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Good morning. Today, I am going to have the lecture in Sliding Mode Control, the outline 

of this lecture will be as follows. First we have the introduction and then we see the 

conventional sliding mode control with some example. 
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Coming to the introduction, in most of the situations there is a discrepancy between the 

actual plant and its mathematical model. This discrepancy is due to unknown external 

disturbances, parameter variations of the plant and unmodeled dynamics. Due to these 

reasons designing a control law is a challenging task. The control law that can take care of 

these causes is called robust control law, one among them is a sliding mode control 

scheme; which has the advantages of reduced order compensated dynamics, robustness to 

disturbances; I mean the bounded disturbances and finite time convergence. 
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Considering an example of single dimensional motion of a unit mass as shown in the figure 

here, which is pulled by the control input force and which is resisted by the disturbance 

force which is given by the term 𝑓(𝑥1, 𝑥2, 𝑡). Where the disturbance is a bounded 

disturbance and this disturbance has is including the viscous friction force as well as the 

unknown rigid forces associated with this mass and the system states are 𝑥1 and 𝑥2. 

Where, 𝑥1 is a position and 𝑥2 is the velocity of this mass while pulling, thus the state 

space model of the system is given by 𝑥̇1 = 𝑥2 and 𝑥̇2 is having the control input u and the 

disturbance force which is the bounded. And, is given by |𝑓(𝑥1, 𝑥2, 𝑡)| ≤ 𝐿 > 0. 
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Thus, the control problem is to design a state feedback control law; which is 𝑢 equal to 

𝑢 = −𝑘1𝑥1 − 𝑘2𝑥2 such that it can drive the system states to equilibrium point 

asymptotically, that is has the time varies from 0 to infinity the system states reaches the 

equilibrium point. 

Considering the state feedback control law which is for these two states system it is 𝑢 =

−𝑘1𝑥1 − 𝑘2𝑥2 Where, 𝑘1 > 0 and 𝑘2 > 0, provides asymptotic stability only when the 

disturbance part 𝑓(𝑥1, 𝑥2, 𝑡) = 0. But, if you consider the disturbance existing in the 

system then this control state feedback control law will drag the system states to a bounded 

domain delta, we are going to see that what is that bounded domain delta which is a 

function of 𝛿(𝑘1, 𝑘2, 𝐿). 



So, it is a function of this domain is a function of 𝑘1, 𝑘2 and the disturbance bound value 

for a bounded disturbance. Thus, it will not bring it to the convergence, it will bring it close 

to the domain of, it brings it to the domain that is all, it will not converge to 0 or equilibrium 

point provided the system disturbances not equal to 0. 
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Consider the example which is the single dimensional motion of the mass with states 

position and velocity with the given initial conditions, 𝑥1(0) = 1, 𝑥2(0) = −2  with the 

controller gains 𝑘1 = 3, 𝑘2 = 4 respectively. And, with the disturbance being 0 it will 

converge the system to stability to equilibrium point at time tends to infinite, that is the 

asymptotic convergence for the system is obtained for the disturbance being 0 by this state 

feedback controller. 
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And, what happens when the disturbance is given that is 𝑓(𝑥1, 𝑥2, 𝑡) = sin⁡(2𝑡). When this 

disturbance is given that straight feedback controller will make the system states common 

state or stay in this domain, which is this domain is delta which is a function of 𝑘1, 𝑘2 and 

the bound value L. It is not getting converged whereas; it is going to this domain and stays 

there by this control law. 
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Thus now, we are getting into the main concepts of sliding mode controller. Let the desired 

compensated dynamics for the given system 1 dimensional motion of this given 2 



dimensional 2 degrees of freedom system for the 2 degrees of freedom system, we are 

considering the decide composited dynamics state dynamics of the system being the first 

order given by 𝑥̇1 + 𝑐𝑥1 = 0. It is a first order homogeneous differential equation, where 

𝑐 > 0 and here 𝑥2(𝑡) = 𝑥̇1(𝑡) for this system, we have the solution being 𝑥1(𝑡) =

𝑥1(0)𝑒
−𝑐𝑡. And, the derivative of the solution is 𝑥2(𝑡) = −𝑐𝑥1(0)𝑒

−𝑐𝑡. This shows that 

the states system states 𝑥1, 𝑥2 converges to thus a equilibrium point asymptotically. From 

these two expressions we can from this solution of this differential equation we observe 

that these two states converge asymptotically. And, also what we have observed in the 

system decide compensated state dynamic equation is no disturbance effect that is the 

𝑓(𝑥1, 𝑥2, 𝑡) that is a disturbance effect is not observed on the state dynamic equation, 

compensated equation. 
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So, here we introduce a new variable where the system dynamics is equal to 𝜎 = 0, as we 

have seen in the previous slide, it is 0 in this case the dynamic equation; now, we equate 

the dynamic equation to a new variable called 𝜎. Thus 𝜎 is a function of the 𝜎 (𝑥1, 𝑥2)   

here in this example and here it is given by 𝑥2 + 𝑐𝑥1, where 𝑐 > 0; to achieve the 

asymptotic the aim is to achieve the asymptotic convergence of the state variables 𝑥1 and 

𝑥2 in the presence of disturbance, the value of the variable 𝜎 must be converged in finite 

time by the control law u. 



