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k-Distribution Model

Hello friends, in this lecture we will focus on one of the most advanced spectral model in

radiative  heat  transfer, that  is  the  k-distribution  model.  k-distribution  model  is  a class of

models basically, where we map the spectrum into a monotonic function, as we will see.

Ultimately, we are representing the entire spectrum. It is basically a global model. And we

solve  radiative  transfer  equation  using  gray  gases  and  weights,  just  like  we  did  in  the

weighted-sum-of-gray-gas model. 

It  has  been  proved  by  Modest  that  weighted-sum-of-gray-gases  is  nothing  but  a  crude

approximation to k-distribution model. Where k-distribution model takes the weighted-sum-

of-gray-gasses model to another degree of accuracy. So, let us go into the details. So, the first

thing that you should observe is the spectrum. 

(Refer Slide Time: 01:29)

On this slide you see a spectrum of carbon dioxide at atmospheric pressure and 1,000 kelvin

typical  of  combustion  applications.  And  what  you  see  is  basically  a  small  range  of

wavelengths. There will be large number of bands and lines. What you see is a small part of



the spectrum, a narrow band rather. And you see that absorption coefficient goes up and down

very erratically and continuously. 

So, it is called erratic spectrum. What we observe is that in the RTE dI lambda by ds is =

kappa lambda I b lambda – I lambda. This is our radiative transfer equation. I b lambda is the

black body emissive power which depends on temperature and it does not depend on the

absorption coefficient. And I lambda is the unknown variable. So, what we conclude from

here is that for all wavelengths where kappa lambda is same, let us say for all wavelengths

kappa lambda is C. 

If you replace this r in RTE dI lambda by ds is = C I b lambda – I lambda, then we get the

same solution.  So, for all  wavelengths where kappa lambda is constant,  we get the same

solution.  Of  course,  the  effect  of  Planck  function  will  be  felt.  Let  us  say  we  have  2

wavelengths we pick 2 wavelengths, this 1 and this 1 having the same magnitude of kappa

lambda. So, we have picked 2 wavelengths kappa lambda is same. 

And over this small wavelength, I b lambda is also not changing very much. So, we get same

emission  and  same  absorption.  So,  we  get  same  intensity.  So,  for  these  2  wavelengths,

because absorption coefficient is same and Planck function does not change. So, we get the

same answer  for  the intensity. So,  a  question we should ask to  ourselves:  Why to solve

radiative transfer equation for these 2 wavelengths separately? 

Why not solve only once,  because we get  the same solution?  This  point  gives  the same

solution as this point. So, why do we solve for radiative transfer equation again for these

points. And we have many number of points. If we increase this line all the way, we have

many points where kappa lambda is same. So, for all these wavelengths, provided we can

account for change in emission. 

Because I b lambda will actually vary over the spectrum. If we can account for variation in I

b lambda for all the wavelengths where kappa lambda is same, we can solve the radiative

transfer equation only once. So, this is called reordering. So, what we do is, we will not solve

the radiative transfer equation in wavelength space, we will solve radiative transfer equation

in absorption space. 



So, for all  values of kappa lambda constant,  we will  solve only 1 RTE. 1 RTE for these

coefficients and 1 RTE may be for these coefficients and so on. So, we will solve varied 1

radiative transfer equation for different levels of absorption coefficient. And this concept is

called reordering. 

(Refer Slide Time: 04:50)

So, they are number of methods. In fact, k-distribution is a class of methods, where erratically

varying spectral coefficient is reordered. We will understand what is reordering. But, I tried to

explain  you  in  a  very  crude  form that  we are  solving  radiative  transfer  equation  not  in

wavelength space. Rather, we are solving it in absorption space. 1 RTE we are solving for

each value of kappa lambda, constant kappa lambda on all wavelengths. 

