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Good morning friends. In this lecture, I will introduce you to the basics of radiative heat 

transfer. So just like in conduction and convective heat transfer, we talked about heat flux. In 

this radiative heat transfer, we also talked about heat flux. 
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So emissive power of a surface is defined as emitted energy per unit time per unit surface area; 

however, unlike conduction and convection, the radiative energy is emitted in all the directions. 

So for example, if you have a surface, a flat surface, the energy will be emitted in all the 

directions. So in this case of flat surface, there are total 2π solid angles. So the energy will be 

emitted in 2π   solid angles. 

 

The units of emissive power will be watt/meter2 okay. So this is the total energy that is emitted 

by a surface in all the directions. Now we know that the radiation, it is dependent on its color. 

Now color of radiation is decided by its wavelength, some people use frequency and some 

people use wavenumber but in this course we will be mostly dealing with the wavelength. 

 

So we define spectral emissive power as emitted energy per unit area/time in a given 

wavelength okay. So the units of this will be watt/meter2/angstrom okay so where angstrom is 



the selected unit for wavelength. So we will discuss this in detail in later lectures. Sometimes 

we will be using microns, sometimes we will be using angstrom but mostly in heat transfer 

community angstrom is the usual unit for wavelength. 

 

So the total energy in a spectral wavelength lambda will be watt/meter2/angstrom okay. So this 

is a monochromatic radiation, we call it monochromatic radiation. 
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Now another concept of radiative heat transfer which is very important is the concept of 

blackbody. In daily life, we define a black surface as one which does not reflect radiation. So 

how do we see any body? So the sun radiation falls on a surface and then the reflected radiation 

from that surface reaches to our eye and if any surface by chance does not reflect the radiation, 

the solar radiation or radiation from any light source, then we say that the surface appears to 

be black. 

 

Because the entire radiation is absorbed by the surface and this surface is called black. Now 

the interest in black surface is basically arose with the research in the area of solar radiation. 

So our sun which behaves pretty much like a blackbody at a temperature of 5777 K, it behaves 

like a blackbody. So later on researchers try to fit some mathematical relation to explain the 

radiation behavior of sun. 

 

So Lord Rayleigh, Jeans, Wien lot of scientists tried to explain how the solar radiation behaves 

and then later on Max Planck basically came up with this mathematical relation which now 

known as Planck function or blackbody emissive power. 
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And this relation is given by this relation in frequency and also in the wavelength region okay. 

So it depends on number of parameters so what basically Max Planck did, he applied the 

concept of statistical mechanics and quantum mechanics and he came up with this 

mathematical relation based on the principles of quanta that the energy levels undergo 

transition at selective wavelengths and in quantized states. 

 

So he came up with this expression of the Planck function and what basically this represents is 

energy emitted by a black surface at a given wavelength in a per unit time. So this is basically 

the Planck function or blackbody emissive power. Now as I told you some people, some 

researchers they prefer the units of frequency, so nu (ν) is the frequency here. While some other 

research would prefer lambda (λ) which is the wavelength. 

 

And these two units are basically related with the speed of light so frequency is related to the 

wavelength  

ν=c×λ  

where c is the speed of light okay. So we can basically convert from different units that Ebν in 

frequency units we can convert it into Ebλ okay. So the various constants used in the explanation 

of this Planck’s law or Boltzmann constant is k, so k = 1.3807×10-23 J/K, this is the Boltzmann 

constant. 

 

Then, we have Planck constant h okay, so here we have defined number of constants,  

C1 = 2π×h×c0
2 



 c0 is the speed of light in vacuum. So this constant has value 3.7418×10-16 W/m2 and it is 

called first radiation constant. Then, we have defined another constant  

C2=  h×c0/k 

 h is again Planck constant, k is Boltzmann constant, c0 is speed of light. 

 

The value of this is 14,388 μm-K; it is called second radiation constant. So there is quite 

advantage of non-dimensionalizing the blackbody emissive power. Now we will see how this 

blackbody emissive power varies with the spectrum with the wavelength okay. 
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So on this slide, you see two curves, on the left curve what you see is basically the blackbody 

emissive power, variation of blackbody emissive power with wavelength. On the x-axis, we 

have wavelength and there are number of curves on this, each representing the temperature. So 

we have plotted these curves at the function of wavelength for different temperatures and what 

we see here is that the intensity, the peak value of the emissive power increases as we increase 

the temperature okay. 

