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Lecture- 17 

Equation of Radiative Transfer 
 

Hello friends, so we will continue our derivation of radiative transfer equation. So in the 

previous lecture we discussed what are the basic mechanisms by which radiative intensity can 

increase or decrease so we will continue by adding all the components. 
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So we have ray or photons and this location is let us say s and this location is s+ ds. The time 

taken by the photon to reach from s to s + ds is dt. This is the time required although this time 

is going to be very, very less because the speed of radiation travel is speed of light. When the 

radiation travels from s to s + ds its intensity will increase because of In-scattering. So In-

scattering is the amount of energy scattered into this direction. 

 

So intensity will come from other directions and it will In-scatter. There will be some emission 

then intensity will decrease because of absorption and Out-scattering. We discussed all this 

facts. So we all we add all the components so we write that intensity at s + ds at time t + dt in 

a given direction s cap. So this direction is s cap-intensity at point s at time t is basically the 

component from emission augmentation by emission, absorption attenuation by absorption, 

attenuation by Out-scattering and augmentation by In-scattering. 

 



So we see that the integration in this equation appears in the In-scattering terms and ϕఒis the 

scattering phase function. Now the difference between the intensity at s + ds and at s. we can 

write down using the differential calculus as 𝑑𝑡
డூഊ

డ௧
+ 𝑑𝑡

డூഊ

డ௦
. Now substituting this for 𝐼ఒ  (s+ 

ds) -𝐼ఒ(s) in this equation we get the following equation okay. 

 

Now this equation appears to be a partial differential equation because of the partial derivatives 

appearing on the left hand side; but this equation also appears to be an integral equation because 

of the integral appearing on the right hand side. So this equation is basically called integral 

differential equation. So in radiative heat exchange between plain surfaces you studied integral 

equation this is one step further and more complicated integral differential equation okay. 

 

So it has 7 independent variables as we discussed in the previous lecture also 3 space 

coordinates, 2 direction coordinates 𝜃 and 𝜓, time and wave length and this is an integral 

differential equation. Now unless and until we are dealing with lasers of the order of 

picoseconds and femtosecond where we may be interested in modeling the transient radiative 

heat transfer. 

 

So in lasers with such a short duration pulsed laser there may be of interest to deal with transient 

radiative heat transfer because the time scale is so small that the radiation travel between two 

parts s+ ds in this short duration may actually be of concentration. But for other applications 

this transient term is not required and we can neglect it and once we do that. 
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The equation what we called quasi-steady form can be written as this equation where partial 

derivative has now replaced with direct total derivative 
ௗூഊ

ௗ௦
 because the dependence on time has 

been removed and this equation again this is an integral differential equation. On the right hand 

side, we have the emission, absorption. We have introduced the extinction coefficient beta 

lambda which includes absorption by or attenuation by absorption. 

 

And scattering also the out scattering and the last term is In-Scattering or augmentation by 

scattering. Often we non-dimensionalized this equation this is called RTE or Radiative Transfer 

Equation. So this equation is called Radiative Transfer Equation. We non-dimensionalized the 

radiative transfer equation by introducing the optical depth 𝜏ఒ we have already defined it. 

 

We defined optical depth in terms of extinction coefficient. So  𝜔ఒ is defined one more non-

dimensional parameter omega lambda which is basically the ratio of scattering coefficient and 

extinction coefficient. So 𝜎௦ఒ is scattering coefficient and 𝛽ఒ is extinction coefficient and the 

ratio is called single scattering albedo okay. This is basically a measure of scattering as a 

function of the extension and this parameter is called single scattering albedo. 

