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The Method of Spherical Harmonics (P N Approximation) - II

Hello friends, in the previous lecture we discussed the method of spherical harmonics, the P

N approximation method. We derived equations and boundary conditions for the method, the

first  order  method,  that  is  P  1  method.  We discussed  the  boundary  conditions  for  1-

dimensional medium. We also argued that the method is general and it can be applied to any

problem, that is  any complex geometry we can apply the method.  So, we will  take it  to

general coordinate system in this lecture. The equation that we derived in the method, the

spherical harmonics method, where there were 2 equations.
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The first equation is dq by d tau is = 1 – omega 4 pi I b – G. This is the first equation. And

second equation is, 1 by 3 dG by d tau + q. So, these equation, we derived in the framework

of  1-dimensional  plane parallel  slab.  But  they are general,  because the only assumptions

while driving these equations was that the intensity does not vary with azimuthal angle. And

we took first 2 terms of the spherical harmonics in deriving those equations. 

So, there is no restriction on the dimensionality of the problem as such on this method. So,

we can write down dq by d tau which is the divergence as del dot q, where divergence is



calculated  in  the  non-dimensional  optical  coordinate  tau.  And the  right-hand side  is  1  –

omega 4 pi I b – G. So, this is the equation in vector form for the del dot q. Similarly, the

second term, we write 1 by 3 del G. Now, we have G is a scalar. 

So, we have to take gradient of this scalar G. And again, the coordinates are non-dimensional

optical coordinates + q is = 0. So, q is a vector. So, when we take del dot q, we are getting a

scalar. And G is a scalar. When we take gradient, it becomes a vector. So, the first equation is

basically a scalar equation and the second equation is basically the vector equation. Now,

what we do is; so, these are 2 coupled differential  equation,  2 coupled partial  differential

equation if we are solving this problem in complex geometry. 

So, what we will do is, we will eliminate q from these equations. So, what we take, we take

divergence of the second equation and we get 1 by 3 del square G + del dot q after taking the

divergence of the second equation. And then substitute for del dot q from the first equation in

this. So, we get 1 by 3 del square G – 1 – omega G is = 1 – omega – 1 – omega 4 pi I b. So,

this  equation looks familiar  very similar  to the Laplace  equation.  This equation is  called

Helmholtz equation. It is an elliptic equation. We can solve this equation numerically very

easily. 
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The generalized boundary condition for a gray surface in 3-dimension can be written as, – 2 –

epsilon upon epsilon, where epsilon is the emittance of the surface. 2 by 3 n dot gradient G,

where n dot is the vector at the local surface + G is = 4 pi I bw. Okay. Now, this type of

boundary condition is  called  boundary condition  of mixed type or  third kind.  So, this  is



boundary condition of third kind, where we have gradient and the variable appearing in the

equation. So, we have gradient of G as well as the variable appearing in this equation. That is

why it is boundary condition of third kind. 

But this can be easily solved using finite volume method. I will give you an outline how this

method can be applied to any problem in complex geometry. We will solve, let us solve 1

problem. So, we have a cylindrical medium, 2 concentric cylinders of radius R 1 and R 2

maintained at isothermal temperatures T 1 and T 2. 
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The medium inside the cylinder is gray and non-scattering. So, we have to find out the heat

flux between the 2 cylinders. So, we have cylinder 1; second cylinder; this is the center. This

cylinder is radius R 1 and temperature is T 1. And this is R 2 temperature is T 2. We have to

find out how much heat flux is basically happening between these 2 cylinders. So, let us solve

this problem. 
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The governing equation we will, we have already derived. Okay. So, in a vector form, we will

take this equation. The first equation as we derived, del dot q is = 1 – omega; omega is 0, so

non-scattering medium, so 4 pi I b – G, 4 pi I b – G or simply 4 sigma T power 4 – G. So, we

have gray absorption coefficient kappa. So, we can just simply integrate and find out with the

total values of q and G. 

So, the first equation reduces to del dot q is = 4 sigma T power 4 – G. And this is in optical

coordinate.  The second equation is  1 by 3 gradient  of G + q is = 0. So,  these are the 2

equation. Now, let us find out the solution of these equations. So, we have del dot q is = 4

sigma T power 4 – G.  Now, we are assuming radiative  equilibrium.  So,  under  radiative

equilibrium, del dot q will be simply = 0 and G will be simply = 4 sigma T power 4. 

So, if we know G, we can calculate the temperature inside the medium. So, G will be simply

= 4 sigma T power 4. If we know G, then we can solve for the unknown temperature inside

the medium. Okay. Now, from this, what we get, del dot q is = 0. So, we get, in cylindrical

coordinates we can write down divergence operator as 1 by tau d by d tau, tau times q. And

this will be = 0. 

So, when we integrate this, we get tau q is simply = C 1 or q is = C 1 by tau. That is the heat

flux  varies  inversely  with  respect  to  tau.  Okay. Now, same  thing  we,  what  we  do,  we

substitute for q and into this equation. This is equation 1, this is equation 2. So, putting the

expression of q in equation 2, we get dG by d tau is = – 3q is = – 3 C 1 by tau. Okay. 
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So, we get G is = – 3 times C 1 ln tau + C 2. So, this is the expression for G. Okay. Now, the

boundary conditions; so, boundary condition, we will take general boundary conditions as

given by this equation. Epsilon is 1, because we have black cylinders. So, epsilon is = 1. So,

our boundary condition will be: At tau is = tau 1, the boundary condition is simply = 2q is = 4

sigma T 1 4 – G. And at tau is = tau 2, we have the boundary condition – 2q is = 4 sigma T 2

power 4 – G. Okay. 

