
Robotics and Control: Theory and Practice
Prof. N. Sukavanam

Department of Mathematics
Indian Institute of Technology, Roorkee

Lecture - 19
Artificial Neural Network

In this lecture, we shall see how neural networks can be used to approximate air function.

Also we shall see how a neural network can be used to solve inverse kinematics of a robot

manipulator and how to generate a trajectory given initial and final conditions. So, Artificial

Neural Network is depicted in this picture.

(Refer Slide Time: 00:53)

So, it has 3 layers one is the input layer, the middle one is the hidden layer and the last one is

the output layer. So, for example, here x 1 x 2 x 3 x 4, these are the inputs and y 1 y 2 are the



outputs, 4 inputs and 2 outputs are given in this artificial neural network and there are 3

hidden neurons.

(Refer Slide Time: 01:19)

So, here in general let us consider x 1 x 2 x n n inputs and there are l hidden neurons and y 1

y 2 y m are m outputs. So, the input and the hidden layer are connected by the weights given

by u i j. So, in this picture; we can see that the first input x 1 is connected with the first hidden

layer by the weight say u 1 1 and with the second hidden neurons it is u 1 2 the weight is

given by this. And the forth input with the first hidden layer we say that it is u 4 1. 

So, similarly the hidden layer first hidden layer with the first output is connected by the

weight v 1 1 and then it is v 1 2 with the second output. So, in this manner they are connected

and they are the calculation, the value of the hidden neurons j th hidden neurons is calculated



by the function sigmoid function, sigma of the summation u i j x i. So, that is the value of the

h 1.

So, for example, we multiply x 1 with u 1 1 and x 2 with u 2 1 x 3 with u 3 1 etcetera. So, the

summation of u i j x j xi i is equal to 1 to n. So, this gives the summation the value h j h 1. So,

here it is its 1 u i 1. So, this value is h 1 similarly h 2 h 3 can be calculated, then this its a real

value and it is operated with the function sigma where the sigma function is given by this

expression. Sigma of any real number, z is 1 by 1 plus e to the power minus z is the value. So,

this is one type of sigmoid function, the transfer function.

(Refer Slide Time: 04:11)

But, there are several types of transfer function which can be used in a artificial neural

network. For example, y is equal to x it is an increasing function the value is between minus 1

and plus 1 in this region. And it is constant else where we consider the interval from minus 1



to plus 1 and the remaining values are constant. Similarly, the function 1 by 1 plus e to the

power minus z; the graph of the function can be easily seen that it varies from the value 0 to 1

it is an increasing function. And, it is when it is when x is infinity it is the value is 1 and when

x is 0 the value is half and when x is minus infinity the value is 0.

So, it is a increasing function and between 0 and 1 other functions are given by f of s is given

by s by mod s plus a where a is any constant. So, here also the graph of this function is

varying from minus 1 to plus 1 and it will look like this. When s is 0 the value is 0 and for

infinity it is 1 and when s is minus infinity it is minus 1. So, similarly the tan hyperbolic

function also will look like this. So, the property of any transfer function is simply it is an

increasing function and it is bounded by 2 values either minus 1 to 1 or 0 to 1.

So, this way that is the property of a transfer function and one such example is this transfer

function; sigma is z 1 by 1 plus e power minus z. So, the value of the hidden neurons is

calculated by this expression.



(Refer Slide Time: 06:22)

Then we get the output, the kth output y k is calculated by multiplying with the weight v j k

of the h j value. So, j varies from 1 to l of v j k into sigma h j is given by this expression. So,

for a given input x 1 x 2 x n we get the corresponding output y 1 y 2 y m using this artificial

neural network.

So, instead of writing using this summation we can write them in the matrix form like this; if

capital U is the matrix u i j. Capital V is the matrix v j k, the elements are given by this thing

and l rows and m columns as given here. Then the expression capital Y, capital Y means y 1 y

2 y m transpose the column vector is calculated by V transpose sigma of U transpose X where

X is this vector. So, the same expression 2 in the matrix notation is given in the form 3 for

simplicity.



(Refer Slide Time: 07:43)

Now, the artificial neural network has a interesting property, that any given function f of n

variables from R n and its value is in R m, it can be approximated by a neural network as

given in the equation 3 in the previous slide. So, we can find suitable weights, weight

matrices capital U and capital V in such a way that the function f of x and the neural network,

the norm of the difference between f x and y is less than epsilon for any given epsilon.

