
Radiative Heat Transfer
Prof. Ankit Bansal

Department of Mechanical and Industrial Engineering
Indian Institute of Technology - Roorkee

Module - 7
Lecture - 32

Spectral Modelling

Hello friends, in the previous lectures we discussed the atomic and molecular spectrum. We

observed that the spectrum, the absorption coefficient and the emission coefficient of gases

very  very  erratically,  it  has  very  fine  resolution,  it  has  subjected  to  lot  of  broadening

parameters which makes the lines very thick. So, in a sense, the solution of the radiative

transfer  equation  or  any  radiation  problem  needs  to  be  repeated  for  a  large  number  of

wavelengths. 

Because the spectrum varies continuously over wavelength and the variation is very erratic,

we need to have very fine resolution of the spectrum. It may be few angstroms or it may be

less than an angstrom. So, in a sense, depending on the pressure and temperature of the gas

that we are considering, we need to resolve very fine spectral resolution. We need to divide

the spectrum into a number of points, spectral points. 

And we need to solve our radiative transfer equation at each and every wavelength which is

going to be very expensive. So, in this lecture we will see some of the things we can do to the

spectrum to make it  simple and computationally  less  expensive.  As in  other  branches  of

engineering, many times we resolve to empirical relations. So, in this lecture, we will also

introduce some empirical  relations  which allow radiative  transfer  equation,  especially  the

spectral part of the problem to be taken in a very simple and computationally more efficient

manner. 
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So, radiative transfer equation as we have already developed the relation earlier, depends on

wavelength. So, in a 1-dimensional, along path s, the change in intensity can be written as d I

lambda by d s kappa lambda I b lambda – I lambda. Where I b lambda is the black body

intensity, the Planck function, the spectral Planck function at a given wavelength. I lambda is

the intensity of the light beam traveling in direction s, at a given wavelength. 

And this equation is for a single wavelength. So, when we are solving a radiation problem,

we have to  solve these type of  equations  for  each and every wavelength.  There may be

thousands of points. For example, if you have a spectrum of kappa lambda, that is absorption

coefficient varying with wavelength, the variation may be relatively smooth or it may be very

erratic. It may be forming bands. 

So, we need to represent this is spectrum with number of points. When we do that, we can

solve for; so, we need to represent this spectrum into a number of points. And for each point,

we need to solve the radiative transfer equation. And then, we have to sum the results. So, for

example, if you are interested in heat flux, total heat flux, then we have to first find out the

spectral heat flux q lambda. 

And then, integrate over all the wavelengths from 0 to infinity. So, this is going to be very

very expensive. Because, calculation of single q lambda is going to be expensive. As we have

seen in many methods, be it spherical harmonics, be it discrete ordinate, whatever method we

choose, the methods are expensive. And if we have to repeat these calculations again and



again for large number of wavelengths, then definitely radiation problem will become very

expensive computationally. 

In  fact,  in  any  combustion  problem,  if  you  try  to  solve  radiation,  90% of  the  time,  in

computational  time, will  be consumed by radiation calculation itself.  And very little  time

relatively  will  be  consumed  by  other  calculations  like  conservation  of  mass  momentum

energy and so on. So, definitely we need to do something, otherwise, chunk of time will be

consumed by the radiation calculation itself. 

So,  there  are  lot  of  simplifications  we  can  do.  Some of  the  simplifications  may  not  be

accurate. But, many times the simplifications are used in practical applications. Even though

they  may  be  subjected  to  inaccuracies,  but  in  engineering  our  goal  is  to  resolve  for  an

efficient method. We can give practical results in real time rather than going for very very

accurate results. So, even if our model is able to give 20 to 30% accuracy in reasonable good

amount of computational effort, then we should be feeling happy. 

So, there are models based on gray calculations. So, gray calculation is a very conservative

approach. We have mixture of gray gas model, where we have more than 1 gray gases. And

then, we have band models. So, in this lecture, we will focus our attention on band models,

specially the narrowband models that we will focus on. 

