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Lecture — 20
Neural Network Based Control for Robot Manipulators

In this lecture we shall see how Neural Network Based Controllers can be designed for a
Robot Manipulator to track desired trajectories under uncertainties and disturbances. So, the

so, let us consider the kinematic model which can be written as x is equal to f of q.
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Kinematic Model

* The end-effector position and orientationin the task-space denoted by x =
[x) Xy .. )", is defined as
- x=f(q) (1)
where f(q) € R™ denotes the direct kinematics and

7 =[4; g2 ..4a)" € R™(m < n) denotes the joint position vector of an N,
Iinkftn_bdt_manipulator.
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So, here x denote the Cartesian position and orientation of the robot end effector and q which
is equal to q 1 q 2 q n vector denotes the joint variables. So, for example, if we take a 2 omp

manipulator with angles we can call it as q 1 and q 2 and the Cartesian axis are x 1 and x 2.



We can write the kinematics equation as x 1 is equalto 1 1 cos of q 1 plus12 cos q 1 plus q 2

x2equaltol 1sinqlandl2sinofq]l plusq2.

So, here we can write x to the x 1, x 2 and q to be q 1 and q 2 and this function we can call it
as f 1 of q and this is f 2 of q. So, we can write it as x is equal to f of q where fequal to f 1 2

vector and x is X 1 x 2 vector. So, it is a kinematic model for the 2 omp manipulator.
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Kinematic Model

[
Differentiating (1) with respect to time yields 7. l ‘k
=0)G e (2)
The manipulator Jacobian, denoted by (q) € R"™" is defined as follows Ar . .j
af(q) PRI
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+  One solution of equation (2] is 2 : J_,Su'
g=/Mg s (4) =
+ where |* denotes the pseudo-inverse of | and+ e - . '
following manner: [ , - . "L
. *i :
such that: i )7 \ i
'5 ‘bﬂ‘ 70- Jt=1y. (6) -
™ - /s

HPILL SN
. QKL CINPICATION COUISE

And, now if we differentiate this equation with respect to time: we get the Cartesian velocity
x dot in terms of the joint velocity q dot. So, here again x dot represent x 1 dot x 2 dot
etcetera x n dot the velocity of the end effector it contains position and orientation of the end
effector and q dot denotes the joint velocity, where this J represent the Jacobian of the

manipulator. So, in the previous example if we see that we can write x 1 dot is equal to 1 1 cos



theta 1. If we differentiate will get minus sorry cos q 1 if we differentiate we will get sin q 1

into q 1 dot minus I 2 sin q 1 plus q 2 multiplied by q 1 dot plus q 2 dot.

Similarly, x 2 dot can be written and this can be written as x 1 dot x 2 dot vector can be
written as a 2 by 2 matrix multiplied by q 1 dot q 2 dot, where the 2 by 2 matrix contains this
coefficients minus 1 1 sin q 1 minus 1 2 sin q 1 plus q 2 that is multiplied by q 1 dot etcetera.
So, the four coefficients can be written in the matrix which forms the Jacobian of the 2 omp
manipulator. So, this is a general one for any robot manipulator we can write x dot equal to

Jacobian into q dot form.

Now, if J is a 2 n by n matrix then J inverse can be calculated, but if J is not a, it is not a
square matrix then we can find the pseudo inverse of the Jacobian. So, the J plus denote the
pseudo inverse which can be calculated by this expression, this is especially in the case of if J
is a matrix of size. It is n cross m where m is greater than n. So, in the case of redundant
manipulators we can write and if m is equal to n J plus denotes the inverse of the matrix J, the

usual inverse of the matrix.