So, the property is like this. For if, f of X is a given function of n variable then we can find a

neural network in the form of Y has given here in the equation 3 or in the equation 2 such

that; the difference between the function f of X and the neural network is as small as possible.

Whatever be the given epsilon; we can find the weight matrices U and V. So, this is a very

nice approximation property of a any given function.



(Refer Slide Time: 09:09)

So, to find the weights what we can do is we take this as the error the difference f of X minus

Y norm square is the error defined which is a function of U and V. Now, by minimizing this

error we get the values of the matrices U and V. Once we obtain the matrices U and V by

minimizing this error, we can substitute in the equation 3 in this expression which gives the

approximate value of the function f of X.



(Refer Slide Time: 09:49)

So, to minimize the error; we use the gradient descent iteration as follows the r plus 1 th

iteration is depending on the r th iteration minus some small value which is called the

learning rate alpha multiplied by the gradient of the expression U. Where D U is defined by

this expression the rth stage, rth iteration the D U is defined by the partial derivative del E by

del u i j. i varies from this thing because, e is the error which is a function of U and V where

U and V are having the elements u i j and v j k as shown in the previous slide.

So, E is a function of all this u i j and v j k and the partial derivatives. These are all the

matrices D U is also a matrix and capital E is a matrix and its derivative. Derivative of a

matrix means; we have to differentiate at each element ok. Similarly V r plus 1 the value of V

at the r plus 1th iteration is given by this formula, similar to this thing. Initializing the weights

that is U 0 at the initial this thing we take the matrix 0 matrix only as the initialization in this



algorithm then from that we can get 1 by 1 and finally, as r tends to infinity this will converge

to a suitable weight which is required.

(Refer Slide Time: 12:02)

So, that is the standard procedure of the artificial neural network. So, let us consider a simple

problem that is one input x and two neurons and only one output y. So, y can be calculated by

this thing one input and connected by two neurons connected by one output. x is input y is

output and this is hidden layer 1 and 2. So, we have the weight here u 1 and u 2, this is v 1

and v 2. So, v 1 into sigma of u 1 x plus v 2 into sigma of u 2 x is the calculation of the neural

network. 

And, if we want to approximate this constant a using a neural network, the error is the

constant minus the neural network y as given here the square of the error to minimize that.



So, when we substitute y we will get E equal to a minus this whole square and sigma of z is

taken as the transfer function, the sigmoid function.

(Refer Slide Time: 13:19)

And so error is written in terms of the sigmoid function like this; del E by del V 1 del E by

del w 1 is like this. The partial derivative of this expression E where n is nothing but this

bracket, square bracket expression. So, now similarly del V del E by del V 2 and del E by del

w 2 can be calculated in the same manner.



(Refer Slide Time: 13:51)

So, for example, let x is 2 and the input output is 5 we want to find a neural network for

relating this 2 and 5. So, we write the neural network and it has to be like this. We want that 5

should be in this particular manner. So, how to calculate this v 1 v 2 w 1 w 2 etcetera using

the algorithm? So, initialize the weights to be v 1 v 2 is 0 0 and u 1 u 2 is also 0 initial

weights. 

Then the first iteration is denoted by 1 here in this super fix alpha is the learning rate is taken

as 0.1 and the value is 2 times n. n is, when we substitute v 1 v 2 0 everything is 0 here in this

y expression. So, we get 5 minus 0 actual value minus the neural network value at the 0 th

iteration is 0 here. And, when we calculate that del E by del V 1 etcetera. It is coming out to

be like this by substituting the 0 values. So, what we get here is the total value. The first

iteration gives that v 1 is this v 2 is this and u 1 u 2 are 0 0.



(Refer Slide Time: 15:33)

Now, the second iteration similarly can be calculated at second iteration the first iteration

value minus alpha and 2 times the n value is this and the derivatives partial derivatives are

given by this when we substitute the first iteration values. So, it gives the second iteration

values to be like this. Now, if you substitute v 1 v 2 and u 1 u 2 in the neural network

formula, we get the u close to 3. 

So, we see that it has improved slightly the value of the neural network is coming towards the

required value 5. So, proceeding like this for the third fourth iteration; we can easily see that

the value of the neural network will converge towards 5 and it will be as closely as possible

we can find the weights suitably.