(Refer Slide Time: 06:00)

So,  the  most  accurate  method  for  solving  the  radiative  transfer  equation,  especially  the

spectral part that we are talking about. How to solve radiative transfer equation in space and



direction, we have already discussed. Now, we have to integrate over the spectrum. So, we

are focusing on the spectrum part here, of the radiative transfer equation. And, line-by-line

method means that we have to solve radiative transfer equation without any simplification at

each and every wavelength. 

So, of course, this method is the most accurate method, because we are solving the radiative

transfer equation for each and every point. There is no simplification as far as mixture of

gases  is  concerned.  When  we  have  more  than  1  gases  in  the  mixture,  the  absorption

coefficients are simply additive. You can just add absorption coefficient of different gases

kappa lambda I. And then, your net absorption coefficient kappa lambda will be just a sum of

the absorption coefficient of individual gases. 

So, at this point also, we do not have any simplification. We will see in later slides that, when

we go for simplified models like band models or gray models, it is not simple to add gases.

For line-by-line only, we can add gases in an accurate manner. Because we have represented

the absorption coefficient of each and every gas at a given wavelength, so total absorption

coefficient is just additive and we can add them accurately. 

Similarly,  we  can  do  for  the  emission  coefficient  epsilon  lambda.  However,  line-by-line

calculations are very accurate, but they are expensive. On the other hand, the accuracy of

these calculations may not be desired all the time. As I said, in engineering applications, even

if we are making an error of 20 to 30%, we feel happy, provided the calculations can be done

in real time at very less computational effort. 

Also, if you look at the spectrum, if you look at the spectrum of kappa lambda versus lambda,

we see this type of structure. And we observe that there are certain wavelength ranges, where

absorption coefficient  is  small.  Now, the magnitude  of  kappa lambda dictates  how much

energy is basically transferred. If the value of kappa lambda is small, then very less amount

of heat transfer is actually taking place. 

So, what we observe is, some of the wavelengths may not be important. Because heat transfer

is actually taking place only where the kappa lambda value is large. And very less amount of

heat transfer is taking place where kappa lambda value is very small. So, these wavelengths



may not be very significant, may not be important for heat transfer point of view. But when

we do line-by-line calculation, we have no means to discard these wavelengths. 

We end up doing calculations repeatedly for these wavelengths as well. So, in the sense, the

line-by-line method may be an overkill which gives you good accuracy but at the same time

very high computational cost. And sometimes, this high computational cost may not give you

desired accuracy. Because, repeated calculations being done at wavelengths which are of no

importance. 

(Refer Slide Time: 09:19)

The second approach is of course the most extreme approach, which is the mean absorption

coefficient. We have a spectrum of absorption coefficient. And what we do is, we try to find a

mean value of this absorption coefficient. So, of course, when we take this mean absorption

coefficient,  then  it  is  not  going  to  have  same  transmissivity.  Because  transmissivity  tau

lambda is given by 1 – e to the power – kappa lambda x. 

Now, when we have taken mean, kappa lambda mean; now, there are many ways of taking

this mean, but the most preferred mean absorption coefficient is what we call Planck mean

absorption coefficient. So, Planck mean absorption coefficient is defined as I b lambda or I b

eta.  So,  as I  said earlier  also,  some researchers  prefer wavelength as the subscript,  some

researchers prefer wavenumber. 

Now, most of the combustion people, they prefer wavenumber. So, whatever relations I will

show in this lecture will be based on wavenumber. But it does not matter. All these relations



are equally valid on wavelength bases also. So, we define basically Planck mean absorption

coefficient as the Planck function multiplied by absorption coefficient  integrated over the

entire spectrum, divided by the total black body intensity, integrated over the entire spectrum.

So, this is called Planck mean absorption coefficient. The good thing about this method or the

mean absorption coefficient  is that it  captures the emission accurately. If  you look at  the

definition  itself  of  the  Planck  mean  absorption  coefficient,  it  is  based  on  total  emission

divided by total black body emissive power. So, this method basically captures the emission

well. So, it conserves emission. 

