

for cancerous treatment. And, we observed that the integral slightly more controller with 

the discontinuance part being replaced by the super twisting control strategy gives a very 

better performance when compared to the other strategies. With this we wind up. 

Thank you so much.  


