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Monte Carlo Method for Thermal Radiation I

Hello friends, in this lecture we will study the Monte Carlo method as applied to solve the

radiation problems in complex geometries. The Monte Carlo method is a class of method that

basically  relies  on  random sampling  to  solve  mathematical  as  well  as  non-mathematical

problems. So, I will give you an example. Many news channels conduct pre-poll survey to

find out the outcome of an election in our country. 

They do this survey to find out the success, expected success of different parties in different

regions. Now, for this survey to be successful or effective, the sampling needs to be done.

Now, the  sample  size  has  to  be  reasonably  good in  number  and quality. Now, how this

agencies do sampling, they go to different villages, they talk to people of different age group,

different social background, different economic background, they talk to people in cities, in

villages, in different localities of different religion, different caste, different language. 

And based on this response, they conclude or make a guess of the expected outcome. Now,

this procedure is called Monte Carlo. So, Monte Carlo basically is a method where we do

random sampling. So, the sample that we are taking should be purely random. There should

not be any biased in the collection of samples. That means, the agency who is conducting the

survey should not be biased in taking the samples. 

Bias means, they should not take more samples from a particular group and less samples from

a, from the other group. If that is done, then the sample would be biased and the expected

outcome will not be correct. So, the sample should be purely random. And once we do this

random sampling, it is expected that the result will be very close to what we are predicting

based on this random sampling. 

Now, the same thing  we can apply to  solve the radiative  transfer  equation.  In numerous

examples,  we have  learnt  that  the  problem of  radiative  heat  transfer  is  very  complex.  It



involves multiple parameters. The problem may be complex in 3-dimension. The intensity

depends on 2 directions.  There may be wavelength dependence.  And all  these parameters

makes the problem much more difficult for radiative equations to be solved. 

Especially,  we  get  integral  equation  for  radiative  transfer  between  flat  surfaces  or  plane

surfaces with vacuum as a participating media, with no participating medium. And we get

integro differential equation when we have participating media. So, overall the problem is

very complicated. If we try to solve this problem analytically or numerically, we have lot of

challenges. 

On the other hand, the Monte Carlo method is an effective method that can solve problem of

any complexity to arbitrary degree of accuracy without any approximation. All we need to do

is random sampling of photons from the surface, from the gas. We have to emit samples

randomly. We have to absorb scatter the samples randomly. And we have to trace the history

of this photons. And based on this, we can solve the radiative transfer equation. 
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Now, this problem, the Monte Carlo problem is computationally very expensive. Although

the problem can be of any complexity, the Monte Carlo method can solve it  to arbitrary

degree  of  accuracy.  But  the  problem  solving  requires  significant  cost,  significant

computational cost. We may have to sample millions of photons in the problem before we get

good results. So, it is not a good idea to apply the Monte Carlo method to simple problems. 



If we look at the time it requires to solve, we see that the Monte Carlo method is less efficient

for problems with less complexity. It takes more time than the conventional methods. While,

if the problem complexity increases, the Monte Carlo method is more accurate. The effort

used by the Monte Carlo method increases linearly, while the effort required to solve problem

in standard conventional way increases exponentially. 

So, for complex problems, the Monte Carlo method is a powerful tool that can give you

accurate  results  in  any  complex  geometry, without  any simplification  or  approximations.

Now, how do we apply this? 
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Before we discuss how do we apply the method to solve radiation transfer radiation problem,

let us discuss some terminology used in any Monte Carlo procedure. So, we have probability,

the first thing. Probability is basically a likelihood of events occurrence. So, this we discussed

while  discussing the view factor  also.  So,  let  us  say we have  a  dice  with  6 faces,  each

numbered from 1 to 6. 

Now, when we roll this dice, we can get a number from 1 to 6. So, we can get 1, 2, 3, 4, 5 or

6. And the probability of each of these number is = 1 by 6. We discussed this earlier also. So,

the probability  of getting 1 is = probability  of getting 2 and so on,  is  = 1 by 6. So, the

probability  is  basically  the likelihood of events  occurrence.  So, what is  the likelihood of

getting 1; what is the likelihood of getting 2; and so on. 