 

So by introducing this parameter the non-dimensional optical depth and non-dimensional single 

scattering albedo. We get the equation 
ௗூഊ

ௗఛഊ
= (1 − 𝜔ఒ)𝐼ఒ which is again the emission terms 

−𝐼ఒ (the absorption term) + 
ఠഊ

ସగ
 and the integral (∫ 𝐼ఒ(𝐬ොସగ

)ϕఒ(𝐬ො, 𝐬ො)𝑑𝛺)which is In-scattering 

term. So this is non-dimensional form of the RTE. 
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Now boundary conditions for this equation. So this is first order differential equation so we 

need to specify one boundary conditions and this boundary condition we can define for various 

types of surfaces we have already discussed, but we will just take a special case that is diffusely 

emitting reflecting surfaces. So the emittance of the surface maybe epsilon. So for this case the 

intensity leaving the surface 𝐼ఒ,  I it could be a function of wavelength, but here I am just writing 

it for the total. So intensity leaving the wall it basically diffuse and can be written in terms of 

radiosity. 

 

So this is the intensity leaving the wall. It has two components the emission from the surface 

and reflection for the radiation coming on to this. Okay so this is emission and the diffuse 

reflection so this is reflection okay. Now this H is irradiation we have already discussed this. 

Irradiation is integrated on all the solid angles so we have used the vector notation on all the 

solid angles we have to integrate. 

 

Now this radiation is coming from the gas or it may be coming from other surfaces. So we have 

to include the fact of radiation coming from gas as well as other surfaces. So again the boundary 

conditions is going to be integral equation. This is same as we have done for the heat transfer 

between surfaces the boundary condition for this case is integral equation. The governing 

equation is integral differential equation and the boundary condition is an integral equation. 

 

For a black surface the analysis simple and most of the problems that we will solve we will 

assume that the surface is black that means a medium is bounded by black surfaces and the 

intensity the boundary condition the intensity is simply= the black body intensity. Here we are 

allowing that the intensity may vary over a surface RW means the vector of any point on the 

wall. 

 

So intensity will vary over a wall, but it does not vary in the direction. So we are assuming 

diffuse surface. Now once we have solved for intensity. Once we have the solution for radiative 

transfer equation for any problem we can find out the quantities of our interest and two 

quantities of interest in heat transfer community are the heat flux and divergence of heat flux. 

Heat flux is used to design surfaces for heat transfer equipment’s. 

 

Be at boiler surface, be it the combustor surface and divergence of heat flux is needed to know 

how much energy is absorbed at any location. This may be of interest in combustion 



application. 
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So we define heat flux as basically intensity dotted with the normal vector. So we have a surface 

on which we want to find out heat flux so this is the intensity 𝐼ఒ coming from certain direction 

𝐬ො okay and this is the normal vector 𝐧ෝ. So heat flux is basically the normal component of the 

intensity. So we take a dot product of intensity and 𝐧ෝ. 𝐬ො basically appears. 

 

And we have to integrate because appears and we have to integrate because intensity may come 

from all directions so we have to integrate all the solid angles. So the heat flux is basically 

defined as  𝐧ෝ. 𝐬ො where n is the unit vector normal to the surface. s is the direction from which 

the intensity is falling on the surface and we have to integrate our all the solid angles. 

 

And solid angles is going to be 2𝜋 if we are dealing with real surface and it is going to be 4𝜋  

if we are just trying to find out heat flux in any point suspended in space. If we have a space 

and we are interested in finding the heat flux at this point then we have to integrate over the 

solid angle 4𝜋  because intensity will come from all the directions, but if you want to find out 

heat flux on a flat surface then definitely the solid angle will be just 2𝜋. 

 

The total radiative heat flux will then be calculated by integrating this spectral radiative heat 

flux over all the wavelength. So we integrate over the entire spectrum 0 to infinity and this will 

give us the total heat flux. Now divergence of radiative heat flux is needed in knowing how 

much total energy is emitted or absorb at a given location in the medium. 
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So we take a small volume of element of volume dV. The size of this volume is dx dy dz. So 

the total volume dV=dx*dy*dz. The radiative energy enters this volume from 6 faces. some 

amount of energy is absorbed within this volume and some amount of energy is emitted within 

this volume. So we write an energy balance for this volume. 
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So radiative energy is stored in dV per unit time that is amount of radiative energy change in 

this volume per unit time - radiative energy emitted+ radiative energy destroyed or absorbed 

by this volume should be= so the left hand side is the total change in volume per unit time and 

the right hand side is the flux. So flux of radiative energy at face x-flux of radiative energy at 

phase x + dx and the same thing we have to do on the 6 faces. 