This is called reordering. And reordering but what basically does is, it converts the function,

the  erratic  function  into  a  cumulative  k-distribution,  a  monotonically  increasing  smooth

function.  We will  see how this  maps the spectrum into a smooth function.  And it  allows

efficient  integration  of  radiative  intensity  over  the  spectrum.  So,  this  method  is  very

analogous to weighted-sum-of-gray-gases. 

Where  is  weighted-sum-of-gray-gases  we  represented  the  gas  mixture,  the  non-gray  gas

mixture using sample of gray gases. Here also, we are basically representing it in some in the

form of gray gases. Where gray gas represents a level of absorption coefficient. So, each level

of absorption coefficient basically represents a gray gas. So, the exact, the method is very

efficient, only few RTEs need to be solved, 7 to 8. 



However, the method is much superior to weighted-sum-of-gray-gases, because it is exact for

homogeneous media. We will use absorption coefficient as our variable rather than emissivity

data used in the weighted-sum-of-gray-gases model. So, you please recall. In weighted-sum-

of-gray-gases model, we used emissivity data to find our parameters, while the k-distribution

model is directly based on absorption coefficient itself. 

The method can be applied to a small narrow band, as well as to full-spectrum. Narrow band,

the  advantage  is,  the  Planck  function  does  not  vary  over  the  wavelength.  So,  emission

variation is not taking place. While on the full-spectrum basis, the emission coefficient is

going to change the Planck function is going to change. So, in the definition of k-distribution,

we have to take Planck body Planck function variation into account. 

So, we will apply this method in this lecture to the full-spectrum, to understand how this

method basically takes into account the variation of Planck function as well. There are many

variations  of  this  method  applied  to  gas  mixtures  such  as  multi-spectrum,  k-distribution

model, multi-group k-distribution model. Here we will study only the simplest of these k-

distribution model, that is full-spectrum k-distribution model. 
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This image will explain you all the things you need to know about the k-distribution model.

As I said, for each value of kappa lambda, there is a unique solution. So, let us point out these

points  where  the  value  of  absorption  coefficient  is  same.  So,  all  the  points  that  have

highlighted, they have same magnitude or absorption coefficient. And they return the same

result for intensity. 



So, for these intensity, for these points, only for these points that I am highlighting, intensity

is not a function of wavelength, rather it is just a function of k, where lambda is spectral

coefficient. So, ideally, for each wavelength or wavenumber, the intensity should vary. But

because the absorption coefficient is same, we write that intensity is just a function of k.

Where  k  is  the  magnitude  of  absorption  coefficient  at  these  wavelengths  that  I  have

highlighted. 

So, what we do is, we represent this, we map it on this red curve. So, this red curve basically

represents the mapping of the solution or k-distribution. So, this is called reordering. The red

curve here represents the reordered function, where all the unique k points, unique absorption

coefficient points have been mapped. So, the red curve is called k-distribution. Now, you see

that, although the original spectrum was very erratic, the absorption coefficient was going up

and down significantly, but this spectrum looks no better. 

Even the k-distribution looks very erratic. At few places, the values are very large. But still

there is are variations. So, integrating over this spectrum is also very difficult. So, we will not

try to attempt, we will not try to solve radiative transfer equation on this erratically varying k-

distribution also. What we will do is, we will go for a cumulative distribution. If we take a

cumulative distribution, so remember in probability density function, you have a probability

function which may be erratic. 

But you also have a cumulative distribution.  For example,  if  I have to plot versus x, the

probability distribution may look like this. But the cumulative probability function f x will

always vary from 0 to 1 and it  will  be smooth.  So, this  point,  we have discussed while

discussing the Monte Carlo method also. So, the probability distribution or the spectral k-

distribution may be erratic. 

But,  if  you take  the cumulative  distribution,  then it  will  not  be erratic.  And what  is  the

difference? In k-distribution or in k-distribution, we represent it at a given value f, which is

the probability. While in cumulative k-distribution g k we represent < = k. So, that is the

difference between the k-distribution and cumulative k-distribution. k-distribution talks about

all the values of kappa where kappa is = k. 