The sample space is basically the all possible outcomes. So, 1 to 6 is the sample space. We

can get 1, 2, 3, 4 and so on. So, this is sample space. Random experiment means, we are

doing an experiment where we want to roll the dice, let us say 3 times and find out what

numbers do we get. So, we can have 1, 5, 4. This may be 1 experiment. We can have 3, 2, 5,

4. And this may be second experiment, and so on. 

In each experiment we can have number of samples. And the outcome is going to be purely

random,  which  cannot  be  predicted.  So,  random  experiment  means,  outcomes  are  not

predictable. We will get some numbers, but the numbers may be purely arbitrary or random,

out of the sample space. Random variable is a variable whose possible values are numerical

outcomes of random experiments. 

So, this 5, 1, 5, 4 is the outcome of this experiment and they are purely random. We can

represent this by a random variable. Let us call x vector is = 1, 5, 4. So, x vector is a random

variable which has 3 values 1, 5, 4. And these 3 values are random, purely random, coming

from rolling of the dice. Now, we can have discreet values. We can have continuous values.

So, this experiment has discrete values 1, 2, 3 and so on. 

For one such discrete values, we define what we called probability in mass function. On the

other hand, we can have certain numbers which are purely continuous in nature. And for

those functions, for those variables, we define what we call probability density function. 
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So,  probability  density  function  or  probability  distribution  is  basically  a  mathematical

function  that  provides  a  function  to  evaluate  probabilities  of  finding a  different  outcome

when we do an experiment. For example, the uniform probability density function is given by

f x is = 1 upon b – a. What it says is that, the probability of getting x between a and b is = 1

upon b – a. If a is = 0, b is = 1, then f x is = 1. 

That means, the probability of getting a number x; x can have any value 0, 0.001, 0.00002

and so on. It is a continuous function. And the probability of getting any number between 0

and 1; if a is = 0 and b is = 1 is 1. And this probability is independent of x. That means, the

probability is same for all values of x. And this is called uniformly distributed variable or

uniform distribution. 

If a is not = 0, b is not = 1, then the probability will be 1 upon b – a, between a and b and it

will be 0 outside this interval. Similarly, we have random variable distributed along what we

called  normal  distribution  of  Gaussian  distribution.  It  depends  on  2  parameters,  mu  and

sigma.  Mu is  the  mean value  and sigma is  the  standard  deviation.  And we see  that  the

maximum probability in this function is at the mean value. 

If you look at it, at the mean value, that is x is = 0, so mean value 0 means, the value of x is 0.

So, the probability is maximum. So, the maximum probability in Gaussian distribution or

normal distribution is at the mean value. And then, this distribution shows that the probability

decreases rapidly. From maximum at the mean, it decreases rapidly in both the direction from

the mean value. 

And how fast  it  decays away from the  mean depends on the standard deviation.  If  your

standard deviation is small, then it decays much faster. If your standard deviation is large,

then it decays much slow. So, the red curve here has standard deviation, which is basically

root 1 or 1. And it decays much slowly from the mean value. While this curve blue, has a

standard deviation of root 0.2. And it decays much faster than the red distribution. 

So, this is normal distribution. Now, which distribution shall we use in solving a problem

depends on the type of problem. So, in a election we may assume that all people carry equal

opinion. We may use a uniform distribution. But if we come to know that certain group of

people is more likely to have a particular opinion than another group of people, then we may



not use a uniform distribution. And we may have to go for some other distribution. So, we

must  understand  the  problem before  we actually  apply  what  kind  of  probability  density

function we should use in our problem. 
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In Monte Carlo methods applied to radiative transfer problems, we define different type of

probability  distributions.  For  example,  we  can  define  for  wavelength  selection.  So,

everything  is  sampled  randomly,  the  location,  the  emission  point,  direction,  even  the

wavelength  is  sampled  randomly  in  Monte  Carlo  method  for  radiative  transfer.  And  for

wavelength selection,  we define the probability  density function,  which is basically  = the

emitted energy in a small wavelength interval. 

