Radiative Heat Transfer
Prof. Ankit Bansal
Department of Mechanical and Industrial Engineering
Indian Institute of Technology — Roorkee

Lecture - 19
Radiative Heat Transfer in Cylindrical Media
Hello friends. In the previous lecture, we formally solved the radiative transfer equation for a plane
parallel slab. It turned out that the temperature distribution needs to be known if we assume
radiative equilibrium and if temperature distribution is known, we need to find out the radiative
heat flux, which is a function of space and the divergence of heat flux, the radiative heat source

term as a function of space.

In this lecture, we will take one example of the solution of radiative transfer equation in plane
parallel slab, where the temperature distribution is known.
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Problem

* A semi-infinite medium consists of a gray (k =1m™")non-
scattering gas. The temperature distribution within the medium is
given by

T = Toe-zﬂ.

#Ty=1000Kandl=10m —

“ Determine the radiative intensity and heat flux leaving the bottom
surface of the medium Ldd st sus ve
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So we have basically a semi-infinite medium that consists of a grey, grey means the absorption
coefficient is independent of wavelength, so we have absorption coefficient in the medium. So we
have a plane parallel slab. Now it is said that it is semi-infinite, that means the separation between
these plates is very large, okay, let us call this infinity, okay. So this is semi-infinite medium. So

this may be located at z=0 and this plate is located at z=infinity.



This is a semi-infinite problem. So we have gone one step further simplification. In the lecture
before this, we made certain simplifications that the plates are infinite in x and y direction and now
have made one more simplification that it is semi-infinite that it extends to infinity. The purpose
of doing this is basically any radiation from the top plate cannot reach the plate at z=0. Now there

is a temperature distribution.

The temperature distribution T=T,, where T, is 1000 Kelvin e_(%) that is the temperature is
decreasing as we move away from the plate. The plates themselves are cold and black, that means
plates do not emit any radiation. They are cold and black. So we have to find out the intensity of
radiation leaving the bottom plate, of course it is going to be function 8 and we have to find out
the heat flux Q at the bottom surface.

(Refer Slide Time: 03:00)
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So one thing is clear that we are only interested in I~. There is no I*here. All the radiation is
moving as far as any point in the bottom surface is concerned, all the radiation is moving down.
So there is no forward or upward movement of radiation. The plate itself is cold, so it does not
emit any radiation. So there is no It here. So we have only I~, which is function of 7 and p, but

we are interested in finding I~ at 0, that is bottom plate 7=0 and p, which is dependent on 6.

So we start instead of the solution of heat flux, we start with the solution of intensity I~ ( t,u) =

I (7). I have written it infinity because the top surface is at infinity u, e (Fo=DH —



!
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" f:o e # S(t")dt’. So this is the equation or the solution of the radiative transfer equation for

intensity in direction mu at any location 7 for the downward movement of intensity, downward

moving wave.

Now this term is 0. There is no radiation that is going to reach from the top surface to the bottom

surface and we are going to put 7 =0. So we are interested in the solution I~ (0, 1) and this will be

equal to — " fooo Now there is no scattering, so we will just write I, (t"). So this is going to be e

!
power, tau is 0, so % and dt’, okay. This is what is basically we have got. Now the temperature

distribution is known T=T,e 2.

So L is basically equal to 1, so I will just leave the L part here. So Tpe ™% okay, so we get I~(0, u) =

1 , . .
— ) OOO and then we have to find out the temperature dependence of this Ib, so we are dealing

7’ 7’

with a grey problem. So we write %O‘Té erdt’ and this will be equal to — % ) OOO % oT*e *endr’,

okay.

So now looking at this, you may think okay now this looks easy to integrate, right. So we can

basically write like this -1/u and we can just put 7 here and ¢ here. So Ty, so —a Ty /ur, then 0 to

T,
infinity e =0 and dt’, okay. Now we have to solve it, then what we will do is we just write

down this expression like this I~ (0, u) =—0Ty /um, by the way u is basically nothing but cosé.

t/ (4Kl

1
So we get this as e ¥ and then in the denominator we get 4kl — %, so this will be just

simply u and then we have to put the limits 0 to infinity, okay. So we get basically I~ (0, u) as —

T

=0Ty /ume™ " where z value is from 0 to infinity. In multiplication, we have 4/kL —% in the

denominator we 4/kL — % Now we see that the numerator will be 0 for z value infinity.



So numerator will basically vanish for the value of z=infinity and it will be simply equal to 1 for
the value of z=0. So what we get is I~(0, u) =0Ty /um and then we will just have 1/1-4u/ kL,
okay. So this is intensity for the radiation leaving the bottom surface. So this intensity if you want
to write it in terms of theta will be simply =0Ty /um and this will be equal to cosd 1/[(1-4
cosf/ kL)].

