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Discrete Ordinate Method (DOM)

Hello friends, in the last lecture we discussed the spherical harmonics method P N, for the

solution of radiative transfer equation. The method included approximation of the intensity.

In today's lecture, we will discuss the method of discrete ordinates, the S N approximation

method. The method is very similar to the method of spherical harmonics in the sense that we

convert the algebra, the integro differential equation into sort of partial differential equations. 

We approximate the intensity in angular direction. And the method has similar accuracy as

that  of  the  spherical  harmonics  method.  However,  there  is  a  difference  between  the  2

methods. As opposed to continuous distribution of intensity in spherical harmonics, where we

represented the intensity in terms of a series of harmonics. Here we represent intensity as

discrete values in different directions. 

So, in a sense, the discrete ordinate method finds equivalents in finite difference method of

CFD. So,  just  like  we have finite  difference  method in  CFD, this  method also  relies  on

discretizing the angular direction using finite angular directions, discrete directions. We also

have 1 method which is not we are going to discuss. And the method is finite volume method,

where we discretize the angular direction using the finite volume approach. So, this discrete

ordinate method is very much similar to what we have the CFD in CFD the finite difference

method. So, the objective is same. 
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We have  to  transform  our  RTE,  the  integro  differential  equation  into  a  set  of  partial

differential equations. We can choose as many discrete directions as we want. Of course, the

directions have to be decided judicially. And we have to integrate over the solid angles for pi.

So, just to explain the difference between the method of spherical harmonics and discrete

ordinate method. In spherical harmonics method at any point, we represented the intensity as

a continuous function or a series of function. 

So, we had a continuous function over theta, in both + direction and – direction. So, that was

the P N method. And we can retain as many terms as we want, leading to higher accuracy. So,

we have P 1 method, the first order spherical harmonics method. We have P 3 method, the

third  order  spherical  harmonics  method.  However,  in  the  discrete  ordinate  method,  the

intensity is not a continuous function of theta. 

Rather, at any point, we take only discrete directions. So, we choose only discrete directions

along which we will solve the RTE. So, we are basically discretizing the angular domain of 4

omega. So, this angular domain, angular solid angle, total  solid angle we are discretizing

using finite number of discrete directions. And then, we will integrate over all these directions

using numerical quadrature. 

So, what we will do is basically, we will integrate over the entire solid angle using some

numerical scheme, numerical quadrature scheme, where we have w, the weights and intensity.

If  you  are  integrating  over  intensity,  then  we  will  have  intensity  in  only  those  discrete



directions. Where I represents the discrete directions chosen using a suitable scheme. And

then, we use numerical quadrature to integrate over the solid angles. 

So, that is the difference between the spherical harmonics method and the discrete ordinate

method that 1 basically is continuous function of intensity versus theta or azimuthal angle.

And here we have a discrete function. And we use numerical quadrature to integrate over

solid angle using these discrete values of intensity. 
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So, we will start the development of this method from the radiative transfer equation. So, for

radiative, for absorbing, emitting and scattering medium, we have radiative transfer equation

in a given direction s. Radiative transfer equation can be written as the kappa times I b. That

is the emission term – extinction by scattering and absorption. And then, in-scattering, that is

augmentation by scattering, in-scattering. 

And this radiative transfer equation is subjected to boundary condition at the wall, where we

have at  the wall  2 components,  the emission from the wall  and reflection from the wall.

Reflection will have reflectance rho times irradiation from all the directions. So, we have to

integrate over the solid angle for all the intensities coming. So, we are interested in intensity

coming from all directions and reflected in a given direction. 

And that this direction is s cap. And this, all the directions are basically represented by s cap

prime. So, these are the governing equations. We have observed them many times before.

Now, how do we approximate in the discrete ordinate method? That is, N S N approximation,



we replace  the  quadrature  or  the  angular  integration  over  solid  angles  with  appropriate

quadrature, numerical quadrature.
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So, if we have a function f, now in this case f will be intensity. So, if we have a function f that

we want to integrate over solid angles. Then this integral is replaced by numerical quadrature.