Now, we have to decide which is the control law that is a sliding mode control law, that 

drives the state system state to asymptotic stability by driving the stay the 𝜎 variable to 

finite time convergence. Now, applying Lyapunov function techniques to the sigma 

dynamics let the dynamic let the Lyapunov function candidate be 𝑉 =
1

2
𝜎2. 
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We must note that the selection of the Lyapunov function candidate not only allows us to 

have the analysis of the stability, but also it helps us in designing the controller. So, here 

𝑉 = 𝜎 = 𝜎(𝑥1, 𝑥2) = 𝑥2 + 𝑐𝑥1 for the asymptotic convergence the following conditions 

must be satisfied. First is: 𝑉 must be positive definite and the second condition is as 𝜎 

tends to infinity the value of V must also be infinity. And, the third condition is the 𝑉̇ ≤ 0 

for asymptotic stability. That is for asymptotic stability 𝑉̇ < 0. 
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But, for finite time convergence we modify the condition 3 by  

𝑉̇ ≤ −𝛼𝑉
1
2⁄ . Where 𝛼 is a positive constant, positive value. Thus, instead of 𝑉̇ ≤ 0  we 

take this condition so, that we conform finite time convergence. That is 𝑉̇ ≤ −𝛼𝑉
1
2⁄  will 

lead to finite time convergence. So, we have the derivation here in such a way that 

 
𝑑𝑉

𝑑𝑡
≤ −𝛼𝑉

1
2⁄  which implies I am just changing 

1

𝛼
𝑉
−1

2⁄ 𝑑𝑣 ≤ −𝑑𝑡. So, integrating both 

sides gives 

1

𝛼
∫ 𝑉

−1
2⁄ 𝑑𝑣

0

𝑣(0)

≤ −∫ 𝑑𝑡
𝑡𝑓

0

 

This integration has been taken by this x axis is t and y axis is the 𝑣 value. So, 𝑣 value 

initially is 𝑣(0). Finally, it is going to be 0 and t finally, say 𝑡𝑓 so, that is value from here 

it comes down to 0 value at time 𝑡𝑓, goes this way and it goes this way. So, the initial value 

of 𝑣 is 𝑣(0) and final value is 0. Similarly, t varies from 0 to 𝑡𝑓 that is the thing; which 

leads to after simplifying this 𝑡𝑓 ≤
2

𝛼
𝑣(0)

1
2⁄ , where 𝛼 > 0 . So, we see that 𝑡𝑓 is not infinity 

whereas; it is a value which is a finite value which implies that 𝑡𝑓 is the finite value so, 

that 𝑣 gets converged in that finite time. 
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We have to design a controller u. Controller u has to be designed now. So, that this drives 

𝜎⁡variable to 0 and infinite time that is, it drives we need to design a controller u so, that it 

drives the variable 𝜎 to 0 in finite time and we will keep it in 0 thereafter. And, we will 

keep the variable in 0 thereafter. So, now, we will focus in the design of controller u. First 

of all the 𝜎 dynamics must include the control law u that is; what we have the 𝜎 dynamics 

is? 𝜎̇ = 𝑥̇2 + 𝑐𝑥̇1  which implies 𝑢 = 𝑓(𝑥1, 𝑥2, 𝑡) + 𝑐𝑥2. Now, we know that 𝑉̇ = 𝜎𝜎̇. So, 

𝑉̇ = 𝜎(𝑢 + 𝑓(𝑥1, 𝑥2, 𝑡)) + 𝑐𝑥2. So, this is the thing and which implies after getting 𝑐𝑥2 

getting cancelled so, we have 𝑢 = −𝑐𝑥2 + 𝑣 where 𝑣 is a new variable ok. So, we assume 

𝑢 = −𝑐𝑥2 + 𝑣 so, we get 𝑉̇ = 𝜎(𝑓(𝑥1, 𝑥2, 𝑡) + 𝑣). 
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Since, 𝑓(𝑥1, 𝑥2, 𝑡) ≤ 𝐿 > 0, which is a positive value. So, we have 𝑣̇ ≤ 𝜎𝐿 + 𝜎𝑣. 

Selecting the new variable 𝑣 = −𝜌𝑠𝑖𝑔𝑛(𝜎), we have 𝑣̇ ≤ |𝜎|𝐿 − |𝜎|𝜌. Thus, 

 𝑣̇ ≤ |𝜎|(𝐿 − 𝜌) say equation 1.  