So, the J plus is denote defined as J transpose multiplied by J J transpose whole inverse
provided the inverse exist for the J J transpose. And, here because n is less than or equal to m.
J J transpose is a n cross m matrix and we can find the inverse of the square matrix and we
can calculate J plus. And, it can be easily verified that J into J J plus will give the identity

matrix from the expression 5 itself we can see that J J plus is identity matrix.
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Dynamic Model

The dynamics model for an n-link robot manipulator can be described as:
M@q+V(q.q)q+6(q) + (@ +Ty=1

where M(q) € R™" represents the inertia matrix, V(q, §) € R™" representsthe

centripeta{-cnrio\is matrix, G(q) € R" represents the gravity effects, F.(q) €

R™ represents the friction effects, T; € R™ is a vector of unknown but bounded

external disturbances or unmodeled dynamics effectsand 7 € R™ representsthe

torque input vector, The robot dynamics given above has the following useful

properties:

*  Property 1. The inertia matrix M(g) is symmetric, positive definite and satisfiesthe
following inequalities:

m €12 < EM(g)§ < mylé)F £ ER”
where m1, m2 are positive constants, and ||. | denotes the standard Euclidean norm.
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So, now we consider the dynamic equation of the robot manipulator for a given manipulator
we have seen how to derive the dynamic equation using the Euler Lagrange equation. And,
here M represents the inertia matrix, V is the centrifugal and Coriolis term, g represent the
gravity term. And, the disturbance which occurs during the motion of the robot manipulators
are denoted by F and the T suffix d the disturbance. External disturbance is denoted by T
suffix d and the friction due to the manipulator itself is denoted by F q function and the tau

denotes the torque applied at the joints of the manipulator.

So, this F term and the T suffix d terms are unknown because they are all disturbances or the
friction terms, but we know that in the real life situation all these disturbances are in most of
the time they are small in size. So, they are all bounded by certain constant. Here these are all
vectors F is a vector and T suffix d is a vector the disturbance terms and the norm of those

vectors can be bounded by certain constant. And, we also know that the matrix M, the matrix



which is the inertia matrix satisfies this property because the entries of the inertia matrices are

all bounded below and above.

So, we can write the property that for any vector xi in R n xi transpose m into xi, it is a real
number that is bounded above and below by this types of constants where m 1 and m 2 are

suitable values we can easily find.
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* Property 2. The inertia and centripetal-coriolis
matrices satisfy the following skew-symmetric

relationship: —
1. ‘
¢ (EM(q) = V(q,q))f =0 Y{eR"
s AT =

where M(q) denotes the time derivatives of the
inertia matrix.
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And, we can also see that the matrix M if we differentiate with respect to time and half d M
by d T minus the centrifugal term. It is a skew symmetric matrix, in other words if we take

any vector xi in R n xi transpose of this into xi will always be equal to 0.

So, the xi transpose is 1 cross n matrix and this whole thing is a n cross n matrix and this is n

cross 1. So, this is a single number real number which is equal to 0, when we operate with



any arbitrary xi. That is the property of the skew symmetric matrix and M half M dot minus V

always satisfies this particular property.
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Error System Formulation

+ Ouraim is to develop a control torque input 7(t) in such a way that the
robot end-effector follows a desired trajectory as closely as possible.

+ The task-space tracking error, e(t) € R™ is defined as follows: W
=Xy =X (7) %
where x; € R™ represgnts the desired task-space trajectory.
+ Take the time derivative and then substituting % from (2), we obtain:
e=xgtae—ae—Jq.....(9)
where_a € R™™ represents a diagonal, positive definite gain matrix.
Simplifying we obtain -
é=-ae+)(J*(tg+ae)=q).......(10)

-

= WP GbLINE
. Lbe CHMACATION COURSE

Now, let us consider the desired Cartesian trajectory is given by x suffix d. It is a function of
as t changes the x d changes, it is a vector function and x of d is the current position of the
end effector. So, the error is denoted by e and it is x d minus the desired trajectory minus the
current trajectory of the robot end effector. Now, if you differentiate e we will get x d dot
minus X dot and we add and subtract a term alpha times e, where alpha is a positive constant,

sorry alpha is a m cross m matrix which is a positive definite matrix.

For example, we can take a diagonal matrix with positive numbers as the alpha matrix and
that is a positive definite matrix. Then e dot can be written in this particular form. So, here we

see that e dot is equal to minus alpha e is here and the remaining terms that is J J plus is



identity. So, the first term is x d dot plus alpha e those terms are here x d dot plus alpha e is
here by multiplying this, and then minus J q dot is here. So, all the terms are rewritten in this

particular form. Now, if we denote this J plus x d dot plus alpha e as r vector.
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Error System Formulation

* We define a filtered tracking error signal,r(t) €
R™ as follows:

r=/ " tae) =g ... (11)