 

The right hand side can be simplified by solving for q (x+ dx) and we get 



− ቀ
డ

డ௫
+

డ

డ௬
+

డ௭

డ௭
ቁ 𝑑𝑥 𝑑𝑦 𝑑𝑧 and this will be= simply −𝛁. 𝐪dV. So 𝛁. 𝐪dV is the divergence of 

radiative heat flux. This is the divergence of radiative flux we also call it radiative source term. 

So this radiative source term often appears in the overall energy balance equation. 

 

So if you have other modes of heat transfer this radiative source term will appear as a source 

term in the overall energy balance equation. Now to solve for the left hand side we take the 

radiative transfer equation and we integrate over all the solid angles. 
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So this is the radiative transfer equation. We integrate over all solid angles 4𝜋 both left hand 

side and right hand side we do. Then we do little mathematical manipulation. We take the 

divergence operator outside this integral and we define this integral was  4𝜋𝐼ఒ𝐬ො𝑑𝛺 and same 

thing we do on the other terms. So without going into the much of the mathematical 

manipulation. 
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Here we will introduce one quantity which we call incident radiation G. So incident radiation 

G is defined as basically the intensity coming from certain direction integrated over omega. So 

this G is basically different from flux. The flux is always measured normal to a surface. So if 

we have to calculate the heat flux we will take 𝐼ఒ and the dot product between the surface 

normal and the direction 𝐬పෝ , but incident radiation is defined as the total intensity coming from 

4𝜋 direction. 

 

So it is basically a measure of total intensity coming from all directions. So we integrate the 

intensity from all the directions to get the incidence radiation. So simplifying this equation in 

terms of G we get the first term the emission term is 4𝜋𝜅ఒ𝐼ఒ and this is the absorption term 

(𝛽ఒ ∫ 𝐼ఒ(𝐬ො)𝑑𝛺
ସగ

) and this is the scattering term (𝜎௦ఒ ∫ 𝐼ఒ(𝐬పෝ)𝑑𝛺ସగ
). So we can simplify this and 

we get basically the divergence of heat flux (𝛁. 𝒒)=𝜅(4𝜋𝐼 − 𝐺). 

 

So this is valid for spectral basis also and this is valid for total basis also. So this is a equation 

for radiative heat flux for on a spectral basis and this is the equation for the radiative heat source 

term on overall basis, it could be valid on a gray basis also. So we will do one problem and this 

problem will clarify most of the concepts that we have learned so far on the equation of 

radiative transfer. 
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So what we have in this problem is basically a sphere. So there is a sphere the radius of this 

sphere is R. The sphere is filled with some gas with absorption coefficient 𝜅ఒ okay outside the 

sphere is vacuum okay and the temperature is almost closer to 0. So vacuum and 0 temperature 

outside this sphere is specified because we want to exclude any external irradiation.  

 

So we have this sphere which is filled with the gas the absorption coefficient is kappa lambda 

the temperature of the gas is uniform 𝜅ఒ  a is uniform the temperature is T the radius is R. Now 

we have to find out the intensity of radiation coming out of this sphere 𝐼ఒ. We have to find out 

total heat loss from this sphere and we have to find out the divegence the radiative heat source 

term at the centre of this is sphere as well as at the surface of this sphere. 

 

Now this problem looks pretty simple as such, but as you will see that the mathematic even for 

this simple case is not that easy. So now what we basically have to observe some observation 

we have to basically do first. So the first observation here is that the intensity is not isotropic 

okay that means intensity on this surface is not going to be same. It is going to depend on 𝜃. 