So,  we have a small  wavelength interval  d lambda.  How much energy is emitted in that

interval,  divided  by  total  energy  emitted  gives  you  a  probability  distribution.  From this

probability  distribution,  we  need  to  find  out  random  photons  carrying  energy  in  this

wavelength interval d lambda. So, we will see how this probability distribution will be used

in the Monte Carlo method for radiative problems. 

In probability, we also talk about cumulative distribution function. So, probability distribution

function  gives  you the  probability  of  finding the given value  at  a  given value  of  x,  but

probability distribution gives you total probability of getting a variable for all values of x < or

= that value. So, for example, the cumulative distribution R lambda in this space is defined as

sum or integrated probability over all the wavelengths, < the value lambda. 



So, R lambda is the cumulative probability from 0 to lambda. And this can be defined as 0 to

lambda E lambda divided by total emission. So, we take total amount of energy emitted from

all  the  wavelengths  <  lambda  and  divided  by  total  amount  of  energy  emitted  over  all

wavelengths. So, this is called cumulative distribution. So, normally we apply this cumulative

distribution rather than probability density function for sampling in our problems. 

So,  mostly we will  apply this  cumulative  distribution  function,  because it  is  easy to use

cumulative distribution function for sampling. And we will use this for the solution of the

problems. So, general procedure for photon Monte Carlo basically involves large statistical

samples. 
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We have to divide the problem into number of photons. So, if you have a surface, let us say.

And we want to find out heat transfer from the surface. What we will do is, we will randomly

emit photons, let us say total N number of bundles, energy bundles, randomly in all direction.

Okay. So, we have to divide the problem into random or statistical  samples, each sample

carrying equal amount of energy. 

So, total energy, let us say is E emitted from the surface. Then each bundle, each energy

bundle will carry an energy = E by N. And if the emittance of the surface is let us say epsilon,

the total amount of energy emitted is epsilon c tigma T 4 by A. And energy of each bundle

will be this total energy divided by the total number of bundles N. Once we know how many

bundles to emit, we have to find out the properties of this bundle. 



What will be the location of a particular bundle; what will be the direction in which it will be

emitted; whether this bundle will travel without any attenuation; or will it be subjected to

absorption and scattering if there is a medium adjacent to the plate. We have to trace this

bundle from its origin to its final destination.  And wherever it reaches,  whether the other

surface or the gas, we have to find out whether it is subjected to scattering. 

If scattered, in which direction the scattered photon will go; if reflected, which direction the

reflected photon will go. So, all this things, we have to basically incorporate in solving the

radiation problem using the photon Monte Carlo method. 

(Refer Slide Time: 16:13)

So, the first thing that we will discuss in the photon Monte Carlo or Monte Carlo method as

applied to radiation problem is, the emission from a surface. Now, we let us say we have a

surface. The dimension of the surface is x and this is y. Okay. This 2-dimensional plate. And

we have to find out at what location a photon is emitted. Let us call this point p. So normally,

you will expect that that the, there is a uniform probability, the photon is equally likely to be

emitted from any point on this plate, while this is true for a plate having normal isotropic

properties. 

That means, if the plate has uniform temperature over its entire area, if the plate has uniform

emittance over its entire area, then definitely the probability will be uniform. We can use

uniform distribution to find out the point of emission on this plate. But what will happen if

the temperature is varying? If let us say 1 end is at lower temperature and other end is at

higher temperature, which direction you think the photons will be emitted more? 



So obviously, where the plate is hot, more photons will be emitted, where the plate is less,

having less temperature, less number of photons will be emitted from that location. So, we

will  give a general relation.  And then, we will  simplify the relation for a special  case of

isothermal isotropic plate. So, we define total amount of energy emitted from this plate as

epsilon sigma T 4 dA. 

And this can be splitted into double integral over this plate, x is = 0 to x. y is = 0 to y sigma T

4 epsilon dydx. Now, we define another quantity E prime, where E prime is basically the

amount of energy emitted at all ys at a given x. So, E prime x is amount of energy emitted, at

all ys at a given x. So, this is E prime x. Total amount of energy emitted at a given x for all

values of y. 
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Now, we define a cumulative distribution R x. So, cumulative probability distribution R x is

basically the amount of energy emitted 0 to x E prime dx upon 1 upon E. That is, amount of

energy. So,  this  is  the plate.  Amount  of  energy emitted  from this  plate,  divided by total

energy, gives you the cumulative probability of emission from this plate for all values of y.