So, if you have a medium where absorption coefficient is not very large, rather it is optically

thin, this method will give you very good results. But for gases which absorb radiation where

self-absorption is important, where significant amount of radiation is absorbed, where it is

emitted,  then  this  method  may  be  very  inaccurate.  Why?  Because  we have  reduced  the

emission or absorption coefficient significantly. 

If a photon is traveling at this wavelength, then it will see very less amount of absorption

coefficient and it will not be absorbed. But in actual practice, the absorption coefficient is

large and it should be absorbed. So, what basically we are doing is, a photon which should

have been absorbed because of large amount of absorption coefficient is allowed to transmit

by  taking  a  small  value  of  absorption  coefficient,  a  small  value  of  mean  absorption

coefficient. 

So, this basically results in lower absorption and higher transmissivity. And definitely, this

method is not accurate for gases where absorption is important. For optically thin case, this

method may be accurate. 
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The first simplification towards an accurate method and we are talking about accuracy of 15

to 30% here. We are not talking about accuracy of 100% or 90% here. So, this narrowband

model that we are going to talk will have accuracy of the order of 15 to 30%. So, what we do

in narrowband model is, we take a few lines, a few wavenumbers and we take an average

over that spectral range. 

So, unlike the gray method, we have taken the average over the entire spectrum from 0 to

infinity. We are now going to take average only over a small range. Okay. We have taken few

lines as is shown here. These lines will have different magnitudes. They, these lines will have

overlap as is seen clearly observed here. So, lines have different strength. Lines have different

overlap. 

And we are taking an average over these small wavelength range, where we have only few

lines. Now, the point of argument here; why this method is successful? why this method is

able to work? The argument is that, in rotational lines, especially when we have molecular

spectrum, the lines,  there are  large number of lines.  And these lines  are having different

magnitudes. And that is seen in this is spectrum also. 

We have lines which are of different magnitude, different type of overlap is there. So, the

argument is that, we do not need to have exact knowledge, which line is where. We are not

interested in where, what wavelength,  wavenumber this line is located, what wavenumber

this line is located. So, the exact knowledge of where the spectral line is located, the exact

location or the magnitude of these lines is not important. 



It  can  be  randomly  placed.  So,  that  is  what  basically  the  approach  of  this  narrowband

distribution, narrowband model is. We assume that the lines are randomly located. They have

random strength, they have random location. And we apply the theory of random numbers,

the probability distribution and based on that theory, we are able to simplify significantly the

mathematics involved. 

And  this  gives  you  good  results  within  the  accuracy  range  of  15  to  30%.  Lot  of  the

computational  time is  saved.  And what  you get  is  basically  a  reasonably accurate  model

without  resolving  to  complex  calculations.  Of  course,  because  there  is  no  quantum

mechanical, there is no logic in these calculations, so we have to fit the parameters involved

with experimental data. 

So, the method basically resolves on experimental fitting. So, we develop a correlation. This

correlation  has  no  sound  physical  background.  But,  all  we  do  is,  we  fit  the  parameters

involved in this correlations from experimental data. And this experimental fitting basically

dictates the accuracy of the model. 
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So, what we will do is, we will do averaging in, let us go into the details of this narrowband

model. The method is only applicable to black surfaces with no scattering. And it will be

clear  why it  is  restricted to black surfaces with no scattering.  All  we are interested  in is

averaging. We want to average these 2 integrals which appear in radiative transfer equation. If

you look at the radiative transfer equation,  the integrals, when you integrate the radiative

transfer equation on spectral bases we get 2 integrals. 



1 is the integral kappa eta I b eta and another is the 1 – exponential over the path length of

kappa eta dx which is basically the transmissivity. So, these 2 integrals appear in radiative

transfer equation when it is integrated over wavenumber. Now, if you look at this expression,

we want to simplify this. We want to take an average.  So, what we do is, we divide the

spectrum into number of bands. 

So, we have spectrum going up to 0 to infinity in wavelength space. So, what we do is, we

divide this spectrum into small small bands. These are our small bands in which we have

divided the spectrum. And let us say 1 band that we take has width of delta eta. The width of

1 small band is delta eta. So, we want to integrate our result over this small band. And over

this small band, we assume that I b lambda, the black body function does not change. 

