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Lecture – 20
Neural Network Based Control for Robot Manipulators

In this lecture we shall see how Neural Network Based Controllers can be designed for a

Robot Manipulator to track desired trajectories under uncertainties and disturbances. So, the

so, let us consider the kinematic model which can be written as x is equal to f of q.

(Refer Slide Time: 00:41)

So, here x denote the Cartesian position and orientation of the robot end effector and q which

is equal to q 1 q 2 q n vector denotes the joint variables. So, for example, if we take a 2 omp

manipulator with angles we can call it as q 1 and q 2 and the Cartesian axis are x 1 and x 2.



We can write the kinematics equation as x 1 is equal to l 1 cos of q 1 plus l 2 cos q 1 plus q 2

x 2 equal to l 1 sin q 1 and l 2 sin of q 1 plus q 2. 

So, here we can write x to the x 1, x 2 and q to be q 1 and q 2 and this function we can call it

as f 1 of q and this is f 2 of q. So, we can write it as x is equal to f of q where f equal to f 1 f 2

vector and x is x 1 x 2 vector. So, it is a kinematic model for the 2 omp manipulator. 
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And, now if we differentiate this equation with respect to time: we get the Cartesian velocity

x dot in terms of the joint velocity q dot. So, here again x dot represent x 1 dot x 2 dot

etcetera x n dot the velocity of the end effector it contains position and orientation of the end

effector and q dot denotes the joint velocity, where this J represent the Jacobian of the

manipulator. So, in the previous example if we see that we can write x 1 dot is equal to l 1 cos



theta 1. If we differentiate will get minus sorry cos q 1 if we differentiate we will get sin q 1

into q 1 dot minus l 2 sin q 1 plus q 2 multiplied by q 1 dot plus q 2 dot.

Similarly, x 2 dot can be written and this can be written as x 1 dot x 2 dot vector can be

written as a 2 by 2 matrix multiplied by q 1 dot q 2 dot, where the 2 by 2 matrix contains this

coefficients minus l 1 sin q 1 minus l 2 sin q 1 plus q 2 that is multiplied by q 1 dot etcetera.

So, the four coefficients can be written in the matrix which forms the Jacobian of the 2 omp

manipulator. So, this is a general one for any robot manipulator we can write x dot equal to

Jacobian into q dot form.

Now, if J is a 2 n by n matrix then J inverse can be calculated, but if J is not a, it is not a

square matrix then we can find the pseudo inverse of the Jacobian. So, the J plus denote the

pseudo inverse which can be calculated by this expression, this is especially in the case of if J

is a matrix of size. It is n cross m where m is greater than n. So, in the case of redundant

manipulators we can write and if m is equal to n J plus denotes the inverse of the matrix J, the

usual inverse of the matrix.

So, the J plus is denote defined as J transpose multiplied by J J transpose whole inverse

provided the inverse exist for the J J transpose. And, here because n is less than or equal to m.

J J transpose is a n cross m matrix and we can find the inverse of the square matrix and we

can calculate J plus. And, it can be easily verified that J into J J plus will give the identity

matrix from the expression 5 itself we can see that J J plus is identity matrix.
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So, now we consider the dynamic equation of the robot manipulator for a given manipulator

we have seen how to derive the dynamic equation using the Euler Lagrange equation. And,

here M represents the inertia matrix, V is the centrifugal and Coriolis term, g represent the

gravity term. And, the disturbance which occurs during the motion of the robot manipulators

are denoted by F and the T suffix d the disturbance. External disturbance is denoted by T

suffix d and the friction due to the manipulator itself is denoted by F q function and the tau

denotes the torque applied at the joints of the manipulator.

So, this F term and the T suffix d terms are unknown because they are all disturbances or the

friction terms, but we know that in the real life situation all these disturbances are in most of

the time they are small in size. So, they are all bounded by certain constant. Here these are all

vectors F is a vector and T suffix d is a vector the disturbance terms and the norm of those

vectors can be bounded by certain constant. And, we also know that the matrix M, the matrix



which is the inertia matrix satisfies this property because the entries of the inertia matrices are

all bounded below and above.

So, we can write the property that for any vector xi in R n xi transpose m into xi, it is a real

number that is bounded above and below by this types of constants where m 1 and m 2 are

suitable values we can easily find.
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And, we can also see that the matrix M if we differentiate with respect to time and half d M

by d T minus the centrifugal term. It is a skew symmetric matrix, in other words if we take

any vector xi in R n xi transpose of this into xi will always be equal to 0.