Now, this relation needs to be inverted. 

So, what we have is, random number on the left-hand side. And unknown x on the other side.

So, we are interested in finding the location p. Okay. So, this p needs to be, this location p

which has coordinate x and y needs to be determined. Now, x and y are unknown, which are

on  the  right-hand  side.  While  random number  which  you  can  easily  generate  from any

computer language using random number generator is on the left-hand side. 



So, this relation cannot be inverted easily. You have to apply some strategy to invert this and

find out the value of x. And for this type of problems, we will see that this may be little

challenging. But the point is, we have to find out the value of x by inverting the relation.

Given the value of R x, find out the value of x. Okay. So, where R x is a random number

between 0 and 1. 

So,  R x  is  a  random number  between  0  and 1,  because  probability  distribution  may  be

uniformly distributed or it may be distributed using Gaussian. But cumulative distribution

will always be between 0 and 1. So, we will use the cumulative distribution. And this R x,

basically we will take 1 value from 0 to 1 and we will invert this relation to find out the value

of x. Similarly, for y, we define R y, the random number R y is basically 1 upon E prime x. 

That is energy emitted at all ys at a given x divided by 0 to y epsilon sigma t 4 d y. And we

can invert this relation. So, y will be a function of x and R y now. Because the temperature of

the plate is not uniform, so the random location will depend on x. Okay. So, in general, this

relation is very difficult to invert, but we will see that for certain simplification we can invert

it. 
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So, mostly we deal with isothermal surfaces. That means, the function E, the energy emitted

from the surface is not a function of x and y. And from, for that case, the E x will basically be

taken out of the integral. And what we get is simply this relation, x is = R x times capital X; y

is = R y times capital Y. So, we have easily evaluated with, we do not need to invert this

relation anymore. 



So,  for  isothermal  surfaces,  the  relation  is  simple  algebraic  relation.  And  we  can  easily

calculate the value of x and y at any point. So, by this relation, we have to pick 2 random

numbers R x and R y. And the location of point p x and y can be easily calculated based on

this relation. 
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The second is the direction of emission. Now, direction of emission we will start from general

relation where the emittance is a function of direction. If it is a function of direction, then the

relation  is  going  to  be  complicated,  be  very  difficult  to  invert,  we  will  see.  But  if  the

direction, if the emittance is isotropic, that means the value of emittance does not depend on

direction. Then, the relation will be simplified. 

So, again we write the relation. Total amount of energy emitted by the surface is directional

emittance  multiplied by I  b cos theta  and integrated  over  the solid  angle.  So,  amount  of

energy emitted in a given direction. And then, we have to integrate over the entire solid angle

of 2 pi. This will give the total amount of energy. And we can write down d omega, the solid

angle as sin theta d theta d psi. 

Now, we define the cumulative distribution. So, cumulative distribution is amount of energy

emitted from 0 to psi. That means, a range of azimuthal angle divided by total amount of

energy E. So, we have R psi is = E b upon pi epsilon prime cos theta sin theta d theta d psi.

Where we have to integrate for all polar angle 0 to pi by 2, but only a range of azimuthal

angle 0 to psi. Now, we substitute the value of E from this relation into this expression for R

psi and we get 1 upon pi 0 to psi 0 to pi by 2 epsilon prime upon epsilon. 



Where epsilon is now average emittance over the entire hemisphere. Okay. So, epsilon is the

average value of the emittance over the entire hemisphere. We discuss this while driving the

relation for flat surface and we see that psi is basically a function of R psi. Okay. Now, if we

do not know the variation of epsilon prime, if we do not know how epsilon prime varies with

theta, then this relation is going to be difficult to invert. 

And we may have to do some numerical calculation for finding the direction of emittance.