Considering now, considering 𝑉 =
1

2
𝜎2 and 𝑉̇ ≤ −𝛼𝑉

1
2⁄ . 
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We get from the V value we get a 𝜎2 = ±√2𝑉  which implies =
|𝜎|

√2
. Thus, we can say that 



𝑉
1
2⁄ =

|𝜎|

√2
. So, 𝑉̇ becomes 𝑉̇ ≤ −𝛼

|𝜎|

√2
 , which is say equation 2. Now, equating equation 

1 and 2 −𝛼
|𝜎|

√2
= |𝜎|(𝐿 − 𝜌).  (Refer Slide Time: 18:52) 

 

Therefore, the control gain 𝜌 of the discontinuance controller is given by 𝜌 = 𝐿 +
|𝜎|

√2
  

which is nothing, but the gain of the discontinuous control part. Therefore, final control 

law 𝑢 = −𝑐𝑥2 − 𝜌𝑠𝑖𝑔𝑛(𝜎). 𝜌 = 𝐿 +
|𝜎|

√2
 . This is the constant, L is a constant, 𝛼⁡is a 

constant so, 𝜌 will become a constant. So, the first term so, the first term of rho equation 

is responsible for the disturbance and the second term is responsible for finite time 

convergence. 
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Now, let us see that through simulations having designed the controller we see through 

simulations what happens with the initial conditions on the values of 𝑐 and 𝜌 taken by 1.5 

and 2. Thus, with the same example of the single dimension motion of the mass with states 

𝑥1 and 𝑥2with the disturbance sin⁡(2𝑡), how asymptotic convergence of these state 

variables are obtained. With this control law which is  𝑢 = −𝑐𝑥2 − 𝜌𝑠𝑖𝑔𝑛(𝜎), we get the 

asymptotic stability of the states as seen in the figure. 
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Next what happens to the state to the variable that is a sliding variable? How it is 

converging in the time domain? We are seeing in finite time convergence, as you can see 

that it is getting converged in the finite time to 0. The sliding variable sigma is converged 

to the equilibrium point 0 at the finite time tf which is much close to 0.25 seconds as can 

be seen here in this figure. 
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Next we are seeing that convergence of the state variables from the initial case 𝑥1(0) =

1⁡𝑎𝑛𝑑⁡𝑥2(0) = −2, we have from started from this trajectory that is the reaching trajectory 

after reaching it goes to the sliding surface, that is here this phase is called reaching phase 

of the system states. And, this phase is called sliding phase of the system states.  

Once this sliding surface is like this it continues. So, once the system state trajectory 

reaches the sliding surface it, the sliding surface is designed in such a way that the system 

state trajectory will be reaching the equilibrium point. That is a theory behind this sliding 

mode control. 
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Now, what happens to the control input value? So, you can see that initially the control 

signal is with 5, who is the value and it can come as the time increases it has this value 

which is having certain chattering problem, chattering that is the control law is the one 

which stabilizes the system to converge to asymptotic stability. But, the control law is 

having chattering and the chattering can be addressed in the higher order sliding mode 

involving super twisting algorithm and other approaches. 
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And finally, now, coming to the conclusions; we say that in this lecture we have started 

with the second order system and we have converged it asymptotically when the 

disturbance is not given. Once the disturbance is given, the conventional controller says 

for example, the state feedback controller brings the system to the bound of, a bounded 

domain in such a way that it cannot converge to 0. Whereas, in the designed sliding mode 

controller having two phases: one is the reaching phase and the sliding surface phase and 

sliding phase. 

By these two phases this sliding mode controller confirms that the system states can be 

reaching the convergence point, reaching the stable point asymptotically by finite time 

convergence of the variable sigma which is a sliding variable. And, two designs are to be 

considered in the sliding mode controller. One is the design of the control law u so, that 

the system can be robust to the given input and design of the surface that is a sliding surface 

so, that the asymptotic stability of the system state variables is confirmed. 

These are the two conditions to be considered while considering the sliding mode 

controller. So, in this lecture we have seen the sliding mode control basics, we started with 

the controlling single dimensional motion, single dimensional motion of a 2 degrees of 

freedom system, second order system. So, that the system under state feedback controller 

can be made to get asymptotically converged when the disturbance is 0, once the 

disturbance is given the system could bring it to the domain, bounded domain of the 

disturbance. So, that the asymptotic convergence is not possible with state feedback 

controller. 

So, sliding mode controller has to be designed. So, that two design conditions has to be, 

have to be considered. One is the design of the control u so, that it can bring the system to 

the sliding phase like it should bring through reaching phase, it should bring the system to 

the sliding surface. Once the sliding surface is reached by the design of the sliding surface 

we could assure that the system states can be converged to the equilibrium point in 

asymptotic time, that is in as a time increases the system states will be converged to 0 by 

the design of the sliding surface. 

So, this is as an example we can simply think about a simple example for the sliding mode 

control logic, it is in such a way that when you throw a ball in a open space the ball will 

not go to the particular equilibrium point. Because, we are throwing it from any initial 



point, but once we consider a sliding surface which is like a channel that will end up in the 

equilibrium point so, our main aim is to bring the ball to the initial point of the channel so, 

that the channel will take the ball to the converging equilibrium point; so, this is how. 

The channel here in this sliding mode controller is basically the sliding surface where we 

denote it as sigma equal to 0, this is sliding surface that will bring the system trajectory to 

equilibrium point. So, our aim is to by reaching phase we bring the system state to the 

sliding surface initial point, once it reaches the sliding surface after completing the 

reaching phase then the sliding surface will make the system trajectory to get converged 

in the equilibrium point asymptotically. That is all about this lecture. 

Thank you very much. 