 

So intensity is going to be different at different angles and that will depend on the polar angle 

that is the first observation. The second observation is I is not a function of azimuthal angle 

okay. So it will depend on 𝜃 but it will be uniform in azimuthal angle okay and then we have 

to basically solve for this problem. So let us see how to solve this problem we will the third 

assumption is that 𝜎௦ఒ is 0 there is no scattering. 

 

The gas is purely absorbing and emitting there is no scattering. So let us solve this problem. So 



first of all we write down the governing equation of radiative heat transfer. 
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So 𝑑𝐼ఒ in non-dimensional form, 𝑑𝜏ఒ = (1 − ωఒ)𝐼ఒ − 𝐼ఒ +
னഊ

ସగ
∫ 𝐼ఒସగ

𝜙ఒ𝑑Ω. So this is the 

governing equation the integral differential equation. Now based on the assumptions that 

scattering is not there. We have ωఒ=0 okay. So you just observe how we are simplifying the 

problem and still the problem the mathematics of the problem is involved. 

 

So this term (
னഊ

ସగ
∫ 𝐼ఒସగ

𝜙ఒ𝑑Ω)  will be = 0 okay. so our equation now reduces to 
ௗூഊ

ௗఛഊ
= − or 

simply 𝐼ఒ − 𝐼ఒ . So very simple differential equation. Okay now let us look at it this is in a 

given direction. So we draw our sphere again so we are looking at the intensity at this point. 

So this is our intensity 𝐼ఒ in a given direction let us call this 𝐬ො. Now where this intensity coming 

from. This intensity is coming from this part of the sphere this is the center of the sphere. 

 

So radiation along this path we have to calculate this is the path okay. So it may start at this 

point and it may go all the way up to this point on the sphere surface okay. So this angle may 

be specified as 𝜃 okay. Now what we will do is we introduce the coordinates along this 

direction. So let me draw this one this is s=0 and this is s = 2 times 𝜏ோ cos 𝜃. This path non-

dimensional path I am talking so this is going to be 2 times 𝜏ோ cos 𝜃 okay. 

 

This is R this distance is Rcos 𝜃 so this will become 2 Rcos 𝜃 and we have multiplied by 

absorption coefficient to define the path this is 𝜏ௌ that means the optical path at the surface 

is=2𝜏ோ cos 𝜃. So we write this now 𝐼ఒ which is function of now 𝜏ோ  and 𝜃 = we integrate it 0 to 



𝜏ௌ, 𝐼ఒ(𝜏௦
ᇱ )𝑒ି(ఛೄିఛೞ

ᇲ)𝑑𝜏௦
ᇱ  where 𝜏௦

ᇱ  is a variable along this path. 

 

So 𝜏௦
ᇱ  is simply 𝑑𝑆ᇱ times the absorption coefficient 𝜅ఒ okay. So we have to integrate this so 

this is the solution for this path 𝐼ఒ which is function of 𝜏ோ  and 𝜃 and = 0 to 𝜏ௌ 𝐼ఒ(𝜏௦
ᇱ )𝑒ି(ఛೄିఛೞ

ᇲ) 

where 𝜏ௌ is nothing but 2𝜏ோ cos 𝜃. So 𝜏ௌ  is measured in this direction while 𝜏ோ  is simply, 𝜏ோ  is 

nothing but 𝜅ఒ times R okay. 

 

So now we will write this as𝐼ఒ , 𝐼ఒ as a function of 𝜏௦
ᇱ . Now 𝐼ఒ does not depend on path okay. 

Black body intensity is isotropic so 𝐼ఒ is simply a function of temperature only okay it does 

not depend on path. So we can take it out of the integral. So our 𝐼ఒ then which is function of 

now 𝜏ோ  and 𝜃 = 𝐼ఒ taken out 0 to 𝜏ௌ, 𝑒ି(ఛೄିఛೞ
ᇲ)𝑑𝜏௦

ᇱ  and this will be= 𝐼ఒ[𝑒ିଶ(ఛೃ ୡ୭ୱ ఏି ೞ
ᇲ) ]. And 

then this will be 0 to 2𝜏ோ cos 𝜃,  where we have substitute 𝜏ௌ = 2𝜏ோ cos 𝜃 okay. 
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Now we just finalize the solution by putting the limits so 𝐼ఒ (𝜏ோ , 𝜃). So 𝐼ఒ is a function of 𝜏ோ  