Similarly, for theta angle, we write R theta is = 0 to theta epsilon prime cos theta sin theta d

theta. And then, over the entire solid angle or entire range of theta angles. And we get theta as

a function of R theta and psi. And this relation is going to be difficult to invert for theta. Now,

we will take a simplified case where emittance does not depend on wavelength. 
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And it is isotropic and it does not depend on direction. So, we assume that epsilon lambda

prime is  =  epsilon  prime is  =  epsilon.  That  means,  it  is  independent  of  wavelength  and

direction. Now, what we can do is, we can take it out. This epsilon prime can be taken out of

the integral from this expression or it will just cancel out. And the relation is simplified as R

psi is = psi upon 2 pi. 

So, we can take or choose azimuthal angle directly. All we have to do is, pick a random

number between 0 and 1, R psi multiplied by 2 pi. And that will give us the azimuthal angle.

Similarly, the, this equation is simplified as R theta is = sin square theta or theta is = sin

inverse R theta root R theta. We pick a random number, take it inverse, take it square root and



take it sin inverse and we get the direction theta. So, in this way, we can find out the direction

of emission theta and psi for different type of surfaces, isotropic or non-isotropic. 
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The third thing is wavelength. How to select the wavelength of the photon? So, we have

emitted  N  number  of  photon  bundles.  Each  bundle  has  total  energy  as  same,  but  the

wavelength of the photon bundles may be different. So, we defined a probability, cumulative

probability d function as total amount of energy emitted from the surface in the denominator

and total amount of energy emitted from the surface in a given wavelength range 0 to lambda.

So, 0 to lambda is amount of energy emitted by the plate in this wavelength range cumulative

wavelength  range.  And  this  ratio  gives  you  the  cumulative  distribution  function  for  the

wavelength selection. Now, again we have to invert this relation. And inverting this relation

may be easy if the plate is assumed to be black or gray. That means the epsilon lambda is =

epsilon. If we assume this, then the relation can be easily inverted. 

And we have identified this basically nothing but f function. That is, the fractional black body

emissive power for which the tables are easily available in the book. So, you have to pick 1

random number R lambda. And you have to look at the table of the f function in the book and

find out the lambda. So, lambda will come from f function tables. So, this will have to look at

the tables to find out the lambda. So, this is how you will find out the wavelength of the

emitted photon from the surface. 
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Now, let us say we have 2 surfaces. 1 photon is emitted from the surface and we want to see

whether this will be reflected or absorbed by the other surface. We have surface 1, we have

surface 2. So, let us say surface 2 has absorptance alpha lambda prime. Okay. Which depends

on wavelength  and which  depends on direction.  Now, if  this  photon strikes  this  plate  at

certain angle theta, then the absorptance is alpha lambda prime and 1 – alpha lambda prime is

the reflectance. 

Now, we will relate this reflectance with or absorptance with the random number. So, what

we say is, we pick a random number R alpha. And if R alpha is < the value of absorptance,

the bundle will be absorbed. And if the value of R alpha is > this absorptance value, the

bundle will be reflected.  So, we have related this absorptance or reflectance with random

number. So, 1 to 0 to certain fraction of alpha lambda prime, the chances are for absorptance

and alpha lambda prime to 1, the chances are for reflectance. 

So, in this way, we can find out whether the photon will be absorbed or it will be reflected

from the radiation. Now, if it is reflected let us say, then we have 2 possibilities. The reflected

radiation may be specular. Then we have to find out the direction of the new photon after

reflection. This direction may be specular. We have to apply the relation of Snell's law to find

out the direction. 

Or it  may be diffuse. That means, it  has equal probability in going in any direction after

reflection. So, if the surface is diffuse, the photon after reflection may go in any direction.



And it is basically same as emission. So, you have to apply the same relation for emission

that to this reflection, for diffuse reflection. So, let us solve 1 problem. 
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And we will see how to find out the emission location for the geometry given in this problem.

So, we have basically a concentric cylinders. The inner radius, so concentric cylinders; the

inner radius is r i and the outer radius is r nought. We have to find out the point of emission

on this annulus. The value of r i is given as 10 cm, the outer radius is 20 cm. Now, we have to

repeat  this  process  in  a  Monte  Carlo  procedure  for  large  number  of  randomly  selected

photons. 