 

So the peak value is increasing in this direction as we increase the temperature. Furthermore, 

what we observe is that the peak is shifted towards left, so when we are increasing the 

temperature the peak is shifted towards the left and this is something we already know what 

we basically know by the Wien's displacement law, that is the maximum energy emitted by a 

black surface shifts towards smaller wavelengths as we increase the temperature. 

 



On the right side of this slide, what you see is basically the non-dimensional emissive power 

as a function of the parameter and lambda T where n is the refractive index of the medium, 

lambda is the wavelength in micrometer and T is the temperature in K. So on the x-axis is this 

parameter and lambda T and on the y-axis we have the parameterized blackbody emissive 

power Ebλ/n3 T5. 

 

So when we do this, what we observe is that all the curves on the left hand side for different 

temperatures, they basically merge together in a single curve. So we have a single curve for all 

the temperatures. Basically, all the curves for different temperature they collapse into a single 

curve. Now this curve has been basically studied by many researchers in respect to solar 

spectrum okay. 

 

And solar spectrum we know, it behaves like a blackbody emissive power and it is at 5770 K. 

On this curve, I have also shown you some approximate relation. So the blackbody emissive 

power was first given by Max Planck but researchers have been trying to fit solar spectrum 

even before Max Planck. 

 

So there has been work by Wien’s and Rayleigh-Jeans. As we see that they tried to predict the 

spectrum versus wavelength but the accuracy is very limited. Although, the agreement by 

Wien’s law is pretty much in good agreement but the Rayleigh-Jeans spectrum is significantly 

in error as compared to the actual Max Planck spectrum. So we will basically use this Max 

Planck blackbody emissive power for solving our calculations. 

 

To solve the problems, we need to calculate total blackbody emissive power that is how much 

energy basically a body emits in its entire spectrum. Spectrum may have different ranges, 

visible spectrum, ultraviolet spectrum, infrared spectrum. So we are interested in how much 

energy totally energy is emitted by a body in all the wavelengths and we sometimes are also 

interested in finding how much energy is emitted by a body in some part of the spectrum. 
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Let us say only the visible part of the spectrum or let us say just the infrared part of the 

spectrum. So total emissive power of a blackbody, it can easily be calculated by integrating the 

spectral emissive power, blackbody emissive power integrated over all the wavelengths. So 

here I have used the integration from 0 to infinity just to represent that we are considering the 

smallest wavelength possible and the largest wavelength possible. 

 

So we are integrating over all the wavelength and when we integrate this blackbody emissive 

power that is a Planck function over all the wavelengths, what we get is basically 

𝐸௕ (𝑇) = 𝑛ଶ𝜎𝑇ସn2 

 and this is something you are all familiar with this Stefan-Boltzmann law and the total 

blackbody emissive power is basically proportional to T4  so varies with T4 . 

 

Unlike conduction and convection which are basically linear phenomena, the radiation varies 

non-linearly with temperature and the variation is power 4 with temperature and that is why 

the variation at high temperature, we need to study radiation because at high temperature the 

radiation energy significantly dominates over conduction and convection because of this power 

4 effect. 

 

So radiation will be very important phenomena at high temperature. The Stephen constant, the 

Stefan-Boltzmann constant sigma is defined in terms of radiation constant C1 and C2 by this 

relation  

𝜎 =
𝜋ସ𝐶ଵ

15𝐶ଶ
ସ 5.670 ×  10ି଼

𝑊

𝑚ଶ𝑇ସ
 



. So this is the total blackbody emissive power integrated over all the spectrum. 