* Therefore, the closed loop task-space position
tracking error system can now be written in the
final form:

6= e+ )1 (12)

Then we can write the equation 10 as simply, if we write r is equal to J plus into x d dot plus
alpha e minus q dot sorry the whole thing as r, then we will get e dot is written as minus alpha

e plus J times r. So, that is very easy to verify from the previous.
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Error System Formulation
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On differentiating (11), substituting in (13) the robot dynamics can be written in terms of r as: |
Mi- = =Vr {h() = 1+ Ty T

where — ’J

L - . e 1.
hy) = M50 )] VG a0 60+ E0) () 4
— . . T -
is termed as rebot nonlinear function and we may choose y = [if & x e é7 | & K
+  During the controller development, we will make the assumption that the kinematic singularities

are always avoided and the terms x4, x4, ¥,M(q),V(q,9),G(q), 4./ (q) and [*{g)are all

bounded.
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Now, if you substitute, if you write the entire equation in terms of r. So, r is denoted by J plus
x dot suffix d plus alpha e minus q dot as we have seen earlier. And, then if we convert the
and the dynamic equation is also written in this particular form as we have already seen. Now,
what we do is we will write the dynamic equation in terms of r only, if we see that q dot is the

from this equation we will get q dot is nothing, but J plus x d dot plus alpha e minus r.

So, now, if we differentiate one more time we will get q double dot from this equation and
then if we substitute in this equation 13, the q double dot value from here we can rewrite the
whole equation in terms of r and its derivative. So, equation 13 can be converted into this
equation M into r dot can be written as minus V time r. This V is there and we can convert it

into this form plus h y.



We are introducing a new term h y here minus tau plus T suffix d which is already available
here. This, if we take the tau term in the left hand side we will get minus tau plus T suffix d.
So, this term can be verified directly by taking q double dot and substituting in this equation
we get this arrangement, where the newly introduced term h of y is nothing, but this particular

term.

So, how to check this particular thing? Substitute this h of y in this equation directly and then
check that we will get the equation 13 directly. So, now this y variable is nothing, but a vector
which contains x d transpose x d dot transpose x d double dot transpose e transpose and e dot
transpose. For example, if we write x d it is a vector and x d transpose is a called a row

vector.

So, whatever has been written here inside the bracket are all row vectors and then when we
take the transpose of the whole thing, it becomes a column vector. So, y is a column vector
whose size is because e e dot x d all of them have size n. If they are all belonging to r n space

and there are 5 such components. So, it is nothing, but this belongs to R 5 times n.

The numbers the coordinates of y are of the size 5 n components are there for this thing. Now
s0, h of y is written in this particular expression, our aim is to because the error is to we want
to make this error 0 e. So, our aim is to make the error tending to 0 as T becomes larger and

larger during the tracking.
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Artificial Neural Network

A 2-layer Feed-Forward Network with 4
Inputs and 2 Outputs
INPUT LAYER el
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So, how to use neural network for this purpose? We can design a controller if there is no
disturbance term. This F term and T suffix d terms are not there in the equation or we say that
it is a ideal situation. There is no disturbance then we know the dynamics of the equation and
we can find a controller using some simple PD or PID controller as we have seen using the

Lyapunov theory.

Here also we will use Lyapunov theory, but due to how to avoid this disturbance terms that is
what we will see using artificial neural network. So, we have already seen what is artificial
neural network in the previous lecture. So, x 1’s are the input and y i’s are the output and the
hidden layer is having this mu 1 mu 2 this values. So, there are here 4 inputs and 3 hidden

layer neurons and 2 output neurons.
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Artificial Neural Network

Consider a neural network with n = imput {x, 3 . . .. xy) with [ neuronsin the
hidden layer and m = output {y,,¥; ... .. .. ¥ }.

Let u;; be the weight connectinga’”’ input and j”’ hidden neuron and
vjk be the weight connecting ™ hidden neuron and the k" output neuron.

The value at the j*" hidden layer is given by

hj = ”IE:I:| UU'X(I o an o (A)
where

is a sigmoid function,
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So, and we have seen that how to write the relation between the input and the output. So, this
sigma denotes the sigmoid function which we can take it one of the examples of sigmoid
function is sigma of any variable z is 1 by 1 plus e power minus z; its one of the sigmoid
function. So, using this we can write the relation the v i j are the v i j for example, v 1 1 is the
weight joining this first neuron, first input to the first hidden layer neuron etcetera. So,

similarly the w 1 1 denotes the relation between the hidden layer to the output neuron.