(Refer Slide Time: 16:36)

Now, if f of x is a given function. So, earlier we have seen how a constant output is

approximated by a neural network. Now, if a function f of x is given in the interval 0 to 1 how

to approximate it using a neural network. So, let us divide the interval by 0.1 0.2 etcetera up

to 1 the given interval. And, the so the square of the x is x square is given by 0.01 and 0.04

etcetera 0.81. So, the square of this values are given here in this bracket. And so if we denote

x k to be 0.1 into k that is given by this interval and the value alpha k; the required values are

actually the square of this values these are the required values.

Now, if you define the neural network for any value of x to be in this particular manner. Here

we are considering 1 input again we consider 5 hidden neurons in this case and then 1 output

all of them together it is 1 output. So, this is x and the value is y of x and the calculation of

the hidden neuron or given by this thing where sigma of z is taken to be 1 by 1 plus E power

minus z as given in the previous one. Now, if we in the place of x, if we substitute the



partition values 0.1 0.2 etcetera for x k. We can calculate for each value of the partition the

corresponding neural network value is given by this one. So, if you suitably find this weights

v i and u I, i equal to 1 2 3 up to 5.

(Refer Slide Time: 18:58)

Then so, what is the requirement here; for each partition value the value a k is given by 0.1

square k square for k equal to 1 2 3 up to 10 and neural network values are given by the

previous formula as given in this one. So, the difference between the required value alpha k

and the neural network the square should be minimized at each and every partition point. So,

error is summation k equal to 1 to 10 of the actual required value minus the neural network

value whole square at each partition. 

So, if you minimize this 1 using the gradient descent method has shown previously. We can

easily obtain all the weight values. Now, if you substitute the converged value of the weights



we get the function approximation that is, f of x is approximated by the function y of x by

substituting the values which we obtain after many iterations of the artificial neural network

algorithm. So, this can be; this is a function approximation using neural network. It is a

simple example.

(Refer Slide Time: 20:32)

So, this procedure can be applied to solve inverse kinematics for any robot manipulator. So,

for example, simple robot manipulator which we consider is the 2 link manipulator where

theta 1 and theta 2 are the joint angles and x 1 and x 2 are the end effectors positions. So, x 1

is given by this and x 2 is given by this 1 where l 1 is the link length first link is l 1 and

second link length is l 2.

So, we can easily solve the inverse kinematics. We can find theta 1 and theta 2 in terms of x 1

and x 2 very easily which we have seen in the previous lectures, but how to use the artificial



neural network for finding the inverse kinematics solution is the following. So, let us consider

the neural network value of theta k. Theta k, where k is 1 to 2, theta 1 n and theta 2 n is

calculated by this neural network.

So, let us consider the input is here x 1 x 2. And, we consider hidden layers there are l hidden

layers and we can connect the l hidden layers and with this and the output are given by this

thing 2 outputs theta 1 and theta 2 are the outputs for this problem. So, this is coming out of

the neural network therefore, we denote it by theta 1 n and theta 2 n. So, after finding suitable

weights v i and w i when we substitute this theta the neural network values of theta should be

very close to the actual inverse kinematic solutions of the problem.

So, how to find the weights properly? That is what we want to see. Now, when we initialize

the weights arbitrarily, let us say all the weights are 0 in the beginning then we can substitute

in the neural network and then obtain the theta values theta k n. Then substitute in this

formula in the place of actual value of theta; we substitute neural network value of theta. And

obtain the neural network value of the x x 1 and x 2 then we subtract the given value of x 1 x

2 minus the neural network value whole square. 

So, this should be minimized E should be minimized suitably. So, that we get v i and u i

values the weight values after conversions of the neural network algorithm. So, the error is

given by this expression and using the gradient descent procedure algorithm. We can obtain

the weights suitably and we get the after getting the final weights; we substitute in this

particular formula again. So, whatever is coming out to be the neural network value that will

be the actual value of the theta 1 and theta 2 the inverse kinematics solution of the problem.

So, this procedure can be adopted for any type of robot manipulator and for illustration

purpose; we have taken the simplest form of this one.



(Refer Slide Time: 24:46)

So, what we did here is; we have x 1 here it is written end effecter position and these weights

are connected by u i j these are the hidden layer using the sigmoid function we calculate the

theta 1 n and theta 2 n. So, these are the neural network output. So, once we get the joint

angles using neural network we can again calculate from here x 1 n and x 2 n using the same

formula then this will be taken back to this expression. The error is calculated the error is

summation x i minus x i n whole square, i is equal to 1 to 2. 