And cumulative k-distribution talks about all the values of lambda, where kappa lambda is <

=  k.  So,  all  the  values  of  lambda  where  kappa  lambda  is  <  =  k.  That  is  basically  the

cumulative k-distribution. And you see, this black curve varies very smoothly. So, what this

curve represents? At this point, this point basically represents the fraction of spectrum having

<. 

So, if I just point here; so, what it says is, that 40% of the spectrum has values, k values < this

value. Just in normal cumulative distribution function, this particular points, let us call this

point p. So, at point p, 40% of the spectrum has k values < this value. Let us call this K 1.

Similarly, let us call this point Q. At point q, 80% of the spectrum has absorption coefficient

< this value K 2. 

So, this is how basically we have mapped the spectrum from erratically varying spectrum to a

smoothly varying cumulative k-distribution function. And we will solve the radiative transfer

equation on this curve. So, this curve we will solve the RTE on. 
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So,  let  us  look at  the  mathematical  formulation  of  this  method.  This  is  our  RTE.  For  a

homogeneous path, we will derive. But the method is not limited to homogeneous path. It can

be  applied  to  non-homogeneous  path  also.  So,  we  will  apply  the,  we  will  develop  the

mathematics of this method on homogeneous path with no scattering. The method is called

full-spectrum, because we will integrate over the entire spectrum. 



We will not limit ourselves to a band, a narrow band or wide band. We will integrate over the

entire spectrum. So, what I will do is, multiply the RTE by a function called Dirac delta

function.  So,  this  is  called  Dirac  delta  function.  Now, Dirac  delta  function  is  a  discrete

function, where delta k – kappa lambda is = 1, for k is = kappa lambda. And it is = 0, for k

not = kappa lambda. 

So, this is called Dirac delta function. And this function, we multiply the RTE with. And then,

we integrate over the entire spectrum, both sides, left-hand side and right-hand side. Now,

once we multiply this RTE by this function, so we understand that all the wavelengths where

kappa lambda is not = k, the RTE simply vanish. So, our left-hand side reduces to dI k by ds.

Because, all the wavelengths where kappa lambda is not = k, they will simply with 0. 

And all we are left with is dI k by ds. So, the integral over the wavelength space has been

converted into a simple I k term. And similarly, on the right-hand side, we have, wherever

kappa lambda is = k, kappa lambda will be = k, we just write I lambda as I k and I b lambda

multiplied by delta k – kappa lambda integrated over 0 to infinity is written as f k. This is

called k-distribution. Let me give you the definition of this f k. 

(Refer Slide Time: 14:10)

So,  f  k  is  defined  as  Planck  function  weighted  full-spectrum-k-distribution.  So,  Planck

function weighted full-spectrum-k-distribution f k is defined as 1 upon I b integral from 0 to

infinity I b lambda delta k – kappa lambda d lambda. So, this has been assumed here in this

equation and our equation basically  simplifies  this.  Now, this  is  in k-space.  So, we have

transformed our equation from lambda space to k-space. 



And as I mentioned, the k-space is also very erratic. So, we will not solve this equation in k-

space.  Rather  we  will  solve  in  cumulative  k-distribution  space.  But  the  definition  of  k-

distribution is given by this function, f k is = 1 upon I b 0 to infinity I b lambda delta k –

kappa lambda. So, we are solving 1 RTE for all values of lambda where kappa lambda is = k.

One,  you  should  also  observe  here  that  the  Planck  function  is  basically  coming  in  the

definition of k-distribution. 

So, the variation of k Planck function, the variation of emission is already taken into account.

On a narrow band basis, Planck function will be constant. So, we do not have to worry about

its  variation.  But,  in  the  k-distribution,  full-spectrum-k-distribution  the  Planck  function

appears in the integral. So, the variation of this function is already taken into account. So, we

have to integrate now intensity, not in wavelength, but rather in k-space. 