(Refer Slide Time: 17:29)
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Artificial Neural Network

The value at the output yj:k = 1,2,........ mis given by:
Yk = Efi:l Wiih;
e = E;:] Wik {I[E?ﬂ 'f:';'xa] —))

Denoting X = [x; Xy oo X ] and Y = [y ¥z oo '

Vst = [vf} ]"="" and Wy = lek} j=11
=1l k=1,m
Equation (B) can be written as:
F=WalV'X)..w.(l)
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So, that relation is written like this. So, output y k has this particular term and where w j k
and v 1j all denotes the weights connecting various neurons. And, now this expression can be
written in the matrix form like this if we denote the V matrix to be v i j and W matrix to be w

J k as given here.

We can write capital Y, capital Y is nothing, but y 1, y 2 etcetera y m. This vector it is equal
to W transpose this one into sigmoid function at the value V transpose X where capital X
denotes the vector x 1, x 2, x n. So, using this expression neural network expression we can

approximate any given function of x 1, x 2, x n.
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Function Approximation using

Neural Network

Let f@@—(k"‘ e a continuous function defined on a closed and bounded set
L c R, then there exists weight matrices W and V such that f(X) is approximated
using neural network as in equation (C), i.e. for any given e > 0,

—_—

there exists matrices U and V such that:

w-ri<e
where Y is given by Equation (C).
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So, if fis a continuous function from R n to R m. So, function of n variables and its value is a
vector in R m. Then that function can be approximated by a neural network of the form given

in C equation C.

So, for any small value epsilon given we can find a neural network. So, that the difference
between f of X and the neural network is very small; the given small value can be obtained.
So, this is the famous theorem from the neural network approximation property for

continuous functions.
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Neural Network Based Control Scheme with

Adaptive Compensator

* Based on the above error system development, to accomplish the desired motion
trajectory the following controller is proposed:

t=h(y)+Kr+/Te+v 4
where ﬁ(y) is an estimation a robot nonlinear function h(y), K is a positive definite
gain matrix and v is an adaptive compensator defined later.
+  With the controller the closed loop error dynamics becomes L[:’J
Mi=-=Vr=Kr+h(y)-JTe-v+T,; * »
where h(y).= h(y) - h(y) isthé functional estimationerror. The functional ~ _ h
estimation h(y)with a feed-forward neural network (FFNN) may be given asr"L . h
“ h(y) = WTa(VTy) »
Using this FENN functional approximation, we can write
Mi=—Vr—Kr+ WTa(VTy)-WTa(VTy) - JTe-v + T,
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Now, we can note that the disturbance which is occurring the friction or the external
disturbance is during the tracking, they are assumed to be a continuous function. And we say,
assume that it can be approximated by a neural network in this particular form as given in the
expression C. So, now let us assume that the control tau, the torque tau is selected in this

particular form where h cap of y is the estimate of the h of y.

That is h of y is the disturbance which we have seen in the expression which we have
introduced here. So, this contains the disturbance terms f the estimate of h of y using a neural
network is written in the form like this, h cap equal to W cap transpose sigmoid function V
cap transpose y. So, here capital T denotes the transpose of the matrix W cap. So, I think we

can change here also here also we can write the W T denotes the transpose.



So, h cap is the estimate of the h of y using a neural network expression. So, using the feed
forward neural network function approximation we can write the equation as given here as M
r dot equal to minus V r is here minus K r is here and h tilde is nothing, but the h value minus

the estimate h cap.