Because the spectrum delta eta is very small.  Only few wavenumbers are present. So, we

assume that I b lambda does not change. And we can take it out of this integral. So, let us

divide the spectrum into narrow bands. And we take an averaging. So, what we do is, the

same kappa eta d eta we average or we integrate from range eta delta eta by 2. We integrate

over the small narrowband. And then, what will do is, I b eta is taken out of the integral. So, I

b eta now is out of this small integral. Earlier, it was multiplied by kappa eta, but now we

have taken it out of the integral. 
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And same thing  we  do  for  the  second integral,  which  is  the  integral  of  emissivity,  1  –

exponential over the path integral. So, we also take it average over the small narrowband.

And we define  2  quantities,  average  spectral  absorption  coefficient  and average  spectral



emissivity. So, this is a spectral average absorption coefficient. And this is spectral average

emissivity. Now, we are using the both spectral and average. 

So,  what  does  this  mean?  What,  why we are  using  spectral  an  average,  both  the  terms

simultaneously? So, it is average over small narrowband. But it varies from narrowband to

narrowband. That is why we are using the term spectral. If you look at the variation now of

absorption coefficient, it will not be very very abrupt. It will be rather very smooth. If you

look at  the narrowband absorption coefficient,  it  will  be rather  smooth,  because we have

averaged over a small narrowband. 

Now, it is not very erratic as was in the earlier case. Now, we have taken an average over

small  wavenumber  range.  So,  it  becomes  relatively  smooth  and  the  integration  becomes

relatively easier. So, this is the first part  of the narrowband model. The second part is of

course, that we do not know the, we do not want to put the information of exact lines, exact

wavelength and exact magnitude. So, we have everything in random. So, in this category, we

have 2 models. 
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The  Elsasser  model  which  assumes  that  the  lines  are  equally  spaced.  They  have  equal

intensity given by S. So, the intensity of the line is given by S at the center. The distance

between lines is same as is given here d. So, d is a separation between 2 lines. So, Elsasser

model  is  a  very  simple  model  which  assumes  that  all  the  lines  in  a  band  are  of  same

magnitude of same separation distance d. 



Of course, there is small overlap hear. The overlap is very minimal here and it over predicts

transmissivity. So, if you do a calculation based on this model, you will get results higher

heat flux as compared to actual value. Because it leads to higher transmissivity. On the other

hand, there is a another model, statistical model, which assumes that the lines are randomly

located. They have random position given by a probability distribution. 

It leads to higher amount of overlap between the lines, because lines now are not equally

spaced.  They  are  randomly  located.  So,  lines  may  significantly  overlap.  And  this  result

basically gives you less amount of transmissivity, more overlap, less transmissivity. So, it

tends to under-predict the heat flux. So, if you use Elsasser model, the heat flux will be over

predicted. If you use statistical model, the heat flux will be under predicted. 

But the difference will not be more than 20%. So, the model, both the models, they give very

good results. While the error between the 2 models may not be very large, compared to the

other models that we are going to discuss. So, the 2 models will have accuracy of the order

20% or so. So, first we will discuss the Elsasser model. In Elsasser model, what we assume is

there are infinitely in many lines all separated by a distance d. 

(Refer Slide Time: 21:19)

Now, these lines have strength S. That means, at the center, the strength is S. The distance

between the 2 lines is d. They have width b L. So, they follow Lorentzian line broadening.

These are the assumptions in this model. There are many many lines, infinitely many in fact,

separated by distance d, all have same shape given by Lorentz profile. Lorentz profile, we



discussed in the previous lecture on line radiation is given by this relation, b L where b L is

Lorentz width; eta – eta nought – id square + b L square. 

If id basically represents the line number. If I is = 0, we get the center line, this one. If id is 1,

then we get line on the left. If id is – 1, we get the line on the right. So, we have infinitely

many lines equally spaced. Now, this  makes an infinite  series. We can sum the series to

calculate  our  absorption  coefficient  kappa eta.  But  to  make  it  easy, this  series  has  been

evaluated by number of researchers. 