So, the xi transpose is 1 cross n matrix and this whole thing is a n cross n matrix and this is n

cross 1. So, this is a single number real number which is equal to 0, when we operate with



any arbitrary xi. That is the property of the skew symmetric matrix and M half M dot minus V

always satisfies this particular property.
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Now, let us consider the desired Cartesian trajectory is given by x suffix d. It is a function of

as t changes the x d changes, it is a vector function and x of d is the current position of the

end effector. So, the error is denoted by e and it is x d minus the desired trajectory minus the

current trajectory of the robot end effector. Now, if you differentiate e we will get x d dot

minus x dot and we add and subtract a term alpha times e, where alpha is a positive constant,

sorry alpha is a m cross m matrix which is a positive definite matrix. 

For example, we can take a diagonal matrix with positive numbers as the alpha matrix and

that is a positive definite matrix. Then e dot can be written in this particular form. So, here we

see that e dot is equal to minus alpha e is here and the remaining terms that is J J plus is



identity. So, the first term is x d dot plus alpha e those terms are here x d dot plus alpha e is

here by multiplying this, and then minus J q dot is here. So, all the terms are rewritten in this

particular form. Now, if we denote this J plus x d dot plus alpha e as r vector. 
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Then we can write the equation 10 as simply, if we write r is equal to J plus into x d dot plus

alpha e minus q dot sorry the whole thing as r, then we will get e dot is written as minus alpha

e plus J times r. So, that is very easy to verify from the previous.
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Now, if you substitute, if you write the entire equation in terms of r. So, r is denoted by J plus

x dot suffix d plus alpha e minus q dot as we have seen earlier. And, then if we convert the

and the dynamic equation is also written in this particular form as we have already seen. Now,

what we do is we will write the dynamic equation in terms of r only, if we see that q dot is the

from this equation we will get q dot is nothing, but J plus x d dot plus alpha e minus r.

So, now, if we differentiate one more time we will get q double dot from this equation and

then if we substitute in this equation 13, the q double dot value from here we can rewrite the

whole equation in terms of r and its derivative. So, equation 13 can be converted into this

equation M into r dot can be written as minus V time r. This V is there and we can convert it

into this form plus h y. 



We are introducing a new term h y here minus tau plus T suffix d which is already available

here. This, if we take the tau term in the left hand side we will get minus tau plus T suffix d.

So, this term can be verified directly by taking q double dot and substituting in this equation

we get this arrangement, where the newly introduced term h of y is nothing, but this particular

term. 

So, how to check this particular thing? Substitute this h of y in this equation directly and then

check that we will get the equation 13 directly. So, now this y variable is nothing, but a vector

which contains x d transpose x d dot transpose x d double dot transpose e transpose and e dot

transpose. For example, if we write x d it is a vector and x d transpose is a called a row

vector.

So, whatever has been written here inside the bracket are all row vectors and then when we

take the transpose of the whole thing, it becomes a column vector. So, y is a column vector

whose size is because e e dot x d all of them have size n. If they are all belonging to r n space

and there are 5 such components. So, it is nothing, but this belongs to R 5 times n. 

The numbers the coordinates of y are of the size 5 n components are there for this thing. Now

so, h of y is written in this particular expression, our aim is to because the error is to we want

to make this error 0 e. So, our aim is to make the error tending to 0 as T becomes larger and

larger during the tracking.
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So, how to use neural network for this purpose? We can design a controller if there is no

disturbance term. This F term and T suffix d terms are not there in the equation or we say that

it is a ideal situation. There is no disturbance then we know the dynamics of the equation and

we can find a controller using some simple PD or PID controller as we have seen using the

Lyapunov theory.

Here also we will use Lyapunov theory, but due to how to avoid this disturbance terms that is

what we will see using artificial neural network. So, we have already seen what is artificial

neural network in the previous lecture. So, x i’s are the input and y i’s are the output and the

hidden layer is having this mu 1 mu 2 this values. So, there are here 4 inputs and 3 hidden

layer neurons and 2 output neurons.



(Refer Slide Time: 16:31)

So, and we have seen that how to write the relation between the input and the output. So, this

sigma denotes the sigmoid function which we can take it one of the examples of sigmoid

function is sigma of any variable z is 1 by 1 plus e power minus z; its one of the sigmoid

function. So, using this we can write the relation the v i j are the v i j for example, v 1 1 is the

weight joining this first neuron, first input to the first hidden layer neuron etcetera. So,

similarly the w 1 1 denotes the relation between the hidden layer to the output neuron. 
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So, that relation is written like this. So, output y k has this particular term and where w j k

and v i j all denotes the weights connecting various neurons. And, now this expression can be

written in the matrix form like this if we denote the V matrix to be v i j and W matrix to be w

j k as given here. 