So, we replace it by summation i is = 1 to n. w i, where w i is weight. And f s i is value of f in

discrete direction, s i cap. So, we have chosen certain directions. And along those directions,

we are solving the RTE. 

And the integral over solid angles appearing in the RTE is approximated using numerical

quadrature. So, now our governing equation, the radiative transfer equation becomes purely

differential  equation.  So,  integration  does  not  appear  in  this  equation.  We are evaluating

intensity in discrete direction s i cap. And their integration has been replaced by numerical

quadrature. 

So, we have w j intensity coming from all directions s j. The scattering phase function which

is  now dependent  on  discrete  directions.  So,  although  the  scattering  phase  function  is  a

continuous  function,  but  we have  approximated  the  scattering  phase  function  phi  with  a

discrete function given from 2 directions s i and s j. Similarly, our boundary conditions now

is no more an integral equation. 

Boundary conditions also simplifies by replacing the integral in the boundary condition with

the summation using numerical quadrature. So, the integration in the boundary condition here



for irradiation h is now replaced by a summation for all the incoming directions. So, n cap dot

s j cap is < 0 means, we are interested in only incoming directions. So, this has to be, the

summation is for all incoming directions over which the reflection has to be accounted for. 
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So, using numerical  quadrature,  we have simplified  the governing equations.  The integro

differential equation has been converted into first order linear partial differential equation in

unknown intensity I subscript i. So, there will be number of discrete directions. So, we have

to  solve  a  number  of  equations.  Number  of  equations  depend  on  how many  directions,

discrete directions we have chosen in our analysis. 

Now, once the intensity is known, we can calculate the radiative heat flux. So, radiative heat

flux is intensity times the direction vector s cap integrated over all solid angles. Now, we can

replace I with I i and we integrate over the solid angle using the quadrature. So, our flux

becomes summation i is = 0 to n, w i I subscript i s i. Similarly, the incident radiation is

integration of intensity over the solid angle. 

And this can be written as simply summation w i I subscript i. So, once the discrete intensity

or the intensity in discrete direction I subscribe i is known, the quantities of our interest heat

flux and irradiation are easily calculated using this summation in the quadrature. 
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Now, how these directions are chosen? So, we have to choose a certain number of directions.

But how do we choose this directions? It has to satisfy certain conditions.  The condition

basically includes zeroth, first and second moments over the solid angle. So, for example, the

total solid angle over 4 pi gives, should give you total intensity. So, the summation of the

weights all the weights i is = 1 to n should be = 4 pi. 

Similarly, the first moment over the solid angle s d omega should be = 0. That is, the flux

from all the directions should add up to 0. So, it becomes in summation, that summation i is =

1 to n, w i s i should be = 0. And similarly, the second moment, s cap times s cap d omega

should be = 4 by 3 delta, where delta is basically the matrix, identity matrix. And this should

be = summation i is = 1 to n w i s i cap times s i cap. 

So, this value should be = the identity matrix times 4 by 4 pi by 3. So, when we choose

directions, our directions, chosen directions should satisfy these rules. And based on this, the

directions can be chosen. 
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Now, for different values of approximations. So, we are talking about S N approximation,

where subscript N represents the order of the method. If N is = 2, we have second order

discrete ordinate method. If N is = 4, we have fourth order discrete ordinate method and so

on.  Now, this  N  represents  number  of  directions  used  for  each  principal  directions.  So,

suppose we have taken 2 values of zeta, now any direction can be represented by its direction

cosines. 

So, S direction can be represented as zeta i cap + eta j cap + mu k cap, where eta, zeta and mu

are constants. So, we have taken 2 values. If we have taken 2 values of zeta, then it will be

called second order discrete ordinate method. Now, we will have total 8 directions in this

case. So, total directions will be 2 times 2 + 2, that is total 8 directions. So, for a 2 values of

zeta, we will have total 8 directions. 

But  we will  just  call  it  second order discrete  ordinate  method.  Similarly, if  we choose 3

values of zeta, we will have 3 + 2, 5 times 3, 15 directions in all. So, as opposed to spherical

harmonics method where we have first order and third order; even order terms were not there.