So, we have got 2 boundary conditions and 2 unknowns here, C1 and C2. So, what we can

do, we can solve for this unknown C 1 and C 2. So, C 1 comes out to be = 4 sigma T 1 power

4 – T 2 power 4, subtracting the 2 boundary conditions will eliminate the G and you can solve

for this. So, you get C 1 is = 4 sigma T 1 power 4 – T 2 power 4 upon 2 by tau 1 + 2 by tau 2

+ 3 ln tau 2 by tau 1. This is the value of C1. 

And C 2 is = 4 sigma T 2 power 4 + C 1 2 by tau 2 + 3 ln tau 2. So, this is the second

constant. So, C 1 and C 2; sorry, it seems they are mathematically complicated. But we can

still, we could solve this equation. So, we can define non-dimensional heat flux as q upon

sigma T 1 power 4 – T 2 power 4. So, we have already calculated the expression for flux. So,

flux is simply C 1 by tau. So, this will be simply = C 1 by tau. 

So, we get 2 upon 1 + tau 2 by tau 1 by tau 2, tau 2 by tau 1. We can just take tau 2 out; + 3

by 2 ln. In this it is tau 2 by tau 1. And this will be tau 2 common; so, tau. Okay. So, this is

the  heat  flux,  non-dimensional  heat  flux.  And  similarly,  non-dimensional  temperature



distribution or the heat source term T 4 – T 2 4 upon T 1 4 – T 2 4. That is non-dimensional

emissive power of the medium or temperature power 4 is = 1 + 3 by 2 tau 2 ln tau 2 by tau. 

And this will be =, 1 + tau 2 by tau 1 + 3 by 2 tau 2 ln tau 2 by tau 1. Okay. So, this is how

we have calculated  the  radiative  heat  flux,  non-dimensional  radiative  heat  flux and non-

dimensional temperature power 4 or the emissive power for this concentric cylinders. Now,

we will see that for optically thick case, the heat flux goes to correct value, but for optically

thin case, the result is not accurate. 

So, for optically thin case; optically thin case means we have tau small; kappa is small, tau is

small. So, our heat flux goes to, for optically thin cases as 2 upon 1 + R 1 by R 2. So, 2 upon

1 + R 1 by R 2. While for optically thin case, the correct value is, psi is = 1. This is the exact

value. Okay. So, we see that if R 1 is, if R 2 is much much larger than R 1, then this value

will go to 2, psi will go to 2. So, this is not exact. 

In fact, the error is 100%. While if the cylinders are almost the same dimension, R 1 is = R 2,

then it will go to correctly correct optically thin limit.  So, if the gap between the these 2

cylinder is small, it goes to optically thin limit correctly, but if the gap is large, then the error

will be 100% for this P 1 method. So, P 1method, although very popular, but it has its own

limitation in optically thin medium. And this is the result plotted for this case. 
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What you see here is a, the non-dimensional heat flux at the inner cylinder versus optically,

optical  thickness.  And you see that  under  optically  thick  condition,  the P 1 method,  P 3



method goes to correct limit, correct values. While for optically thin case, the error is large.

The P 3 method is more accurate than the P 1 method as is expected. It detains more terms.

But still,  the error is large for optically  thin cases. So, there is inherent limitation in this

spherical harmonics method to calculate heat flux in optically thin cases. 
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Now, how to implement this method in safety codes. So, as engineers, we all know how to

program  or  discretize  the  partial  differential  equations.  This  is  elliptic  type  of  partial

differential equation. We call it Helmholtz equation. We can discretize this on any domain. I

have taken this here. A cartesian system on in a 2-dimensional domain, cartesian mesh, you

can discretize it using central differencing scheme. 

So, the first term del square G in 2-dimensional can be discretized as in terms of the values i

j, i + 1 j, i – 1 j, i j – 1, i j + 1. So, this is basically a stencil. In terms of this stencil values, we

can  discretize  the  Helmholtz  equation  which  is  elliptic.  And  we  can  solve  it  using  a

techniques  already  developed  for  CFD,  for  this  type  of  equations.  So,  normally,  in  a

combustion  applications,  the  many  researchers  have  used  and  are  using  the  spherical

harmonics method along with the equations of momentum and energy. 

But one should always keep in mind while calculating the heat flux, relative heat flux in such

applications, that the method has problems in optically thin cases and the heat flux calculated

using this method in optically thin cases may not be accurate. While for optically thick case,

the method is in good agreement with the exact results. In the next lecture, we will discuss



another  approximate  method.  That  is  the  discrete  ordinate  method  to  solve  the  radiative

transfer equation.

So, together with the method of spherical harmonics, the discrete ordinate method is one of

the  most  popular  methods  available  in  commercial  safety  codes.  So,  we  will  study  this

method in the next lecture. Thank you.