and 𝜃 = 𝐼ఒ which is a function of temperature only, ൫1 − 𝑒ିଶఛೃ ୡ୭ୱ ఏ ൯ okay. So this is the 

equation this is the solution for intensity okay as it is clear intensity is a function of 𝜃. So for a 

sphere the intensity will be different in different direction okay. It will be different in different 

directions okay. 

 

So at any point on the surface of the sphere the intensity is going to be different in different 

direction is a function of 𝜃. For 𝜏ோ>1 that means where you have a large sphere, large sphere 

or optically thick. Optically thick means we have 𝜅ఒ as large that means we have strong 



absorption. 𝜅ఒ large means we have significant absorption 𝜅ఒ or 𝜏ఒ> very, very large than 1 is 

optically thick in that case the exponential terms will be=0 and 𝐼ఒ (𝜏ோ , 𝜃) will be simply = Iఒ. 

It will not depend on 𝜏ோ  and theta and it will be simply = 𝐼ఒ okay. So for optically thick spheres 

or any medium it applies to any medium it could be sphere, it could be rectangle, it could be 

cube okay. So for any medium optically thick medium the intensity does not depend on 

direction and it does not depend on the absorption coefficient okay. So it is independent of 𝜅 

as well as 𝜃 and the intensity is simply = the black body intensity and that is what basically we 

have in case of sun. 

 

So sun is a very large sphere and the intensity coming out of the sun is black-body intensity= 

black-body intensity. And we have basically proved why sun behaves like a black-body. Now 

the second part of the problem the total heat loss. So total heat loss is basically the total amount 

of heat flux over the surface at any point okay. So total heat loss= 0 to infinity 𝑞ఒ at any point. 

 

So 𝑞ఒ (𝜏ோ) where we dot with the normal vector. So we have this sphere this is the local normal 

𝐧ෝ. So we have to fund out the heat flux 𝑞ఒ dotted with a local normal and integrating over the 

entire wavelength region so we have 0 to infinity 𝐼ఒ and again integrating over 4𝜋. So 𝐼ఒ which 

is a function of 𝜏ோ  and 𝜃, 𝐧ෝ. and 𝐬ො𝑑Ω okay. 

 

So intensity is a function of 𝜃. So we have to take a product with a normal vector to calculate 

the heat flux and that heat flux it will be spectral heat flux we have to integrate over all the 

wavelength. So this will be= 0 to infinity 0 to 2 𝜋 𝐼ఒ(𝜏ோ , 𝜃 )  cos 𝜃 for , 𝐧ෝ. 𝐬ො𝑑Ω become sin 𝜃 

𝑑𝜃 𝑑𝜓. Now there is no dependence on  𝜓 so we can solve for the 𝜓 first and this will become 

2𝜋, 0 to infinity 0 to 𝜋/2. So we get 𝐼ఒ  so substituting the expression for 𝐼ఒ this expression we 

put. 𝐼ఒ ൫1 − 𝑒ିଶఛೃ ୡ୭ୱ ఏ ൯ cos 𝜃 sin 𝜃 𝑑𝜃 𝑎𝑛𝑑 𝑑𝜆. 
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So total heat loss that is basically the heat flux per unit area at any location on the surface of 

the sphere can be written then as 2𝜋 integration from 0 to infinity, integration from 0 to 𝜋/2. 

So we have splitted this solid angle into azimuthal angle and polar angle and this will be = 𝐼ఒ 

൫1 − 𝑒ିଶఛೃ ୡ୭ୱ  ൯ cos 𝜃 sin 𝜃. This is the variation of intensity with respect to 𝜃. So we have 

substituted the value of intensity cos 𝜃 sin 𝜃 𝑑𝜃 𝑎𝑛𝑑 𝑑𝜆. 