Here we have even order for the method, that is S 2, S 4, S 6, S 8 and so on. S 3 and S 5

method is not basically done here. The weights of these ordinates is also given in this table. 
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Now, let  us  apply  this  method  of  discrete  ordinate  to  1-dimensional  slab  with  isotropic

scattering.  So,  once  we have  isotropic  scattering,  the  value  of  phi  will  be  =  1.  So,  our

directional radiative transfer equation in direction mu i will be simply = mu i d I subscript i d

tau is = 1 – omega I b – I i + omega upon 4 pi sum of the over all the quadrature weights, j is

= 1 to n, w j i j. So, this is in a given direction, in a given discrete direction, the radiative

transfer equation. 

Now, for 1-dimensional slab, the intensity is independent of azimuthal angle. It depends on

only on mu. And we observe that  the method basically  can also be written as first  term

remaining the same, the last term omega upon 4 pi j is = 1 to n w j i j. Now this summation is

where nothing but incident radiation G. So, we replace it by G. So, what we get is the last

term in the equation as omega G by 4 pi. Where omega is single scattering albedo. 

Now, we have this governing equation. Total number of direction is N. This is in a given

direction. So, total number of directions is N. So, in plane parallel slab, N by 2; if you are

interested in finding intensity at  a given point.  So, let  us say we have certain number of

directions. So, N by 2 directions will be in the upward direction and N by 2 directions will be

in the downward direction. 

So, those directions which are going in upward direction are basically originated from the

bottom plate. And intensity direction going in the downward direction are basically originated

from the top late. So, we can assume that, out of N directions, N by 2 will be in the upward



moving direction and N by 2 will be in the downward moving direction. So, based on that we

can write down the intensities 
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So, unknown intensities I 1 +, I 2 + and so on up to I N by 2 +. Here, + represents the

intensity in the upward direction. That is, mu i > 0. And I 1 –, I 2 – and so on up to I N by 2 –

represents intensity in the downward direction at the plate, tau is = tau L with mu i >, < 0.

Okay. So, we have total N unknowns. So, unknowns are total N, I 1 up to I N. Out of these

unknowns N by 2 intensities are in the upward direction and rest N by 2 are in the downward

direction. 

So, the radiative transfer equation for this 1-dimensional case can be written for mu i > 0 as,

mu i d I + d tau + I i + is = the source term. And similarly, for mu I < 0, that is downward

movement, – mu i d I – d tau + I i – and the source term. 
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The boundary conditions can be written at the bottom wall. At the bottom wall we have tau is

= 0 and intensity is moving in the upward direction. So, we write it as I i +, certain discrete

directions. And this intensity will be written, is = J 1 upon pi is = I b 1 – 1 – epsilon 1 upon pi

i epsilon 1 q 1. So, we can write down the boundary condition either in terms of radiosity J 1

upon pi or we can write down in terms of emission and reflection. 

So, first term is reflection, I b 1 emission I b 1 and second term is basically the reflection part.

Similarly, at the top boundary, the boundary condition can be written. At top boundary, tau is

= tau L. We have certain discrete directions. And in these discrete directions, the intensity

will be = J 2 upon pi. And this value should be = I b 2 – 1 – epsilon 2 upon pi epsilon 2 q 2.

Now, q and G, as we have done many times for the approximate methods and P 1 method. 

So, q and G are related to these intensities. So, we can write down q. So, q is basically =

summation of intensity mu i d omega. So, we can simply write down this as summation i is =

1 to N by 2 w I i mu i I i + – I i –. And G is =, similarly, G is defined as integration over I d

omega. So, we can write down this as summation i is = 1 to N by 2 w i – w i prime I i + + I i

–. 