So this is the expression for intensity leaving the bottom surface from the semi-infinite medium.
Now we have to find out the radiative heat flux.
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So we write Q at z=0, so we have to basically multiply by cosf and integrate overall the solid
angles, so we write this as I Ai. $dQ, now this will be simply equal to I~ (0, ) and then will be
multiplied by cos 8 or sin 8 df and then we have just taken the integration over the azimuthal

angle outside and this will vary from 0 to 7, okay. So we will get q at z=0 as equal to 2T .

We just substitute the expression for intensity from this relation. So we get 20nTy and then
integration from /2 to m because we are just taking the downward direction, so we have taken
from m/2 to mcos @ sin@ dO/[1-(4cosf/ kL)], okay. So we have written the heat flux as an

integration over polar angle multiplied by cosf and multiplied by intensity.



So after we do this integration, which is relatively easy to do, we get q at z=0 as equal to -

20mTy 01 1” :ﬁ, okay. So this is relatively easy to solve. I will just give you the solution here q(
KL

onTy KL 4u . . .. ..
=0)= — [1- Tln(l + E) and this will be 0 to 1. So this is all we can calculate the radiative

heat flux by integrating over the limits and putting the limits we get q at t=0 or z=0 as simply

equal to -1.69*10* W/m?2.

So this is the expression, this is the value of radiative heat flux leaving the bottom surface and for
this semi-infinite medium, we could solve it with some little bit of maths, still the math was
manageable and we could integrate it by hand. For other problems, we will have to apply medical
procedures to solve the problem. The integration in this problem was relatively easy to handle and
do it by hand and that is why I could solve for the radiative heat flux leaving the bottom surface
for this semi-infinite medium.
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Radiative Transfer in Cylindrical Media

* Salient features (ry, z) ,
“ Properties vary with r only
“ Intensity ] = I(r, 6, )
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The next thing that we will develop is the radiative heat transfer in cylindrical media. So radiative
heat transfer in cylindrical media appears in many, many examples, because many times, the
furnaces are also cylindrical in shape, then amount of energy lost from pipes, so radiative transfer
in cylindrical geometry is of great importance. Here we will take the coordinate system as 7, ..

Now 1), is different from 1) where 1 was the azimuthal angle.



Here 9. is basically the cylindrical coordinate system. The azimuthal angle in the cylindrical
coordinate system measured from some radial direction, so this is .. This is a one dimensional
problems of properties are allowed to vary only in the radial direction. The cylinder is infinite in
length in z direction, so the properties do not vary in the z direction. Now in this case, even though
this problem is one dimensional, the intensity is going to be function of radius, theta as well as the

azimuthal angle.

So this problem is relatively more involved than the problem we discussed previously that is plane
parallel slab. Now looking at the notation that we are using, so let us say we have a cylinder
extending infinite in both the direction and we are interested in radiation intensity at certain point
P. Let us say this is point P. This intensity in this direction it is going to be function of 6,1 and r

comes from certain direction like this.

So this is the intensity direction that is it is basically it is coming. This direction we can look at
this direction in the projection. So we have this is the direction of movement of radiation ray and
we are basically interested in some point P here where we want to find out intensity. Now at certain

point the point was somewhere here, okay and this is basically another cylinder I have drawn here.

So the point P where we are interested in finding the intensity as the function of r, 8 and v the ray
is traveling in a certain path as is also shown here. The ray is traveling at a certain path. Sometime
before it reaches P, the wave intersects the cylinder at this circle. So we define the direction of
movement of this radiation within azimuthal angle 1. So this angle basically represents the

direction psi. So I will just note down psi. Let us call this point Q.

So ¥ is at azimuthal angle made by the ray from the local radial direction, okay. That means at
point Q, this was the radial direction as is shown here also. This is the local point here and from
this direction, the ray makes an angle . After certain time, the wave reaches the point P. At P,
this is the radial direction, this is the new radial direction and this angle is going to be now ¥ —
dy. So the point that [ am on to say is when the ray is traveling in space as is shown in this image,

its azimuthal angle is going to decrease.



So when the ray hits Q, the azimuthal angle was let us say ¥, and then the ray moves to P at a new
location, the angle becomes Y — dy, so the angle basically changes. Now we will use the
trigonometry here. We have this distance, let us call this distance, this is P, so RP is ds. The
movement of the ray is ds, so distance RP is ds and we have this distance, this distance as ds cos6.
So let us go into the trigonometry here.

(Refer Slide Time: 19:13)
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¢ Change of variables

di - dldr alde al dy
(R R— + PR — ———
ds ords d8ds Y ds

.