So, i k s dk. So, again this function is not very easy to integrate as the k-space function also

varies  very  erratically.  So,  what  we  will  do  is,  we  will  transform it  into  cumulative  k-

distribution. 
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So, it is very easy to do it. All we have to do is, just divide this equation. Divide this equation

by f k. So, what we get is, dI g by ds is = k times I b – I g. So, we have divided by f k the

RTE in k-space, we have divided by f k. And we define I g as I k upon f k. This function is

going to be relatively smooth.  Because,  we have divided by the erratic  function f k, this

function I g is going to be very very smooth. 



And we can use efficient quadrature to integrate this function. So, the RTE, now finally in

cumulative k-distribution g is given by dI g by ds. Where k-distribution in g space is going to

be very very smooth.  We defined dg by dj  is  = f  k.  So,  how to go from cumulative  k-

distribution to k-distribution. The derivative dg by dj is = f k or g is = 0 to k f k dk. And

cumulative k-distribution,  cumulative function always varies from 0 to 1.  So, intensity  is

simply = 0 to 1 I g ds, where we are solving the intensity in g space. And then integrating

from 0 to 1. 
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So, again, to summarize this we have, we started with a spectrum. So, this is the spectrum

which  varies  erratically  over  wavelength  space.  We  have  mapped  this  spectrum  in  k-

distribution, which is cumulative function. Okay. Each point on this spectrum basically gives

you the probability of kappa lambda < = k. So, f k is probability function. While g is the

cumulative probability function. 

So, g gives you probability of kappa lambda < = k. That is the cumulative probability or

cumulative function. We will solve this RTE for some points on this curve. So, we will solve

our RTE on few points only on this curve. And then, use quadrature to integrate our intensity.

So, we do not have to integrate along this wavelength space by representing this wavelength

by millions of thousands of points over wavelength. 

All  we have to do is  map the  spectrum into a  smooth function and then solve radiative

transfer equation over few points on this RTE. And then integrate the intensity as simply Ig



dg from 0 to 1 or simply using quadrature, we can write as i is = 1 to N w i I gi, where w i

and I gi are weights and intensity at a selected quadrature points in this curve. 
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Let us solve 1 problem and understand how the k-distributions are generated. Basically, this

allows  you to,  this  is  a  simple  mathematical  problem where we have  taken a  simplified

spectrum. The spectrum looks like this. We have a small narrow band. The total width of this

narrow band is delta lambda. And the absorption coefficient varies from kappa 1 at the lowest

level to 3 kappa 1 at the highest level. 

So, small narrow band, the spectrum, the absorption spectrum is given here, a simplified

absorption spectrum. This not realistic. This is just a fictitious imaginary spectrum. We have

to generate k-distribution for this or we have to map this spectrum from wavelength space to

cumulative function. So, let us see how we can do it. 
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We start with the definition of k-distribution f k. So, f k as I have already given you the

formula is given by 1 upon I b 0 to delta lambda I b lambda delta derived delta function k –

kappa lambda d lambda. So, this is the definition of the k-distribution. Now, we are dealing

with only a narrow band. And over this narrow band, the Planck function is not going to vary

much. So, we can take it out of the integral. 

And our  k-distribution  basically  reduces  to this  formula,  1 upon delta  lambda 0 to delta

lambda del k k – kappa lambda d lambda. So, this is the simple integral. Now, we will not, we

are not interested in calculating f k. Although I will give you the values of f k. But f k is not

easy to evaluate. And the RTE is very difficult to solve in k-space. As I said, it is erratic. We

will find cumulative function. 

So, cumulative function is defined as 0 to k f k. So, all the values of kappa < = k. So, we have

to integrate the function f over 0 to k. So, we substituted the value of f k here. Change the

integration. Take 0 to k inside and 0 to delta lambda outside. So, 1 upon delta lambda is taken

out. 0 to delta lambda is taken out. And we get 0 to k integral 0 to k over this Dirac delta

function. And we get what we call another function. 