So, we can write down our radiative heat flux and incident radiation in terms of the variables

that we are solving the radiative transfer equation, that is I + and I –. So, in terms of I + and I

–, the radiative heat flux q and G can be written using or approximating this integral using

summation as has been done here. 
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So, once we do that finally, our boundary condition can be written at q is = tau is = 0. That is,

q 1 is = epsilon 1 E b 1 – the reflected part of the radiation i is = 1 to N by 2 w i; this is w; w i

prime mu i I i –. And similarly, at the top boundary q 2 is = – q tau L. And this will be = –

epsilon 2 E b 2. And then, sum over N by 2 weight mu i I i +. So, this is the expression for the

heat flux at the boundaries. Now, let us apply this method to solve 1 problem. 
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So,  we  have  2  large  parallel  gray-diffuse  plates.  The  bottom  plate,  the  first  plate  has

temperature T 1 and emittance epsilon 1. The other plate is at temperature T 2 emittance

epsilon  2.  The  medium  between  2  plates  is  gray,  absorbing  and  emitting.  And  linearly

isotropically scattering gas; so, we take a extinction coefficient beta for the medium. And

assuming radiative equilibrium prevails, that is, del dot q is = 0, we have to find out radiative

heat flux between the 2 plates using the S 2 approximation method. 



So, S 2 approximation method as we have discussed, is based on single direction. So, let us

apply this method to solve this problem. So, we have to take the governing equation first. Our

governing equation is given by these 2 equations, mu i; so, these are our governing equation.

So, let us write down these equations for the case. 
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So, we have mu 1 d I 1 + by d tau + I 1 + is = 1 upon 4 pi G. And this will have a 1 more term

for scattering. So, for the time being, we will just solve a simplified problem assuming omega

is = 0. So, let us just solve this problem for a non-scattering case that will give us a simple

solution. So, assume let us say there is no scattering. So, omega is = 0. Our equation now

becomes simply this mu 1 upon d I 1 + d tau + I 1 + is = 4 pi 1 upon 4 pi G. Okay. 

So, there will be only 1 direction. Okay. So, only 1 direction will be there for the S 2 method

given by mu 1. Similarly, the second equation can be written as – mu 1 d I 1 – by d tau + I 1 –

is = G upon 4 pi. This is our second equation. Okay. The boundary conditions, the boundary

condition can be written as; at tau is = 0 I 1 + is = J 1 upon pi and at tau is = tau L, I 1 – is = J

2 upon pi. So, these are the boundary condition. Okay. 

Now we have only 1 direction mu 1.  Mu 1 is given by 0.57735. So, remember mu 1 is

nothing but cos theta. Okay. So, this is a given direction. And the value of mu 1 is 0.57735.

Okay. As is given in this table also. So, this value we are taking S 2 symmetric; So, there are

2 versions of second order discrete ordinate method, symmetric and non-symmetric. So, we

are taking this symmetric method. 



And the direction is 0.5773503. And w, the weight is 1.5707963. Okay. So, once we do that,

now, let us solve this equation 1 and 2. So, we write the expression for G we derived here.

Okay. So, G is = summation i is = 1 to N by 2 w i prime I i i + + I –. And similarly, for q; so,

we write G is = 2 pi I 1 + I 1 –. And q is = 2 pi mu 1 I 1 + – I 1 –. Okay. So, what we are

trying to do is, we are trying to convert our equation 1 and 2 from I 1 to in terms of G and q.

Okay. 

So, once we do that, our equation is transformed as dq by d tau + G is = G. Or simply, d by d

tau is  = 0.  So,  that  is  radiative  equilibrium.  So, this  is  a  redundant  equation.  Because it

reiterates the statement of the problem, that is radiative equilibrium. Okay. So, this equation

of no use. The second equation can be written as, mu 1 dG by d tau + q by mu 1. q by mu 1 is

= 0. Okay. So, this is our second equation. So, let us solve this. 

This is simple ordinary differential equation. We can easily solve it. And we get G is = a

constant C – 1 by mu 1 square times q tau. So, this is a solution for G in terms of q of course.

Okay. So, G is = C, C – 1 upon mu 1 square q tau. Okay. 
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Now, we apply the boundary condition. So, boundary condition in solving this at tau is = 0.

We have i 1 + is = 1 upon 4 pi G + q by mu 1 is = J 1 upon pi. So, we have written the

intensity in terms of G and q. So, I 1 + and tau is = tau L. The intensity I i – is = 1 upon 4 pi

G – q upon mu 1 is = j 2 upon pi. Okay. So, we have to solve for these quantities. So, let us

substitute. So, this equation, let us call it equation 3 and 4. Okay. 