(Refer Slide Time: 21:39)

Neural Network Based Control Scheme with
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Adding and subtracting W a(PTy), we get: e
M =TT =RE4 W7 (00") = a(P"5)) + Wo0y) = e v+7, ~

The Taylor series expansion ofﬂ{l«”y)a' out ?r}' g'-\rcs us:

a(V y)=o(07y) 40’ (FTy)0"y + 0(VTy)? 1
With — = 73)
a'(d) = ?l,:, and 0(z)* denoting terms of second order,
Denoting d" = a'(I7y) we have: f“"‘ﬂ

d=d"(VTy)+ 0(F"y)2
Mi=-Vr-Kr+ H’T(a[l—”;') +a'(PTy)PTy - a{f’ry]) +WalTy) =[Te-v+Ty
Mi=-Vr-Kr+ l‘l"‘{rr'{l?'y]lr‘"yj +Wa@Ty) -Te-v+T, »

So
Mi = =Vr=Kr+ WTa'({Ty)0Ty + Wa'(PTy) 0Ty + Wa(lTy) = [Te = v +7T,
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Now we can see that adding and subtracting W transpose sigma V cap transpose of y, in this
expression we note here W and V are appearing in one term, W cap and V cap are appearing
in the second term in this 2 terms. Now, we are just making a combination W transpose sigma
V cap transpose y. This one we are adding and subtracting and then combining those terms

we will get the next term like this.

Only we are changing the first and second terms are as it is and the last terms were also as it

is we are because we are adding and subtracting we will get the terms to be in this particular



form. Now, we note that sigma V transpose y. So, sigma V transpose y it is a function of the
and v 1j cap are the estimated values of the beats. So, if we write the sigma V transpose y as a

Taylor series expansion about this estimated values.

So, we can write it as sigma V cap transpose y plus the first derivative of this function at this
point V cap transpose y multiplied by the V transpose y minus we estimate this thing. So, for
example, if we take a Taylor series expansion of a function f of x about a point 0 x 0, we will
get f of x equal to f of x 0 plus f dash of x 0 into x minus x 0 plus etcetera. So, these are the
higher order terms. So, similarly sigma V is a function V is a matrix here and we are finding
the Taylor series about the V cap matrix plus its derivative term at the V cap and the

difference between the v matrix and the V cap matrix terms.

So, we get V tilde T here and the higher order terms and we can omit the higher order terms
and we can denote using this notations we can write the further terms. So, M r dot finally, can
be converted into this particular form using this Taylor; if we substitute for example, sigma V
transpose y for this term. So, this and this will get subtracted and we will get sigma dashed V
cap transpose y, this is a matrix. When we differentiate a vector then we will get a matrix

expression into V tilde y as we have seen here plus the remaining terms are as it is.

(Refer Slide Time: 25:03)
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Adaptive Compensator
Finally adding and subtracting W™ a"(FTy) 7Ty we get:
Mi==Vr=Kr+ W' (VTy)PTy + WTa'(VTy)PTy + WTa(VTy) = JTe - v +T,
T, ~
Mi==Vr=Kr+WTa' Ty + Wo'(FTy)VTy - Wa'(FTy)i Ty + w=JTe-v
where modified disturbance term is: (_;).
w=Wa(lTy)+ W' (Ty)0Ty+T,~ )

such that lw]l , A,

\-'f/
!
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So, further simplifying this expression we will get the terms M r dot to be in this particular
form. Now, what we want is to find the W cap and V cap, h of y itself is not known because it
contains some disturbance. We want to estimate this unknown function using neural network.

So, our aim is to find this W cap and V cap using some technique.

So, we have to follow a weight updation algorithm and as we have seen that all this functions
which are involved in this disturbances and whatever expression we are finding they are all
bounded. So, we can find a suitable constant p 1 which is bounding this particular expression

which is appearing in the equation.
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Neural Network Based Control Scheme with

Adaptive Compensator

* Indisturbance terms w, external disturbances or unmodeled
dynamics T and the higher-order terms in the Taylor series
expansion for o all have exactly the same influence as
disturbances. To eliminate the effect of these disturbances, we
choose the stabilizing adaptive compensator as:

u_plr v
2 palil+ e
where Q_ -y§ with 5(0) >0andyisa prq/snw% constant and o
pyis suitable constant. NOE
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So, we take p 1 as a bound, this can be taken to be a big number for example, we can take it
to be 10 or 15, 20 any number depending on the situation. A particular robot manipulator or
particular situation whether the situation has more disturbance or less disturbance etcetera; we

can define or a priory estimate of this bound can be assumed to be a particular value.