So, 0 to k delta k – kappa lambda d dk. This becomes what we called heavy side function H,

k – kappa lambda. This we call heavy side function. So, H is basically = 1. If kappa lambda is

< = k. And it is 0 otherwise. So, if kappa lambda is < = k, then it will be = 1. It is called heavy

side step function. Okay. And it will be 0 otherwise. So, we will use this equation to solve our

problem. 
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Now, 1 thing we should observe is, when we plot the cumulative k-distribution; so, we will

have 3 points. We will plot the k-distribution for 3 points. One is K 1, 2 K 1 and 3 K 1. So

these, for 3, these 3 points we will plot the cumulative k-distribution. You should understand

that, what these represents. So, g kappa 1, g kappa 2, g kappa 3. So, g kappa 2 is nothing but

g 2 times kappa 1. g kappa 3 is g times 2 3 kappa 1. 

So, what does g kappa 1 represents? It represents the fraction of spectrum below kappa 1. So,

g kappa 1 represents the fraction of spectrum below the value of kappa 1. And it is 0. There is

no  spectrum below this  value.  All  the  spectrum is  above kappa  1.  Similarly, g  kappa  3

represents  the  fraction  of  spectrum below  kappa  3.  That  is  below 3  kappa  1.  So  entire

spectrum is below this kappa 3. So, this will be = 1. So, g kappa 1 is 0. g kappa 3 is 1. All we

need to find out is g kappa 2. So, this is the only unknown here we need to find. 

So, g kappa 2 or g 2 times kappa 1 is = 1 upon lambda 0 to delta lambda heavy side function

k – kappa lambda d lambda. This function, heavy side function, we have to integrate over the

entire  spectrum that  has  been given.  So,  we will  observe  here,  the  value  of;  so,  we are

basically  interested  in  integrating  this  function  over  this  spectral  range.  The  one  I  am

highlighting. So, < = 2 kappa 1. And then, this one. 

So, we are interested in only the shaded part of the spectrum we need to integrate. Although, I

can use symmetry, because area under curve, this one and this one are same. So, I can use

symmetry, but I will split the integral into 2 parts. Now, just by simple trigonometry. So, total



width is delta lambda by 5. This width, we can just find out using trigonometry. Let me just

show you the trigonometry here. 

2 times kappa 1 upon delta lambda over 10 is =, let us call this x. So, it will be kappa 1 by x.

So, this gives you x is = delta lambda by 20. So, this x is delta lambda by 20. So, we split our

integral here. 1 upon delta lambda 0 to delta lambda by 4. Where delta lambda by 4, let me

show you what is delta lambda by 4. This distance is delta lambda by 4. How? Because, delta

lambda + delta lambda upon 5, the width of this region, delta lambda upon 5 + delta lambda

by 20, total is delta lambda by 4. 

So, 0 to delta lambda by 4 H k – kappa lambda d lambda +. Similarly, 3 delta lambda by 4 to

delta lambda, the second part of the spectrum d lambda. Now, under this range, H is always =

1. For all the values of kappa lambda < = k, heavy side function is = 1. So, you can just

substitute is as 1, as 1. And we can easily integrate this function. This integral comes out to

be. 1 upon delta lambda, delta lambda by 4 + delta lambda – 3 delta lambda by 4 is = 0.5. 

So, we have obtained the k-distribution. We can plot the k-distribution here. This is the value

of g on the x-axis. And the value of k; so, k is kappa 1, 2 kappa 1, and 3 kappa 1. So, at 3

kappa 1, g value goes from 0 to 1. And this is 1. At 3 kappa 1 g is 1. At kappa 1 g is 0. And at

2 kappa 1, g is 0.5. This is 0.5. So, however basically is linear. So, we get a linear function or

linear distribution. 

This is the k-distribution we have got. So, that is what I have put in the table also. So, g value

is 0 at the first point, 0.5 at second point and 1 at the third point. Now, f is easy to evaluate.

How to evaluate? So, we know dg by dk is = f k. So, the f function is simply dg by dk. Now,

dg by dk is the slope of this line. So, line slope is basically given by 1.0 upon 2 kappa 1.