 

Now as I said we sometimes need only the energy emitted within a given spectral range okay 

either between 0 to λ as I have done in this part fractional blackbody emissive power or 

sometimes we may need emissive power in the range λ1 to λ2. So fractional emissive power  

 𝑓(𝑛𝜆𝑇) =
∫ ா್ഊ(், ఒ)ௗఒ

ഊ

బ

∫ ா್ഊ(், ఒ)ௗఒ
ಮ

బ

 

And then divided by the total emissive power which is basically sigma T4, so the denominator 

is nothing but equal to nଶσTସ. So this ratio is called fractional blackbody emissive power. That 

is the amount of energy emitted by a blackbody okay in a given wavelength range varying from 

0 to λ. So this is the fractional emissive power of a blackbody. 

 

Now if you are interested in finding what is the amount of energy emitted between λ1 and λ2 in 

two different wavelength regions, all you have to do is just find out E λ1- λ2 that is the amount 

of energy emitted by a blackbody between these two spectral range 

E λ1- λ2 = f(nλ2T)- f(nλ1T). 

 will be equal to f(nλ2T). That is the amount of energy emitted between 0 to 𝜆ଶ  T f(nλ1T). That 

is the amount of energy emitted within the range 0 to 𝜆ଵ . So difference between these two will 

be the amount of energy emitted between 𝜆ଵ  and 𝜆ଶ  . So we do not need to calculate these 

integrals again and again, these having calculated by researchers, there is a simple program 

available. One can use that simple program and tabulate these values in a tabular form. 
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So for example this particular table taken from the book by Michael Modest gives you the table 

of fractional blackbody emissive power as well as the spectral emissive power. So the first 

column gives you the value of 𝑛𝜆𝑇 in μm K. The second column give you the spectral emissive 

power at that particular wavelength in of course parameterized form and the third column gives 

you the fractional blackbody emissive power. 

 

So this is the emissive power between a given wavelength range 0 to 𝜆 divided by total 

blackbody emissive power. So we will use these tables to solve different problems. 
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So let us solve one problem on the concepts that we have learnt so far. So in this problem, we 

have to find out the temperature of a black isothermal sphere. So there is a isothermal sphere 

whose temperature is constant and it is suspended in orbit around the earth okay. So the sphere 

is exposed to solar radiation and we have to find its temperature. So the temperature of this 

sphere will be found based on the radiative equilibrium. 

 

Because the only energy this sphere is receiving is from the sun, so it is receiving the energy 

from the sun and it is radiating energy back to the atmosphere that is a vacuum in the space. 

We will do the same problem again by assuming that the sphere absorbs radiation only in the 

spectral range 0.4 micron to 3 micron. So we will solve these two problems and see how the 

temperature of the sphere is affected when the sphere does not absorb all the radiation, only a 

part of the radiation is absorbed by the sphere. 
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So let us solve this problem. So the first part of the problem is for the black sphere where the 

sphere absorbs all the radiation. So we will do an energy balance, first of all we write the 

absorbed energy by the sphere is equal to emitted energy by this sphere. So we have some 

energy absorbed and some energy emitted. Now solar is known that is the amount of radiation 

coming from sun is known and it is called qsol. 

 

This is equal to 1353 W/m2 okay, this is the heat flux the radiative energy that is coming from 

sun okay and we can assume that the radiation energy is coming from single direction. So we 

have this radiation energy, this is qsol and this is the sphere that we have basically receiving the 

energy. Now the projected area of this sphere is given as  

The projected area of sphere =π R2  

where R is the radius of sphere. 

 

Total energy absorbed by the sphere is=qsol × π R2 

 okay. The radius can be anything okay. So the total energy absorbed by the sphere is qsol× π 

R2. Now Q emitted so just keep in mind that this sphere is black okay. It is black so it will emit 

radiation as per this law 𝜎𝑇ସ and then its total area that is 4 π R2. So total sphere area, surface 

area of the sphere is 4 π R2. 

 

And total energy emitted by a blackbody is 𝜎𝑇ସ as per Stefan-Boltzmann law. So when we 

equate so we get 

qsol *×π R2 = 𝜎𝑇ସ × 4 π R2 



okay. So actually we do not need the radius values, so radius value basically cancels out okay 

and we do not even need the value of pi which also cancels out. So what we get is  

𝑇 = ቀ
𝑞௦௢௟

4𝜎
ቁ

ଵ/ସ

 

So this is the temperature of the sphere just by radiative equilibrium between the solar radiation 

and this sphere, the temperature of the sphere can be calculated and when we do this this value 

comes out to be 278 Kelvin okay which is around 5˚C okay. So this is the first part of the 

problem where we have to find out the temperature of the sphere assuming that the sphere 

behaves like a blackbody. 