We can write capital Y, capital Y is nothing, but y 1, y 2 etcetera y m. This vector it is equal

to W transpose this one into sigmoid function at the value V transpose X where capital X

denotes the vector x 1, x 2, x n. So, using this expression neural network expression we can

approximate any given function of x 1, x 2, x n.
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So, if f is a continuous function from R n to R m. So, function of n variables and its value is a

vector in R m. Then that function can be approximated by a neural network of the form given

in C equation C.

So, for any small value epsilon given we can find a neural network. So, that the difference

between f of X and the neural network is very small; the given small value can be obtained.

So, this is the famous theorem from the neural network approximation property for

continuous functions.
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Now, we can note that the disturbance which is occurring the friction or the external

disturbance is during the tracking, they are assumed to be a continuous function. And we say,

assume that it can be approximated by a neural network in this particular form as given in the

expression C. So, now let us assume that the control tau, the torque tau is selected in this

particular form where h cap of y is the estimate of the h of y. 

That is h of y is the disturbance which we have seen in the expression which we have

introduced here. So, this contains the disturbance terms f the estimate of h of y using a neural

network is written in the form like this, h cap equal to W cap transpose sigmoid function V

cap transpose y. So, here capital T denotes the transpose of the matrix W cap. So, I think we

can change here also here also we can write the W T denotes the transpose.



So, h cap is the estimate of the h of y using a neural network expression. So, using the feed

forward neural network function approximation we can write the equation as given here as M

r dot equal to minus V r is here minus K r is here and h tilde is nothing, but the h value minus

the estimate h cap. 
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Now we can see that adding and subtracting W transpose sigma V cap transpose of y, in this

expression we note here W and V are appearing in one term, W cap and V cap are appearing

in the second term in this 2 terms. Now, we are just making a combination W transpose sigma

V cap transpose y. This one we are adding and subtracting and then combining those terms

we will get the next term like this. 

Only we are changing the first and second terms are as it is and the last terms were also as it

is we are because we are adding and subtracting we will get the terms to be in this particular



form. Now, we note that sigma V transpose y. So, sigma V transpose y it is a function of the

and v i j cap are the estimated values of the beats. So, if we write the sigma V transpose y as a

Taylor series expansion about this estimated values.

So, we can write it as sigma V cap transpose y plus the first derivative of this function at this

point V cap transpose y multiplied by the V transpose y minus we estimate this thing. So, for

example, if we take a Taylor series expansion of a function f of x about a point 0 x 0, we will

get f of x equal to f of x 0 plus f dash of x 0 into x minus x 0 plus etcetera. So, these are the

higher order terms. So, similarly sigma V is a function V is a matrix here and we are finding

the Taylor series about the V cap matrix plus its derivative term at the V cap and the

difference between the v matrix and the V cap matrix terms.

So, we get V tilde T here and the higher order terms and we can omit the higher order terms

and we can denote using this notations we can write the further terms. So, M r dot finally, can

be converted into this particular form using this Taylor; if we substitute for example, sigma V

transpose y for this term. So, this and this will get subtracted and we will get sigma dashed V

cap transpose y, this is a matrix. When we differentiate a vector then we will get a matrix

expression into V tilde y as we have seen here plus the remaining terms are as it is.
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So, further simplifying this expression we will get the terms M r dot to be in this particular

form. Now, what we want is to find the W cap and V cap, h of y itself is not known because it

contains some disturbance. We want to estimate this unknown function using neural network.

So, our aim is to find this W cap and V cap using some technique. 

So, we have to follow a weight updation algorithm and as we have seen that all this functions

which are involved in this disturbances and whatever expression we are finding they are all

bounded. So, we can find a suitable constant p 1 which is bounding this particular expression

which is appearing in the equation.
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So, we take p 1 as a bound, this can be taken to be a big number for example, we can take it

to be 10 or 15, 20 any number depending on the situation. A particular robot manipulator or

particular situation whether the situation has more disturbance or less disturbance etcetera; we

can define or a priory estimate of this bound can be assumed to be a particular value.

Now, we will design this v expression which is appearing in the equation here. We have

introduced this v expression in the equation before. So, everywhere we can see this equation

in the dynamics of the, we have selected the control tau to be like this h cap y minus K r plus

J transpose e plus v. So, this is also called a design parameter which we want to design in

such a way that the disturbances are removed. So, the design parameter v is selected to be

like, this p 1 constant we are assuming and in the previous slide this is a bound for this norm

of w.



And, r is the vector which we have already introduced and the denominator we are

introducing p 1 into norm of this vector r plus delta. So, this delta is taken to be a differential

equation delta dot that is d delta by d t equal to minus gamma delta with the assumption that

gamma this delta of 0 is positive number and gamma is a positive constant. So, we can easily

see that if you solve this equation we will get delta of t is nothing, but e to the power minus

gamma t into delta of 0. So, if delta of 0 is positive number as t becomes larger and larger e to

the power minus gamma t is becoming smaller and smaller it will tend to 0 as t tends to

infinity.