Okay. So, 1 upon 2 kappa 1 is the slope. 

So, the f k function is same for all the values, all the points. So, f k is 1 upon 2 kappa 1, 1

upon 2 kappa 1 and so on. But this is a, something we are not interested in. We are always

interested in cumulative distribution. So, cumulative distribution is linear. So, we can solve

our radiative equation on this linear curve. 
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So, this was for a fictitious spectrum. Now, how do we generate k-distribution for actual

spectrum? For example, carbon dioxide, which is typical for combustion problems. How do

we generate the spectrum? How do we generate spectrum for H 2 O, water vapor? Now, 1

way  is,  you  can  use  codes  that  basically  calculates  the  k-distribution.  First  generate  k

absorption spectrum line-by-line absorption spectrum you generate for any gas C O 2 or H 2

O. 

You can mix line-by-line absorption coefficient for the gas mixture. And then generate the k-

distribution from first principle. It is going to be expensive. You can have to, you will have to

apply  the  mathematics  that  I  have  developed  here  to  generate  k-distribution  from  raw

absorption spectrum. On the other hand, you can use correlations to generate k-distribution.

The k-distribution correlations have been developed. 

For example, for C O 2, you can find out the value of g for any value of k. So, we may have k

versus g curve. And this may look like this. For this, for any value of k, you can find the

value of g using this relation. This is the correlation that has been given for gases like C O 2

and H 2 O. So, for the C O 2, you can use this correlation to find out the value of x, value of k

and g. The only thing you should remember is that this is available for x is = 0. 

So, x is = 0 means, we have only 1 gas present, there is no other gas present in this. So, only

for the pure mixture, basically we finding this curve. Now, P function is basically fitted on 2

parameters, T g and T p. T p is basically the temperature for on which the Planck function is

evaluated. So, there are 2 temperatures 2 unknown temperatures in this correlation T g and T



p. T g is the actual temperature of the gas, while T p is the temperature at which the spectrum

black body intensity is calculated. 

So, this point, I have not emphasized because we have just discussed a single homogeneous

layer.  But  in  many  applications,  the  temperature  of  emission  may  be  different  than

temperature of absorption. And this relation basically takes into account this variation. 
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Now, for the gas mixture, we can generate k-distributions very easily. All you have to do, you

have to use the first  this  correlation for individual  gases.  Suppose we have a mixture of

carbon dioxide and water vapor, all you have to do, you apply this correlation to individual

gases. To apply, you apply this correlation to a C O 2, similarly you apply this correlation to

H 2 O separately. 

Now, when we have a mixture,  the mole fraction will not be = 1. That means,  the mole

fraction of individual gases will be different. There is no change in k-distribution if you have

mixture of gases. All we have to observe is that absorption coefficient will scale by mole

fraction. If you have single gas, you will get 1 value of k. You generate the k-distribution. If

you have mixture, the absorption coefficient will scale by mole fraction. 

So, k x is the actual k value when we have a gas mixture. And then, you generate the k-

distribution for 1 species, you generate the distribution for another species. And then you can

mix them. It is called mixing, mixing the k-distribution. You can mix the k-distribution of



individual  species  by the summation  rule.  So,  the  mixture  k-distribution  is  given by this

mixing rule, summation rule. 

It is, it gives you very good accuracy when the gases do not overlap. For example, you have a

spectrum, lambda versus kappa lambda. You have 1 band of C O 2; and then another band of

H 2 O; and then again may be a C O 2 band. So, whenever you have this kind of spectrum

which do not overlap, there are non-overlapping regions between the 2 gases. The summation

rule gives you very good results. 