But in this example, we will just do it for a single photon. And the value of random numbers

in 2 direction, that is for radial direction is 0.5, and in angular direction R phi is = 0.25. So,

with these 2 values of random number already given, we have to find out the location r and

phi for point of emission. So, let us say we have point of emission. Let us call this point p.

So, we have to find out the location of p as a function of r and phi. 

Now, the plate is assumed to be isotopic, isothermal. That means, each point on this plate is

equal likely. All the points on this plate, annulus plate are equal likely, because the plate is

isothermal. So, we have to find out. So, plate is isothermal. So, all points equal likely. Okay.

Now, all points are equal likely, because of the plate being isothermal. And 1 thing we have to

note here is that r and phi are independent. 



So, we noted in the case of a flat plate of, a flat rectangular plate, that if the plate is not

isothermal then the y will depend on x. But in this case, because the plate is isothermal, then

the r location will be independent of phi. 
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So, how do we solve this problem? So, we write the total amount of energy E emitted from

this plate as integrated over the entire area. Now, let us say the plate is black. So, E b times

dA. And this will be = E b 0 to pi r i to r nought rdrd phi. Where rdrd phi is the area of this

small element rdrd phi. So, this is the total amount of energy emitted from this surface. And

we have to integrate, double integrate from value of r from r i to r nought, inner radius to

outer radius. 

And we have to integrate over the entire angle phi 0 to 2 pi. Now, because r and phi are

independent, because of the plate being isothermal, we redefine a cumulative distribution R

phi as = 0 to phi d phi. Note that there is no dependence on phi. The integrant is R and it does

not depend on phi. So, we get 0 to 2 pi d phi. And this will be = phi upon 2 pi. And it means,

the angular direction is nothing but R phi times 2 pi. 

And this relation basically we found earlier also. So, all angular directions are equal likely.

So, we get a linear relation. You have to pick a random number from 0 to 1 and all directions

are equal likely. So, phi is = 2 pi R phi. Now, the random number R r, cumulative distribution

in the radial direction is = integration from r i to r nought rdr divided by; so this will be = let

us, this will be, we have to take r. 



And this will be r i to r nought rdr. Okay. That means total area in the denominator divided by

up to a certain radius r. And this will be = r square – r i square upon r nought square – r i

square. So, we get, and this will be simply = the random number r. So, all you have to pick is

basically the random number R r. And based on that, you can find out the radius of emission

as r i square + r nought square – r i square R r. 

So, we have given, been given 2 random numbers. R phi is 0.25 and R r is 0.5. So, from this,

we get phi is = pi by 2. And from this relation we get r is = 15.8 centimeter. Okay. So, this is

the solution. The point of emission p is nothing but 15.8 pi by 2. This is the solution. 1 thing

you note is that, the result r gives you under root r i square + r nought square – r i square

times  R r. So,  in  this  relation,  one should observe that;  let  us say we pick 100 photons

randomly. 

Then,  out  of  100 photons;  so,  we have inner  radius as  10 centimeter, outer  radius  is  20

centimeter. 10 centimeter is inner radius, outer radius is 20 centimeter. And let us say, the

mean radius of this annulus is 15 cm. So, mean radius is 15 centimeter. So, if we pick 100

photons, you will find that, more than 50 will be on the outer periphery. So, let us say we

have 100 photons taken. 80 may be here, 20 may be inside. 

That means, for radius < 15 centimeter. So, why is it so? Why we have more number of

photons with radius more than the mean radius? The reason is because of the area. The area

of the annulus plate is not uniformly located. If you look at the area between 15 cm and 20

centimeter, you have more area. If you look at area between 10 centimeter and 15 centimeter

you have less area. 

So, naturally the number of photons will be more for radius > the mean radius 15 centimeter.

So, we I will end the first part of this Monte Carlo method here. In the next lecture we will

discuss the Monte Carlo method for the participating media, where the plates are basically

bounded by the participating gas absorbing and emitting gas. Thank you.