And this series solution is given by this formula, kappa eta is = S by d sin h 2 beta cos h 2

beta – cos z – z nought, where beta is line overlap parameter pi bL by d. So, beta is basically

line overlap parameter which basically dictates how much overlap exists between lines. Of

course, this is going to be very less for this model, but still there is some overlap in the line

wings.  And beta  is  basically  the  magnitude  or  it  basically  gives  you an idea  how much

overlap exist between the 2 models. 

Sin h represents the hyperbolic sine function. Cos h represents the hyperbolic cosine function.

And this formula in closed form can calculate the absorption coefficient kappa eta. But we

are not interested in absorption coefficient. We are interested in mean absorption coefficient.

So, we have to take an average over the few lines. 
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And in fact, this lines are periodic in nature. If you have observed, the Elsasser model has

lines equally spaced. They are periodic in nature with period from – pi to pi. So, what we can



do is, we can integrate and find out an average absorption coefficient. So, average absorption

coefficient is given by S by d where S is line strength parameter, d is separation distance.

Spectral emissivity, average emissivity is given by this relation. 

Of course, to evaluate this integral is not easy. And I will not attempt in this lecture how to

evaluate this integral.  This can be evaluated numerically. As we have seen in this course,

many integrals, they become very complicated. And we do not have any method to solve

them analytically. So, this integral gives you the average emissivity of the narrowband. And

this has to be evaluated using some numerical scheme. 

Beta is line overlap parameter, we have already discussed. Beta is given by pi b L by d. b L is

Lorentzian  width,  d  is  separation  distance,  X is  line  strength  parameter  where  S  is  line

strength x is path length 2 by b L and tau is optical thickness which is defined as s by s by d

into X or 2 beta x. So, this is the Elsasser model. The second model we have is the statistical

model which assumes that the lines are randomly placed. 

They are not equally spaced, they are randomly placed. So, it is purely probabilistic in nature.

But it turns out to be accurate, because ultimately the parameters of this model will be fitted

from experimental data. So, we have 3 types of model in this category. And the first one

assume that all line have equal strength. It is called uniform distribution or uniform statistical

model. So, all lines have same strength. 

So, there is no randomness as such. All the lines are of same strength. The second model is

Goody model which gives that there is a probability distribution from which lines can be

selected. 
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And this probability distribution is given by 1 upon S prime, where S prime is average line

strength, exponential S over S prime. So, this is the Goody model. And the third model is

Malkmus model which basically replaces the denominator S bar, the mean line strength with

S. That is, the particular value of S. So, there is a small difference between Goody model and

the Malkmus model. 

Now, Goody model and Malkmus model has enjoyed very popularity in combustion as well

as in atmospheric sciences. So, these 2 models we will discuss. And the uniform statistical

model we will not discuss. I will not go into the derivation of the results. I will just give you

the final outcome of this results. Now, statistical models, again we are interested in finding

the value of a mean emissivity. 
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So, mean emissivity, it turns out to be same for all the models. So, that is a good thing. The

expression, the final expression for mean emissivity turns out to be same for all 3 models. It

is given by 1 – exponential – W bar by d. Where W bar is average equivalent line width and d

is average line spacing given by delta eta by N. Now, W bar will be different of course for

different models. 
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So,  the  expression  for  W bar  by  d  is  given  here  for  the  Goody  model.  It  will  be  best

understood when we take 1 example.  So,  Goody model  will  have W by d given by this

relation. And Malkmus model has W by d given by this relation. Okay. So, I will not going to

explain how this relations are derived. There is a complicated theory behind these 2 models,

how the models are, how the results are derived. 

But  it  turns  out  to  be that  the  emissivity  formula  is  same for  both  the models.  And the

parameter W by d can be calculated using the formulas given on this slide. Now, why this 2

models that we have discussed, the statistical  and the Elsasser model are able to produce

results  with  such  good  accuracy  is  basically  the  parameters.  So,  2  parameters  that  are

important here are b L by d; that means, average line width divided by line separation d and

average line strength divided by line separation d. 

These 2 parameters that are required to solve the problem are found by fitting experimental

data. So, this is where basically the accuracy of these models basically rely. So, these are kind

of semi-empirical models where some parameters are basically based on experimental data.