So, that is the aim of selecting this delta. Delta becomes 0 as t tends to these are all function

of t. So, that is how we select the function delta. Now, we substitute all this in the end. So,

that the tracking is done in a proper way by avoiding all the disturbances by learning the

disturbances using neural network. So, how to learn the weights? How to update the weights

as the time progresses?
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So, we assume that the W cap is updated in this particular way as given in this equation W

cap dot the derivative d by d t of W cap that is given by this expression and V cap dot is given

by this expression; where this F matrix G matrix, they are all positive definite matrices. So,

for simplicity we can take all these matrices to be a diagonal matrix with positive constants

positive real numbers. And, this sigma cap sigma cap dash all these are defined already in this

slide, here sigma dashed is defined like this, sigma cap is this and sigma cap dashed is

denoted by this expression. 

So, by substituting these expressions we see that there is a weight updation algorithm, this is

called weight updation algorithm. So, as the time progresses we can keep on updating the

weight using this particular procedure and how to prove that this particular procedure gives a

correct weight for tracking the desired trajectory.
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So that can be seen here, we take a Lyapunov function L to be in this particular form, you can

see that all of them are positive terms e transpose e it is nothing, but norm of e square. And,

this one is a positive term because M is a positive definite matrix and here F is a positive

definite matrix therefore, this is a positive value. The trace, trace means the sum of the

diagonal of this matrix all of them are positive values here also all these terms. Already we

have seen that delta is a positive function and gamma is a positive number.

So, each and every term here all of them are positive values and at the 0 values, when we

substitute all of them the e because it is a function of e r w tilde and v tilde etcetera. So, all

the functions which are given here are positive and when we put all of them to be 0 we get the

l value to be 0 at the origin. Now, we differentiate this with respect to time d L by d t and then

substitute in the place of e dot in the place of r dot and then in the place of W cap dot and in



the place of V cap dot etcetera all the terms which we have already introduced in the previous

slides.

So, substituting all the derivatives similarly delta dot also in the previous slide we have seen,

all the substitutions and properly making use of the trace property. Trace of a matrix a is

nothing, but sum of the diagonal elements now we can make use of one property. So, if we

take r transpose s; where r is let us say vector r 1, r 2, r n. So, r transpose is a row vector and

if s is s 1, s 2, s n. So, we get a column vector s here. So, r transpose s denotes r 1 s 1 plus r 2

s 2 etcetera. So, it is same as the trace of s and r transpose. If we take s is the column vector

and r transpose is row vector, if we multiply will get a matrix.

And if we take the sum of the diagonal of this matrix it is same as nothing, but r transpose s

itself. 
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So, this property we will use here. So, they will get canceled automatically, many terms will

get cancelled finally, we will get we are left with only terms like this. The derivative L dot is

nothing, but minus e transpose alpha e like this and then minus r transpose K r. And, after

canceling out all the terms using this particular property we get remaining terms to be only

this much, these are the few terms and we are assuming that v is selected like this. 

And, then if you cross multiply with these terms further it is canceled norm of r square into p

p 1 square is canceled with r transpose r is nothing, but norm of r square. So, and multiplied

by p 1 square so, that is canceled here and we finally, get the terms to be sorry like this. L dot

we will get only this much, it is less than or equal to minus e transpose alpha e minus r

transpose K r.
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So, this is nothing, but minus of e transpose alpha e plus r transpose K r. So, this is a positive

term because alpha and K both are positive definite matrices. So, these two are positive value

with a minus sign. So, we have that L is positive definite, L dot is negative definite strictly

less than 0.

So, this implies the system is asymptotically stable using the Lyapunov theory. So, what we

get here is because of the Lyapunov theory we get the system which we have considered

originally. The control system M r dot equal to minus V r plus h of y minus tau plus T suffix

d with this disturbance and the control is tau is controlled. And, it tracks the desired trajectory

using the control defined by this expression as given here and the neural network weights.

Because, the control involves a neural network expression and the weights are updated using

this updated updating algorithm. And, we have proved that the system is asymptotically stable

if we apply that particular control and hence it proves that the system tracks the desired

trajectory successfully. As T progresses the trajectory is tracked. So, this is a lengthy

procedure, even if we take a very simple example of a two link manipulator this may be a

very complicated procedure. 

And, this can be demonstrated only using a computer program suitably written for a neural

network updating algorithm and assuming a particular function for the disturbance and then

proving that the disturbances is avoided using the neural network etcetera. 

So, with this I complete the lecture on the neural network based controller design.

Thank you. 