Now, we will design this v expression which is appearing in the equation here. We have
introduced this v expression in the equation before. So, everywhere we can see this equation
in the dynamics of the, we have selected the control tau to be like this h cap y minus K r plus
J transpose e plus v. So, this is also called a design parameter which we want to design in
such a way that the disturbances are removed. So, the design parameter v is selected to be
like, this p 1 constant we are assuming and in the previous slide this is a bound for this norm

of w.



And, r is the vector which we have already introduced and the denominator we are
introducing p 1 into norm of this vector r plus delta. So, this delta is taken to be a differential
equation delta dot that is d delta by d t equal to minus gamma delta with the assumption that
gamma this delta of 0 is positive number and gamma is a positive constant. So, we can easily
see that if you solve this equation we will get delta of t is nothing, but e to the power minus
gamma t into delta of 0. So, if delta of 0 is positive number as t becomes larger and larger e to
the power minus gamma t is becoming smaller and smaller it will tend to 0 as t tends to

infinity.

So, that is the aim of selecting this delta. Delta becomes 0 as t tends to these are all function
of t. So, that is how we select the function delta. Now, we substitute all this in the end. So,
that the tracking is done in a proper way by avoiding all the disturbances by learning the
disturbances using neural network. So, how to learn the weights? How to update the weights

as the time progresses?
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Stability Analysis

+ Here we give NN weight update algorithm that guarantees the stability of the system,
+ Itis required to show that the tracking errors are arbitrarily small and the estimates I, W and ¢
remain bounded, so that the control 7(t) is bounded.

+  Theorem: Consider the error dynamics model given previously for the robot dynamics If control
input torque t and adaptive compensator v are designed as given before and adaptive laws are

selected as "
4 - 7/ -
W=Ear' - Ed 0y’ u"-adh‘ NF%4
i 2T ]
V= (,,y(n W:‘) U\Fk"

with some scalar pasitive definite symmetric matrices F,, G, and then the estimates /', W are bounded
and task-space tracking error ¢ asymptotically converges to zero.

. T ROGRELE

So, we assume that the W cap is updated in this particular way as given in this equation W
cap dot the derivative d by d t of W cap that is given by this expression and V cap dot is given
by this expression; where this F matrix G matrix, they are all positive definite matrices. So,
for simplicity we can take all these matrices to be a diagonal matrix with positive constants
positive real numbers. And, this sigma cap sigma cap dash all these are defined already in this
slide, here sigma dashed is defined like this, sigma cap is this and sigma cap dashed is

denoted by this expression.

So, by substituting these expressions we see that there is a weight updation algorithm, this is
called weight updation algorithm. So, as the time progresses we can keep on updating the
weight using this particular procedure and how to prove that this particular procedure gives a

correct weight for tracking the desired trajectory.
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Consider the following Lyapunov Function Candidate: '(:a

L= %eff +2rTMr + ﬁrr(WTE'W) +%tr(l"Eiif’) +5tr(§7151) + g‘/

where tr(.) represents the trace operator, differentiating above equation w.rt t, we get:

3 1 .. - - - A - o e
L= eTet g +rThi 4 (W7 W) + 1 (776;17) 4 o (7159) +
Using (12) and (12
. 1 . P
L=—-eTae—rTKr+e"jr+ EI‘T{M =W+ rTWTEVTy
+r (W (' (PTy)0Ty =o' (VTy)07y)) + n-(WT ﬁ;'ﬁ?) B tr(r.'”'(.',,?]f') y;‘;
+rw=rTe-rTu-6 ¥ T v 1 - A
P L) - \ T{é
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So that can be seen here, we take a Lyapunov function L to be in this particular form, you can
see that all of them are positive terms e transpose ¢ it is nothing, but norm of e square. And,
this one is a positive term because M is a positive definite matrix and here F is a positive
definite matrix therefore, this is a positive value. The trace, trace means the sum of the
diagonal of this matrix all of them are positive values here also all these terms. Already we

have seen that delta is a positive function and gamma is a positive number.

So, each and every term here all of them are positive values and at the 0 values, when we
substitute all of them the e because it is a function of e r w tilde and v tilde etcetera. So, all
the functions which are given here are positive and when we put all of them to be 0 we get the
1 value to be 0 at the origin. Now, we differentiate this with respect to time d L by d t and then
substitute in the place of e dot in the place of r dot and then in the place of W cap dot and in



the place of V cap dot etcetera all the terms which we have already introduced in the previous

slides.