 

Now in this expression the plan black body 𝐼ఒ  function  is independent of 𝜃. So we can just 

pull it out and this will be= 𝜋 times 𝐼 ൜1 −
ଵ

ଶఛೃ
మ [1 − (1 + 2𝜏ோ)𝑒ିଶఛೃ]ൠokay. So this is a 

expression for the total heat loss 𝜋𝐼 is simply 𝜎𝑇ସ the black-body emissive power. So 

൜1 −
ଵ

ଶఛೃ
మ [1 − (1 + 2𝜏ோ)𝑒ିଶఛೃ]ൠ. So this is a total heat loss from the surface of the sphere at 

any location on the sphere. 

 

This is per unit area if you want to apply the total heat loss we have to multiply by the surface 

of the sphere. Now the other quantity of interest is basically the divergence of heat flux. We 

have to find out divergence of heat flux at the two locations. So the divergence of heat flux is 

defined as ∇. 𝑞=4𝜋𝜅ఒ now this could be spectral or it could be total 4𝜋𝜅ఒ𝐼ఒ − 𝜅ఒ𝐺ఒ lambda 

okay. 

 

Now here we just assume that 𝜅ఒ = 𝜅 that means the gas is gray. The absorption coefficient 

does not depend on the wavelength okay. So with this first we evaluate 𝐺ఒ which is= intensity 

at a given direction integrated over all the solid angles okay.  So we can write 𝑑Ω as  sin 𝜃 



𝑑𝜃𝑑𝜓 and then integrate over the solid angle so this will be=2𝜋 ∫ 𝐼ఒ  ൫1 − 𝑒ିଶఛೃ ୡ୭ୱ ఏ ൯  that is 

the intensity sin 𝜃 𝑑𝜃. 

 

And we have to integrate from 0 to 𝜋/2. So this will once we simply this we get 𝜋 times  𝐼ఒ/𝜏ோ . 

Okay so 𝜏ோ  although is a function of wavelength, but we can assumed it to be gray so I will 

just write it as 𝜏ோ  and this will be=2𝜏ோ − 1 + 𝑒ିଶఛೃ. So this is a radiative intensity so ∇. 𝒒 is 

simply= 4𝜋𝜅ఒ𝐼ఒ − 𝜅ఒ𝐺ఒ. 

 

So we substitute the value of 𝐺ఒ here and we get 𝜎T and integrate over all the wavelengths 𝑑𝜆. 

So we also integrate over all the wavelengths 𝑑𝜆. So this will be= 𝜎𝑇ସ/𝜏ோ[2𝜏ோ + 1 − 𝑒ିଶఛೃ] 

okay. So this is the expression for the radiative heat source term integrated over the entire 

spectrum at any location on the surface of the sphere. Now at the center of the sphere we have 

intensity 𝐼ఒ from the  of the intensity is= 𝐼ఒ (1 − 𝑒ିଶఛೃ). 

 

So this is the magnitude of intensity of radiation at the center of the sphere and this is going to 

be isotropic okay. It will not depend on theta so 𝐺ఒ at the centre is simply= 4𝜋𝐼ఒ (1 − 𝑒ିଶఛೃ) 

and ∇. 𝒒 will be simply= 4𝜅𝜎𝑇ସ𝑒ିଶఛೃ]. So this is the ∇. 𝒒 at the center and this is ∇. 𝒒  at the 

surface.  

 

So in this lecture we have seen how to apply the equation of radiative transfer to some special 

problems one dimensional problem where we have a sphere and gray problem where the 

absorption coefficient was not a function of wavelength and we did lot of simplification and 

solve for important parameters like heat flux at the surface and ∇. 𝒒. We will apply in 

subsequent lecture the same techniques to solve radiative heat transfer in cylindrical and plain 

parallel geometry.  

 

So I thank you for your kind attention. We will continue in the next lecture for some special 

cases of radiative transfer one dimensional cases. Thank you. 