So, this is minimized. So, every time we get the inputs as x 1 and let us say x 2 and we get x 1

n and x 2 n and subtract and square it we minimize this expression to get the new weights. So,

every iteration; we get a weight and put it here we keep on repeating finally, it will be

converging to a required weight. So, that is a procedure.



(Refer Slide Time: 26:18)

Now, we can also generate the trajectories because we have seen the biped robot manipulator

the ankle trajectory is there as hip trajectory. So, various trajectories are to be generated using

polynomial. So, if there are let us say 4 constraints given initial condition initial velocity and

final position and final velocity are given for a particular trajectory, then we can write a third

degree polynomial and then we can find the coefficient of the polynomial using boundary

conditions.

So, instead of that we can also write in this particular form at here t 0 denote the initial time t

f denote the final time and. So, what it shows here is at t equal to t 0 the value is this bracket

will vanish. So, now, if our condition is the ankles trajectory at t naught is given as some

value let us say x naught and x A a t naught its derivative. The velocity is given to be 0, let us

say and similarly x A t f is given to be x f and the velocity t f is some value for example 0.



So, if the initial position velocity final position final velocity are given for 4 conditions are

given. Then we can generate a trajectory using a neural network. So, the neural network can

be written as the as given in the previous slide. Here, the time is the input, t is the input and

the value of the neural network is the output. And, let us say any number of neuron we can

consider. So, the selection of the number of neuron in the hidden layer is left to the user here.

So, normally for this type of problem we can consider 1 input we can take 3 or 4 hidden

neurons and 1 output is given.

So, the value of the neural network after calculating the formula as given in the equation 3 is

the value of the n 1 for this particular input t is the input. So, now, if you consider t equal to t

0; the first bracket is not there and here we have some constant value t f minus t. So, our aim

here is only to train this N 2, the neural network 2 for this particular value that is x A at t

naught equal to x naught.

So, when we substitute in the first formula x A at t naught that is nothing, but t f minus t

naught whole square that is 1 and only the N 2 will come N 2 of t naught U 2 and V 2. The

weight matrices U 2 and V 2 should be calculated for this particular value where the output of

the neural network is given by x A of t naught which is equal to x naught that value should be

taken. And, for this output we should find the weights U 2 and V 2 that is the meaning.

Similarly we should differentiate this first equation x A dot t.

So, when we differentiate we will get some expression from the second term only. Because,

when we substitute t naught after derivative also the first term vanishes only the second term

will remain. So, in the second term; the value of the output is 0 when we differentiate x A dot

t naught is 0, now after differentiating these 2 times this bracket multiplied by the neural

network etcetera. And, then when we substitute t equal to t naught, we will get some constant

value multiplied by the neural network.

So, our aim is to adjust the weights of the neural network for this two conditions because in

the first condition also the neural network comes, in the second also we will get some bracket

into the neural network. So, the neural network should be trained in such a way that it



satisfies this two condition and the weights are calculated using the iterative method; because,

the outputs are given and the U 2 and V 2 should be calculated. Similarly, for training this N

1 neural network; we substitute the final time t f. 

When we substitute final time t f in the place of t we get the second term is 0 only the first

term will survive. Similarly, when we differentiate it and then substitute t equal to t f the

second term will become 0 only first term will remain. So, using these two conditions as

output we should train the neural network 1 N 1 for finding the weights U 1 and V 1. Once

we find U 1 V 1 U 2 V 2 using the iterative methods, we substitute we get the entire trajectory

for all values of t. For training we will use only 2 time instances that is t equal to t 0 for

training N 2 and t equal to t f for training N 1.

So, after getting all the weights; we substitute here that is useful for finding the trajectory for

all values of t. So, similarly if we increase the number of conditions instead of initial and final

we also have two conditions at the middle that is the height of that trajectory path as well as

the velocity at this path the derivative. Then we can write the neural network in this particular

form, 3 neural networks can be considered and by substituting the 3 time instances we can

train according to the output values, the 3 neural networks and then substitute the weights

here, we get the trajectory x A of t for the six constraints.

So, depending on the number of constraints, we can write the neural network expression and

this can utilized as the trajectory for the biped robot walking, instead of the polynomial

trajectory this can be also utilized. So, here so in this lecture we have seen how to utilize the

neural networks for finding the inverse kinematics solutions for a robot manipulator as well

as how to generate various trajectories for biped robot manipulators ok.

Thank you.