So, substituting all the derivatives similarly delta dot also in the previous slide we have seen,
all the substitutions and properly making use of the trace property. Trace of a matrix a is
nothing, but sum of the diagonal elements now we can make use of one property. So, if we
take r transpose s; where r is let us say vector r 1, r 2, r n. So, r transpose is a row vector and
ifsiss 1, s 2, sn. So, we get a column vector s here. So, r transpose s denotesr 1 s 1 plus r 2
s 2 etcetera. So, it is same as the trace of s and r transpose. If we take s is the column vector

and r transpose is row vector, if we multiply will get a matrix.

And if we take the sum of the diagonal of this matrix it is same as nothing, but r transpose s

itself.

(Refer Slide Time: 34:10)
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Using Property 2 togetherwith ¢ = ¢ - tf)W = —W,'I.“’ =y ¢ = —q% and

a_daptive laws, we get:

L<~eTae=1TKr+r"WTa'(PTy)/Ty + " (W' (o' (PTy)0Ty - o'(PTy)0"y))
+tr(=WTa (PTy) Ty + W' (1T )0TyrT) 5
bor(-Vy W (07y)) + Il ~r"o-6 ¢ 2

Using (15) and further simplifying, we get: T
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So, this property we will use here. So, they will get canceled automatically, many terms will
get cancelled finally, we will get we are left with only terms like this. The derivative L dot is
nothing, but minus e transpose alpha e like this and then minus r transpose K r. And, after
canceling out all the terms using this particular property we get remaining terms to be only

this much, these are the few terms and we are assuming that v is selected like this.

And, then if you cross multiply with these terms further it is canceled norm of r square into p
p 1 square is canceled with r transpose r is nothing, but norm of r square. So, and multiplied
by p 1 square so, that is canceled here and we finally, get the terms to be sorry like this. L dot
we will get only this much, it is less than or equal to minus e transpose alpha e minus r

transpose K r.

(Refer Slide Time: 35:12)

Proof
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Simplifying further, we get: P ( Q':L S
L<-eTae-rTkr - ~ b
Using Rayleigh-Ritz theorem ,we get: L- 7 o
L g =apinllrll* = Buin lell® s L

where a,,;, and f,,,are the minimum eigenvalues of matrices a and K, respectively.

Since [ > O and L < 0 this shows stability in the sense of Lyapunov so that
Lr, V. W and d(hence 7, W and ¢) L, are all bounded. Boundedness of r guarantees the
boundedness of e and ¢ whence the boundedness of the desired trajectory shows x, X,y are all
bounded. Define a function

M!) = Uin + ﬂrrrnr"‘-’"é < _[I-
Therefore, A(t) is bounded and henced(t) is uniformly continuous, From Barbalat’s Lemma, we
conclude that A(t) goesto zero as ¢ goes to zero and hence A(t)e and r converge to zero
awmntotically S the sub-tack trackine arror 2., alsn enes tn 7ern asvmntotically
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So, this is nothing, but minus of e transpose alpha e plus r transpose K r. So, this is a positive
term because alpha and K both are positive definite matrices. So, these two are positive value
with a minus sign. So, we have that L is positive definite, L dot is negative definite strictly

less than 0.

So, this implies the system is asymptotically stable using the Lyapunov theory. So, what we
get here is because of the Lyapunov theory we get the system which we have considered
originally. The control system M r dot equal to minus V r plus h of y minus tau plus T suffix
d with this disturbance and the control is tau is controlled. And, it tracks the desired trajectory

using the control defined by this expression as given here and the neural network weights.

Because, the control involves a neural network expression and the weights are updated using
this updated updating algorithm. And, we have proved that the system is asymptotically stable
if we apply that particular control and hence it proves that the system tracks the desired
trajectory successfully. As T progresses the trajectory is tracked. So, this is a lengthy
procedure, even if we take a very simple example of a two link manipulator this may be a

very complicated procedure.

And, this can be demonstrated only using a computer program suitably written for a neural
network updating algorithm and assuming a particular function for the disturbance and then

proving that the disturbances is avoided using the neural network etcetera.

So, with this I complete the lecture on the neural network based controller design.

Thank you.