 

And it absorbs the entire radiation over the entire spectrum. It emits radiation over the entire 

spectrum. Now in the second part of the problem, what we know is that it absorbs radiation 

only in the 0.4 micron range to 3 micron range. So we will do the same thing again. Let us do 

this again. So  

Qemitted= f(nλ2T) - f(nλ1T) 

where λ1 is=0.4 micrometer and λ2 is=3 micrometer. 

 

So we have to calculate this f function and then we will be able to calculate the emitted energy. 

So total energy emitted will be Qemitted will 

Qemitted= f(3μmT) - f(0.4μmT) 

 be equal to f now we are talking in terms of vacuum, so we can take refractive index n to be 

equal to 1. Now  λ2 is 3 micron and we have to multiply by temperature.  

 

So this is the relation and Q emitted will be  

Qemitted=4 π R2 × 𝜎𝑇ସ [f(3μmT) - f(0.4μmT)] 

basically we have to multiply this relation by the surface area 4 π R2 and we have to multiply 

by the 𝜎𝑇ସ. So this is the surface area of the sphere multiplied by 𝜎𝑇ସ. okay and then this 

fraction f(3μmT) - f(0.4μmT) okay. So this is the amount of energy that is emitted by the sphere. 

Now let us see how much energy is absorbed. 

 

So energy absorbed by this sphere will be also in the same range, so we multiply by area 𝜋𝑅ଶ 

okay and then we multiplied from λ1 to λ2 okay q solar. Now we have to take solar spectrum 

okay lambda okay and then we have to multiply by d lambda.  



𝑄௔௕௦௢௥௕௘ௗ = 𝜋𝑅ଶ න 𝑞௦௢௟

𝐸௕ఒ

𝜎𝑇௦௨௡
ସ

𝑑𝜆
ఒమ

ఒభ

 

where we have assumed that the spectral variation of solar flux is proportional to the blackbody 

emissive power of the sun. 

 

That means 𝑞௦௢௟,ఒ is proportional to 𝐸௕ఒ because sum behaves like a blackbody at a temperature 

of 5777 K. So we can replace the spectral flux with the blackbody emissive power of the sun 

at the temperature of the sun equal to 5777 K. 
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So in other words we have written 

𝑞௦௢௟,ఒ

𝑞௦௢௟
=

𝐸௕ఒ

𝜎𝑇௦௨௡
ସ

 

where T sun is 5777 Kelvin. Now our qabsorb becomes 

𝑄௔௕௦௢௥௕௘ௗ = 𝜋𝑅ଶ න ൬
𝑞௦௢௟

𝜎𝑇௦௨௡
ସ

൰ 𝐸௕ఒ𝑑𝜆
ఒమ

ఒభ

 

 

This quantity is independent of wavelength 𝐸௕ఒ𝑑𝜆. So this quantity is independent of 

wavelength and we can take it out and all we are basically left with 

 

                                 𝑄௔௕௦௢௥௕௘ௗ = 𝜋𝑅ଶ𝑞௦௢௟[𝑓(𝜆ଶ𝑇௦௨௡) − 𝑓(𝜆ଵ𝑇௦௨௡)] 

 

where f is basically the normalized blackbody function for wavelengths 𝜆ଵ and 𝜆ଶ. 

 



Now we do an energy balance on the sphere that means 

Qemitted = Qabsorbed 

So if you look at this equation, this is basically a nonlinear equation in unknown temperature 

T. 

 

4𝜎𝑇ସ[𝑓(3𝑇) − 𝑓(0.4𝑇)] = 𝑄௦௢௟[𝑓(3𝑇௦௨௡) − 𝑓(0.4𝑇௦௨௡)] 

 

Why it is a nonlinear equation? Because this function f depends on power 4 of the temperature 

and this equation cannot be solved directly. We can solve this equation either iteratively. So 

we will apply an iterative method to solve for unknown T and when we do that we get the 

temperature of this sphere as around 600 Kelvin.  