¢ Form symmetricity

I(r,0,0)=1(r,8,-¢)=1(r,n=6,y)

( v )
= oSy = — or — = sinfl cosy
d ds sinf* s "

So from the triangle, we have dr/ds. So this is ds sin theta, this distance is ds sinf , where this
angle is theta, the polar angle, which is constant. So polar angle is not changing. In the previous
example also the parallel media, we have seen the polar angle does not change when the ray moves.
In this example also, the polar angle is not going to change. So this distance is ds sin theta. So from

here we can write down ds sin /drs cosi.

dar

So this is the angle 1. So looking at this triangle cos is dr/ds . So cosy is or dr/ds is simply

ds sin6

equal to sinf cosy. So why we are doing this exercise, because we want to change the coordinates
as we have changed the coordinates in plane parallel media from ds to z. Here we will change the
coordinate system from s the distance along the ray to radial coordinate system, cylindrical

coordinate system r, 8 and .



So we have found a relation between r and s as dr/ds= sinf cosy. Now along a beam, as I said

that is ¥ is going to decrease. This 1 is going to decrease, so earlier the angle was iy and after

movement the distance S, the angle decreases from ¥ to i — dy and we can write down dy /dr
as -—@. So look at this triangle. This distance is rdi, okay. So rdy is nothing but dr tany

and minus sign denotes that the angle 1 is going to decrease.

d ¢ . . . : :
So d—lf = - %lp, this is from trigonometry. So we can write down a relationship between S and ¢

dy dr

d d .

as d—f = — —and dr/ds we have already calculated and —dlf also we have calculated, so our relation
dr ds

sin@ sin
becomes — " w.
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s Change of variables
dl dldr dldi al dy
ds drds 06ds Oy ds
< From symmetry

I(r,8,9)=1(r,8,=y)=1(r,n=0,)

dr i1
or — = sinfl cosy

= cosY) = ——,
'( ds sinfl s

. . ar ., . dl . . . al
So now we applied the change of coordinates from = chain rule, - 18 partial with respect to r p

d . . . . . . d
d—z and similarly partial with respect to 6 and partial with respect to 1. So we substitute for d—:

df/ds, this is going to be 0 because the polar angle is not changing. So we have to substitute for

%. So dr/ds is sinfcosy and di/ds is already calculated as — Sinersmw_
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(0,9,

intensity is going to be function of r, 8,1). Now the radiative transfer equation in cylindrical media,

. . . . d . d
So with this change in coordinate system, we get d—i = sinf [0051/) a—i (r,0,9) —

. dl . . .
so we substitute for —in the radiative transfer equation.
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% Radiative transfer equation

dl

— =l - fl+— J [(8,)(5,,8)d0,
ds dn

sinfl

al
('UW’E(T'H-‘!’) - r—_(T' f, er]| (1=w),=I1(r,8,¥)

Where t = | gdr

% Have to be solved numerically
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So left hand side becomes sin theta sinf [cosd) (t,6,¢9) — ( o, lp)]and in the non-

dimensional optical depth coordinates, the right hand side is simply (1 — w)I, — I and then the
In-scattering source term. Now this can be solved numerically. We tried to solve the problem under
certain simplification for the plane parallel slab, but this problem is going to be little more difficult

to solve analytically even after simplifications.

So we will just leave it here. this problem can be solved numerically. What we have done is derived
the equation in cylindrical coordinates and we have simplified the equations in terms of partial
derivatives with respect to the optical coordinates T and . This is a partial differential equation
and needs to be solved. This is partial differential equation along with this integral term. So this is
again much more difficult, but it can be programmed and it can be solved using the numerical

methods.

So we will just leave it here. In the next lecture, we will discuss approximate methods for the

solution of RTE. This lecture and the previous lecture focused on exact method for simplified



geometries. The next lecture will focus on approximate methods where we will simplify the
dependence of intensity. Here we have not made any simplification or approximation. The

intensity variation in three dimensional space was taken as it was.

The geometry itself simplified the case. For example, in plane parallel media, the geometry itself
simplified the intensity variation with respect to the azimuthal angle. So there was no dependence
on azimuthal angle in this cylindrical media also, we have simplified geometry. So intensity is not
a function of z. All it is function of basically are radial coordinate and of course 6 and 1. So we

have more complications and we got a partial differential equation.

But still we could obtain an analytical solution for plane parallel slab and this problem we have to
solve numerically, but the solution is exact, although the method is not analytical, the solution is
exact. The next topic we will discuss is approximate methods and we will see how to simplify the

expression for intensity or dependence of intensity on 8 and 1. So thank you for your attention.