And rest  of  the  things  are  based on simple  theory, simple  observation  like  the  lines  are



randomly located, given by a certain probabilities distribution. So, we will use these models

to solve 1 problem in a while. Now, what we have done here is, so far. 
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We have so far assumed that we have a gas layer. There is a single gas in this layer. Okay.

This gas emits or radiates over a spectrum. We have also assumed that the black, walls are

black. These are black walls. And we also assume that there is no scattering. So, these models

are basically derived for number of simplifications. We have a single gas. We have uniform

absorption coefficient, uniform or homogeneous. 

Homogeneous means that it does not vary with space. So, kappa lambda is not a function of

space. Okay. So, it is constant. Throughout the cell, the absorption coefficient is constant. The

only parameter it changes with is wavelength. So, under this simplification, we have derived

this data. Now, suppose we have again homogeneous case, but we have mixture of gases. In

many  combustion  applications,  you  will  find  that  carbon  dioxide  and  water  vapor,  they

coexist. 

And they radiate similarly. In atmospheric sciences we have carbon dioxide and water vapor.

So, mostly we have at least mixture of 2 gases, maybe more. But, we have at least 2 gases.

So, how do we solve a problem with mixture of gases. Now, there is again a very simple

analysis.  So,  what  we define  is,  that  the  mixture  transmissivity  is  basically  a  product  of

individual transmissivity. 



So, this is a very simple relation based on probability theory. So, if you have a probability of

2 events and both the events are independent, then you know that probability of A into B is

simply  probability  of  A and probability  of  B.  So,  probability  of  A times  B is  simply  =

probability of A times probability of B. Based on probability theory, now we have assumed

here random location of lines. 

So,  it  turns  out  to  be  that  we  can  apply  this  relation  for  mixture  of  gases  also.  So,

transmissivity  tau  eta  mean  transmissivity  of  the  mixture  is  =  mean  transmissivity  of

individual gases multiplied together. So, we can solve for mixture of gas mixture very easily

using this assumption. 
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The second thing is homogeneous non-homogeneous path. Suppose we have now 2 layers or

3 layers or more, let us say we have number of layers. Radiation enters from this side and

leaves from here. Here the absorption coefficient kappa lambda, let us call it 1. Here we have

absorption  coefficient  kappa  lambda  2.  And  here  we  have  absorption  coefficient  kappa

lambda 3. This situation may arise in combustion application, in furnace for example. 

Where furnace has continuous temperature distribution. Gases are in different concentration,

at different heights of furnace. So, absorption coefficient is continuously going to vary. It will

not be uniform because absorption coefficient depends on temperature and concentration of

the gas. So, kappa lambda is a absorption coefficient in gas 1 or cell 1. You can call it cell or

zone 1, cell 2 and cell 3. 



This is a non-homogeneous problem, non-homogeneous in space. Because within this space,

the absorption coefficient is changing. Now, how to solve for this type of problem? Because

ultimately, what we have derived is a formula for mean absorption coefficient in cell 1 and

mean absorption, mean emissivity in cell 1.These formulas we have derived. But how do we

apply this formulas to the total path? 

Again, to do that, we have again 1 approximation,  very effective approximation given by

Curtis-Godson. The Curtis-Godson approximation is based on the same formula. But now, we

have to find out our tau tilde and beta tilde, which are now based on path averaged value. So,

the transmissivity tau and overlap parameter beta is now replaced by path averaged value.

Okay. So, transmissivity, we have taken an average over the entire path. 

And beta which is line overlap parameter, we have taken over the entire path. And these

quantities are basically derived using this relations. Okay. Again, we have integral to solve.

And this integral varies from 0 to x, where x is now total path length. Okay. So, over the path,

the beta will, the kappa will change. And we have to take an average or we have to integrate

over the entire path. 