T= 600 K 

 

So next we move to the important concept of solid angle. Just a thought experiment when we 

stand in front of fire, we see a lot of heat but when we are standing at the same distance but at 

an angle to the fire, the same amount of radiation does not reach us okay. Similarly, hot surface, 

a hot metal plate appears of a different color when seen from an angle while it appears of 

different color when seen normally. So basically the idea that comes to our mind is that 

radiation probably does not behave in a same way in all the directions. 

 

In some direction, it behaves in a different way okay, so that is what basically it is. So solid 

angle basically defines the directional dependence of radiation. So what we basically mean by 

solid angle is, it is basically in spherical coordinates. 
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In spherical coordinates, we have basically two angles, one is the polar angle taken from the 

normal okay, this is the polar angle and one is the azimuthal angle taken from some arbitrary 

direction in the given plane. So the so theta (θ) is the polar angle and psi (ψ) is the azimuth 

angle okay. So we define basically the solid angle as the so if we have any plane of area let us 

say dAj and we have some energy leaving this plane dA okay. 

 

So there is a plane dA and there is a plane in space dAj, so solid angle is basically defined as 

the ratio of this plane, projected area of this plane in the direction joining the plane P to the 

plane dAj. So the line joining this is given represented by the vector 𝑠̂  okay. So 𝑠̂  is the direction 

of this plane dAj okay, so we define solid angle as the projected area dAjP okay, this is the 

projected area onto this direction okay. 

 

Divided by the distance of this plane, projected plane from the point we are basically looking 

this plane okay, so we are trying to find out the solid angle of this plane dAj from point P which 

is on the plane dA okay. So the solid angle by which this plane dAj is seen from P is equal to 

dAjP where dAjP is the projected area divided by distance S square. So S is the distance of this 

projected plane from the point P. 

Ω = න
𝑑𝐴௝௉

𝑆ଶ
஺ೕ೛

=  න
𝑐𝑜𝑠𝜃௝𝑑𝐴௝

𝑆ଶ
஺

 

=  න 𝑑𝐴௝
ᇱᇱ

஺ೕ

=  𝐴௝
ᇱᇱ 

 



So this is the solid angle, so solid angle basically gives you the idea of the directional 

dependence of radiation. Now this projected area can be of unit magnitude so what I mean by 

that is this projected area need not be here, it can be on the sphere unit sphere. So if this 

projected area is taken at the units sphere okay that is the sphere of radius 1, then this solid 

angle omega will simply be equal to projected area. 

 

So Aj” prime is basically the projected area on unit sphere that is the sphere of radius 1. So 

when we take this projected area on unit sphere, then the solid angle will be equal to the 

projected area itself and this solid angle is basically this area. This is the projected area that I 

have marked given by dAj double prime okay and this magnitude  

𝑑Ω = 𝑑𝐴௝
" = (1 × sin 𝜃 𝑑𝜓) (1 ×  𝑑𝜃) = sin 𝜃 𝑑𝜃 𝑑𝜓. 

So this is equal to 𝑑𝜃 and this magnitude is sin 𝜃 𝑑𝜃 𝑑𝜓. So in that sense, 𝑑𝐴௝
" is equal to r 𝑑𝜃 

times sin 𝜃 𝑑𝜓. Now r is=1 so 𝑑𝐴௝
" =sin 𝜃 𝑑𝜃 𝑑𝜓 and that is basically the small solid angle. So 

𝑑𝛺 is the small solid angle by which this small area dAj is seen from point P okay. So this is a 

small solid angle d 𝑑𝛺. 

 

And we can represent the solid angle in terms of azimuthal angle 𝜓 and polar angle 𝜃. So as I 

told you that radiation depends on angle okay. So emissive power does not give us any idea 

how the intensity or radiative intensity emitted from a surface behaves in a given direction 

okay. So it gives you total amount of energy emitted per unit area but it does not give you how 

much energy is emitted in a given solid angle. 