You can use multiplication rule. You can multiply individual k-distributions and find out the

mixture k-distribution. This gives you good accuracy when there is full overlap. That means,

you have 1 gas. And then, there is another gas. 1 is C O 2 and another is let us say H 2 O. And

there is full overlap between absorption coefficient. Then, this method will give you better

results.  So,  depending  on  the  applications  you  can  either  use  submission  rule  or

multiplication rule to find out k-distribution for the gas mixture. 
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Let us basically, we can use the correlation that we have developed. I will not try to solve this

problem actually in the lecture. I will just give you the outline, how we can solve the k-

distribution for the gas mixture having the composition of 90% nitrogen and 10% C O 2 by

volume. So, we do not have a single gas, although there is only 1 radiating gas. So, nitrogen

we know will not radiate energy. 



It will not have its own spectrum. But, the presence of nitrogen results in small mole fraction

of C O 2. So, nitrogen do not emit radiation. It does not interfere as such. Although it affects

broadening, but there is not much effect of nitrogen on C O 2 spectrum. But the mole fraction

of C O 2 has reduced. So, how do we solve this problem? So, we will use this correlation first

to generate the k-distribution for C O 2. 

So, this relation is used first to generate the k-distribution for C O 2. Now, because C O 2 is

only 10%; so, first we generate the k-distribution for this. Let us call let us say this is the k-

distribution for C O 2. Okay. The magnitude of k varies from let us say 1 to 100. This is all

cooked up data. It does not have the actual values. I am just giving you an idea how to solve

this problem. 

So, we generate k-distribution from the correlation at 1,000 kelvin 1 atmospheric pressure.

And the value of k goes from 1 to 100. Okay. From this range 1 and 0. Now, we know that

there is only 10% C O 2. So, k values will not vary from 1 to 100. So, we scale. So, how do

we scale this? The g value will remain same. The only thing is, the curve will shift. Let me

just draw it here itself. So, the curve will shift little down. 

So, this will be the k-distribution, actual k-distribution when there is only 10% C O 2. So, it

will shift, it will scale by a factor x. Okay. So, this is for pure C O 2 and this is for mixture.

The k-distribution will shift up and down depending on the concentration of the gas. Now,

once we have this concentration; 
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I have shown you the k-distribution calculated from this; the blue curve basically shows the

k-distribution evaluated from the correlation.  And this is the actual k-distribution.  We see

that,  for very low values of k, the agreement  is not good. But for large values of k, the

agreement is pretty good. So, 1 k-distribution is evaluated from correlations and another k-

distribution is evaluated directly from the absorption coefficient data from high temp, line-

by-line data. 

So, this is actual k-distribution, this is fitted data from correlations. And this matches well.

And we have obtained the k-distribution as I outline first by correlations and then scaling the

absorption coefficient by the concentration of C O 2. Now, we want to solve for the heat flux.

So, for heat flux, we need to integrate. So, we choose some points marked by cross. So, we

choose certain points for integration. 
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And the heat flux, non-dimensional heat flux, we evaluated this in the previous lecture also

for the weighted-sum-of-gray-gasses for same formula, exact method for isothermal slab, the

heat flux non-dimensional heat flux can be written as weighted-sum-of-gray-gasses. So, i is =

1 to  N,  w i  is  the  weight,  exponential  integral  of  third  order  k  values,  that  is  the  gray

absorption coefficient values times l. 

Now, this we, k value is basically are picked from these cross. The k values comes from

there. These cross basically gives you the value of k and corresponding weights are given in

this table. So, this is the Gaussian quadrature that we are using for integration. For Gaussian



quadrature, we can pick the values of x and w. This is the value of g and this is the value of

weights. 

So,  for  corresponding  values  of  g;  now you  can  use  1  point  also,  you  can  use  2  point

quadrature, 3 point quadrature and so on. For number of quadrature points, you just find out

the value of g and correspondingly you find out the value of k from the curve. And then

multiply by the weight and solve for the radiative heat flux. And the result is given in this

image. And you see that the radiative heat flux, this blue curve and this red curve which is

exact, they good, they give you very good agreement in the optically thin region. 