And together with this solution G. So, we have this equation. Let us call this equation 1. We

have already; let us call it 2 prime. So, substituting the value of G in the boundary condition,

we can solve for q. And the unknown coefficient C. So, what we do is, we write like this: 4

times J 1 is = G + q upon mu 1. Substituting for G; so, at tau is = 0, from this equation, at tau

is = 0, G is simply C. 

G e is = C. So, this will become C + q upon mu 1. So, 4 J 1 is = C + q by mu 1. So, this is the

1 equation. And similarly, at tau is = tau L, we get 4 times J 2 is = G – q by mu 1 is = C – 1

upon mu 1 square q tau L. Okay. And then, – q by mu 1. Okay. Now, we have obtained the

final equations 5 and 6. The unknown here is q. So, we can eliminate C from 5 and 6. So,

eliminate C from 5 and 6. 

We can write down non-dimensional heat flux as, in terms of radiosities; q by J 1 by J 2 as 2

mu 1 upon 1 +; be this 1 upon mu 1 square. So, this will be 1 upon mu 1 square, mu 1 tau L

by 2. Or simply this will be = 2 mu 1. Mu 1 is canceled. So, we have 1 + tau L by 2 mu 1.

Okay. So, this is the expression for the non-dimensional radiative heat flux. Psi is = 2 mu 1

upon 1 + tau L by 2 mu 1. 

So, this is the expression for the radiative heat flux for the case of 1-dimensional medium

using the S 2 approximation. Now, how do we implement it in CFD codes. So, together with

spherical harmonics method P 1, the spherical ordinate method is one of the most popular

method used in CFD codes. 
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So, many commercial packages like Ansys have implementation of spherical harmonics as

well as discrete ordinates method. The accuracy of the 2 method is more or less the same.

Both the methods, spherical harmonics and this discrete ordinal method give good results in

optically thick case. But the accuracy is relatively low in optically thin case. Now, how do we

implement? 

The implementation of spherical harmonics method was relatively easy as we discussed in

the  previous  lecture.  However,  the  implementation  of  discrete  ordinate  method  is  little

difficult.  So, what we do is, we start again the discretized radiative transfer equation in a

direction I. So, this is the radiative transfer equation in a given direction I. Now the given

direction I can be written in terms of the direction cosine. Okay. 

So, we write the left-hand side of this radiative transfer equation by expanding the left-hand

side. We get zeta i del I by del x + eta i del I by del y + mu i del I by del z, where zeta, eta and

mu are direction cosines for a given direction I. Now, we have to, this is, the second term is

basically  the absorption term and the right-hand side is  the source term,  where we have

source term given by 1 – omega I b + omega upon 4 pi and summed over all the discrete

direction. 

So, this is the summation over all the discrete directions. And phi i j is the scattering phase

function. Now, what we will do is, we have to discretize the partial derivatives appearing in

this equation. 
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So, we will take a special case of 2-dimensional method. 2-dimensional domain. The method

can easily be extended to 3-dimension. Just we are understanding how it is implemented in 2-

dimension. We take a special case where we have, del I by del z is = 0. That means, in 2-

dimensional problem, the intensity does not vary in the z direction. Because the z direction is

infinite. So, the intensity will not change with respect to z direction. 

And this term will be 0. Now, as we do in any finite volume scheme, we first integrate the

terms over a finite volume. So, we integrate, let us say the first term del I by del x over a

finite volume. And then, we approximate using the Gauss theorem. We convert the volume

integral into a surface integral. So, del I by del x is converted into intensity I subscript i d A –

integration over phase w I i d A. 

So, the intensity at any point we are interested in, the point is P. In the finite volume cell, we

are interested in finding the intensity at point P. So, this del i by del x dV, that is integral over

this volume, has been converted into flux of intensity at phase E. So, E represents the phase

with area A E east phase. And w represents the west phase with area A W. And we can write

down this as I Ei A E – I Wi A W. 