 

So to basically include the effect of solid angle, we define what we call radiative intensity okay. 
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So radiative intensity is basically the energy emitted per unit time per unit area in a given solid 

angle that is the energy emitted per unit time that is watt per unit area meter square and per unit 

solid angle steradian. So the units of solid angle I need to mention is steradian okay. So intensity 

will have units watt per meter square per steradian. We also defined spectral intensity just like 

we defined spectral emissive power. 

 

So spectral emissive power is radiative energy emitted in a given solid angle per unit area in a 

given wavelength okay. So the units will be here watt per meter square steradian angstrom 

where angstrom is the unit for wavelength okay. Now one thing you should be basically 

remember is when we talk area normal to rays in the intensity what we are basically talking is 

not the area from which the radiation is emitted, we are talking about area which is normal to 

the intensity. 

 

So if you have this surface and it is emitting radiation in this solid angle okay, then we are 

talking about this area which is normal to the rays okay. We are not talking about the area from 

which the energy is emitted so we are talking about area normal to the rays. So intensity is 

always defined in terms of area normal to the direction of propagation of radiative intensity 

okay. So this thing sometimes is confusing. 

 

You should keep in mind that radiative intensity is defined as the energy emitted per unit area 

normal to the direction of propagation of the radiation. Now definitely the two are related, 

radiative intensity and emissive power are related. Emissive power gives you total energy 

emitted from a surface while radiative intensity gives you energy emitted in a given solid angle. 
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So we can relate, so an amount of energy emitted in a given solid angle is related to as per the 

definition of intensity, area projected that is area normal to the rays and multiplied by small 

solid angle. So this relation on the right hand side intensity multiplied by projected area 

multiplied by small solid angle gives you amount of energy emitted in a given solid angle. 

When we integrate it over all the solid angles, it should give us the emissive power. 

𝑑𝐸 = 𝐼(𝑠̂)𝑑𝐴௣𝑑Ω 

So we can write intensity Is which is in a given direction dAp which is the projected area, 𝑑𝛺  

the small solid angle and integrate over all the solid angle that is 2π. So when we do this, we 

get this relation. So we have written d omega in terms of theta and π, so we have sin 𝜃 𝑑𝜃𝑑𝜓. 

So 𝑑𝛺 we can write sin 𝜃 𝑑𝜃𝑑𝜓 that is what we have done. Intensity depends on polar angle 

and azimuthal angle. 

𝐸 = න 𝐼(𝑠̂)𝑑𝐴௣𝑑Ω = න 𝐼(𝑠̂)𝑑𝐴𝒏ෝ. 𝒔ො𝑑Ω     = න න 𝐼(𝜃, 𝜓)𝑑𝐴 cos 𝜃 sin 𝜃 𝑑𝜃𝑑𝜓
గ ଶ⁄

଴

ଶగ

଴

 

So instead of writing intensity as a function of  cap, 𝑠̂ is the propagation as we see in this picture 

also, intensity in the particular direction so this is the direction 𝑠̂. So this direction can be written 

in terms of polar angle and azimuthal angle. So I is a function of theta and psi and then 𝑑𝐴 cos 𝜃 

is basically the projected area. So we are not taking dA, we are taking the projected area. 

 

So projected area dAp is equal to d𝐴 cos 𝜃. So this is the projected area okay. So when we do 

this, we get the emissive power okay and for a blackbody as you will see later, the intensities 

does not depend on 𝜃 and 𝜓 that is it is independent of direction and we can take it out and this 



will be equal to, so blackbody emissive power, we will prove this in next lecture also will be 

equal to intensity taken out. 

 

Because it is not a function of theta and psi and then we just integrate over cos theta sin theta 

d theta and d psi and this will be equal to pi times Ib. So blackbody emissive power and 

blackbody intensity are related with this relation  

Eb = πIb 

 okay. So we will go into this detail again okay. Thank you. In the next lecture, we will cover 

the fundamental laws of radiation like Kirchhoff’s law, Wien’s displacement law and Planck's 

law. I thank you all for giving your time to this lecture. 