And there is some inaccuracy in the optically thick region where length is large. And the

same observation you observed in the weighted-sum-of-gray-gasses also. In weighted-sum-

of-gray-gas model also, we observe that agreement was very good when l was small and

agreement  was relatively poor when the l  was large.  Same observation is observed in k-

distribution  also.  But  the  accuracy  of  k-distribution  is  superior  to  weighted-sum-of-gray-

gases by many factors. 
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Now, how do we apply to non-homogeneous path? So, so far, we have understood the k-

distribution for homogeneous path. We have only 1 gas layer. Now, we may have more than 1

gas layer. So, let us say this is 1 gas layer. We may have another gas layer. And there may be

many more. So, how do we apply this method? So, all the methods that we have discussed so

far, they suffer in the treatment of non-homogeneous path. 



There is no direct way of dealing with non-homogeneous path. Whenever there is a variation

in gas concentration or temperature, the methods basically, they have no exact way of dealing

with this.  So,  in  k-distribution,  there  are  2 ways.  We discussed scaling approximation  in

weighted-sum-of-gray-gases model also, where we said that absorption coefficient at any gas

condition phi is basically = absorption coefficient at reference state. 

This is the reference state. And times a scaling function u. So, scaling function, we discussed

in weighted-sum-of-gray-gas model also. So, scaling function applies to k-distribution also.

We can use scaling approximation in k-distribution also. But in k-distribution, there is one

more  method  of  dealing  with  non-homogeneous  path  and  that  is  called  correlated-k.  In

correlated-k, what we say is that absorption coefficient at any wavelength lambda at any gas

condition  phi  is  basically  depends  on  the  gas  condition  phi  and  absorption  coefficient

evaluated at gas condition phi nought. 

This is called correlated-k. It will be more clear when I show you the image of correlated-k

method. There is slight difference in the 2 approximations. The correlated-k and scaled k.

But, correlated-k is much superior as we will be looking at this in the next slide. 

(Refer Slide Time: 39:05)

So, what is correlated-k-distribution? So, let us say we have 2 gases, gas 1 and gas 2. One of

the  gas  is  hot.  Another  gas  may  be  cold.  1  gas  chamber  may, 1  cell  may  contain  high

concentration of C O 2. Another cell may contain low concentration of C O 2. So, overall, the

path  is  non-homogeneous.  So,  what  we  do  is,  we  generate  reference  k-distribution  or

reference kappa. I have taken it here constant value. But, it can be continuously varying. 



So, let us say this is the reference absorption spectrum. Now, what is meant by correlated-k is

that, for all the values of lambda where kappa lambda has a unique value, those wavelengths

will  see a scale  up.  And the scale up may be different  for different  wavelengths.  So, for

example, the cell 1, see this scale up. But this scale up is different for different wavelengths.

Here it is small, here it is intermediate. 

So, correlated-k basically means that absorption coefficients are correlated. They depend on 2

values. 1, they depend on gas state phi. But they also depend on the value of absorption

coefficient at the reference state, kappa lambda phi nought. So, it depends on 2 values. Here

kappa lambda phi nought value was different and the scale up was large. Here there was

different absorption coefficient value. You saw a different scale up. 

Here the absorption coefficient was different and you see a different scale up. This is called

absorption, correlated absorption coefficient or correlated-k. Similarly, here we also see at gas

state 2, there is a different scale up, different scale up and different scale up. So, at different

magnitudes of kappa lambda phi nought, the scale up is different. While in scale k it is same.

Independent of kappa lambda magnitude, the scale up is same. 

This is called scaling approximation. Everywhere it is same. This is same, this is same, this is

same. This is called scaling approximation.  So, the scaling function depends only on gas

concentration.  It  does not depend on the magnitude of absorption coefficient.  So,  scaling

approximation is little more restrictive.  That means, scaling is applied uniformly over the

spectrum, while the correlated k-distribution is more reasonable, more better approximation,

because it takes into account the different part of the spectrum that may see different scale up.

So, we end this lecture on k-distribution here. And this basically ends the topic of spectral

modelling. In the next lecture, we will discuss the radiative properties of scattering particles.

So, thank you.