So, this is going to be very very complicated. So, we will not going to touch upon this. We

will just do 1 problem for a simplified case of one cell, homogeneous case. And for this case,

we have following data given for a pure gas at 300 kelvin and 0.75 atmospheric pressure. 
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So, we have a single cell. We have a gas here and it is bounded by black walls; both sides are

black. The temperature of the gas is 300 kelvin. The pressure of the gas is 0.75 atm. And we

have been given certain parameters. d is given, mean line spacing. You can relate this either

with Elsasser model or with statistical  model.  Both will  have mean line spacing d as 0.6

centimeter inverse. 

We are working in units of wavenumber. We also have mean line half width b L, which is

used in Lorentzian profile. And we also have mean line strength S or S bar as 0.08 centimeter

– 2 atmosphere inverse. We have to find out determine mean spectral emissivity. So, we have

to find out mean spectral emissivity of the band, narrowband for geometrical path length x is

= 1 centimeter, using the Elsasser model and Malkmus model. 

So, the first thing that you should observe is, that the units of line strength or absorption

coefficient, mean adoption coefficient as r in terms of pressure. So, we have to take path

length based on pressure.  So,  remember  in  the very first  few lectures,  we discussed that

absorption coefficient can be defined either based on simply path or it can be defined based

on pressure  based  or  can  be  density  based.  So,  in  this  problem we have pressure  based

absorption coefficient. So, we have to take the path length accordingly in this problem. 
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So, we defined, first of all path length based on pressure. So, we multiply by pressure and

take the path length. Now, s is given as 1 cm and pressure is given as 0.75 atm. So, x now

becomes = 0.75 centimeter atm. So, this is the path length for the problem that we have



found. Next, so we are going to, let me just show you the quickly what relations we are going

to use. So, for Elsasser model, we are going to calculate X. 

We are going to calculate mean emissivity from this relation. Of course, solving this integral

is not easy. So, I will just give you the final result and will not try to solve this integral in this

lecture. So, we first find out small x line strength parameter as = S times X upon 2 pi b L.

Okay. And this will be =, now s 0.08 centimeter – 2 atmosphere inverse. x we have already

calculated 0.75 centimeter atm upon 2 pi. 

b L is given as 0.03 centimeter inverse, 0.03 centimeter inverse. So, this value of x comes out

to be 1 upon pi. Okay. The next parameter we need is beta, line overlap parameter. So, beta is

basically = pi times b L upon d, line overlap parameter. This will be pi. b L is given again,

0.03. And d is given as 0.6 from here. d is 0.6. So, this will become = pi by 20. Okay. So,

from here, now tau is = 2 beta x. So, this will be = simply 0.1. Okay. 

Now, we have calculated all the parameters required. Now, the mean emissivity can easily be

calculated. So, we can use this formula. Let me just show you this formula again. So, we have

to put the value of beta  and x.  And integrate  here from – pi to  pi  to find out the mean

transmissivity. Okay. So, again I will not try to solve this here in this lecture. So, this value, I

am just directly writing. Will be = 0.0867. 

This is the mean emissivity of a gas layer using the Elsasser model. So, this is the mean

amount, mean emissivity of the cell or the path, given path filled with its particular gas using

the Elsasser model. Now, let us do using the statistical model. So, we use the Malkmus model

here. So, let me just show you what formula we will be using for the Malkmus model here.

Okay. So, we have a homogeneous path. 

So, this is the formula we are going to use. 1 – exponential – W by d. Where W by d is given

by the this relation, beta by 2 1 + 4 tau upon beta half – 1. So, for the Malkmus model, we

can calculate emissivity. I will just directly write the results. It will come out to be = 1 –

exponential  – 1 by 2 pi by 20. Just writing the values in the expression without actually

showing you the calculation here. 1 + 4 into 0.1 pi by 20 power half – 1. And this value

comes out to be 0.0670. Okay. 



So, this is how we can calculate the emissivity of a gas layer, a homogeneous gas layer using

the 2 narrowband models. That is the Elsasser model which is uniformly spaced lines and

statistical model, statistical Malkmus model, random placement of lines. So, thank you. In the

next  lecture,  we will  discuss  wide band models,  which further  improve the efficiency of

radiative calculation in combustion and with less,  very small  sacrifice in accuracy of the

calculations. We can speed up the calculations by averaging over the entire Ro-vibrational

band. Thank you.