Where A E and A W are the phase areas. And I subscript Ei and I subscript Wi are intensities

averaged over these phase areas. So, over the entire phase, this the average intensity I Ei and I

Wi. This is similar to what we do in any finite volume discretization scheme. So similarly, we

can discretize the second term del I by del y. And then, we put del I by del z as 0. And our



governing equation is now converted as, zeta i the discretize derivative with respect to x; eta

i, discretize derivative with respect to y. 

And then, integrated over the volume, the intensity at point P, I pi; so, I pi is the average

intensity over the volume over the finite volume, is = beta V S pi. Where S pi is again now

average source term over the volume. And V is  the volume of the cell.  In finite  volume

method, V represent; so, here we have unknowns I Ei, I Wi, I Ni, I Si and I pi. So, we have

introduced more unknowns. 

And in finite volume method, we connect this unknowns at the phase to values at the center.

So, that is typically what we do in finite volume method. We connect the phase values with

the phase, with the center. 
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So, we can take a linear scheme. In linear scheme, we connect; this phase is in the x direction

I Ei and I Wi. So, average of these 2 intensities is nothing but the intensity at the center. And

similarly, North and South intensities are related to the cell center well intensity using an

average  value.  This  particular  interpolation  scheme in  finite  volumes  method;  we call  it

interpolation scheme. 

This particular interpolation scheme is linear and it is called diamond scheme in radiative

transfer. So, this is called diamond scheme, where we are interpolating the intensities linearly.

Okay. So, our governing equation now has become relativity simplified. And we can easily



implement this in any finite volume framework. We have to repeat this for all the directions.

So, what we have discussed is, in a given direction. 

But, this we have to repeat for all the discrete directions. So, in a sense, we are implementing

the finite  volume method in space.  But, we are implementing finite difference method in

angular direction. We can also implement finite volume method in a angular space. Then, the

method is called finite volume method, rather than the discrete ordinate method. The finite

volume method of radiative transfer discretize the angular directions also in finite volume

schemes. 
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There are certain limitations of this method such as false scattering and ray effect. And this is

again what we observe in a typical finite volume method. False scattering is analogous to

numerical diffusion in finite volume schemes. So, it is a result of spatial discretization error.

Because we have approximated our phase center intensities with cell center intensities. We

have assumed that the intensity is averaged over the phase. 

So, we get spatial discretization error on intensity. And this is called false scattering. Now,

how it basically looks like. We have let us say a pencil of rays in a discrete direction S i.

Now, as this ray move, it will basically smear out. That means, it will scatter the radiation.

So, we will have some kind of scattering effect in the radiation. So, the wave or the ray will

kind of widens. It will smear in angular direction. It will not be sharp. 



It will basically smear in the angular direction. It will not be confined to small solid angle,

rather  it  will  be smeared over a range of solid angles.  So,  this  is  called  false  scattering.

Similarly, where we have a discretization error in angular direction. In angular direction, we

have used finite difference method. And there are only discrete directions. So, let us take a 2-

dimensional case. 

We are interested in finding how the radiation is transferred between 1 cell to another. Let us

say there is 1 ray we are modelling in a direction S i. Okay. So, what we see is, if this cell is

let us say divided into 4 cells, this cell is not touched by this intensity. Because it is only in

discrete directions. Okay. So, let us say this is S i is = 1 and this is S i is = 2. The angular

directions that we are discretizing. 

So, there may be some cells in the region which are not basically touched by or affected by

the discrete intensity directions. Okay. So, this is called angular discretization error. And it is

called ray effect. Okay. Because the energy transfer is taking place in discrete directions only,

some cells do not receive radiation. And we get some kind of error. Now, definitely this error

can be minimized if we increase the number of directions. 

That is, more number of points in finite difference scheme results in smaller error. Same thing

we  can  do  here  also.  Or  we  can  go  for  finite  volume  method,  where  the  ray  effect  is

minimized. So, this is all on the discrete ordinate method, is a powerful method and finds lot

of applications in a radiative transfer in combustion. Many commercial packages come with

this method. 

In the next lecture,  we will discuss the zone method, which is not a solution method for

radiative transfer equation, but rather is based on principle of energy conservation. Thank you

for your time. We will continue in the next lecture.


