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Radiative Heat Transfer in the Presence of Conduction/Convection 
 

Hello friends, in many problems more than one mode of heat transfer may be important there may 

be conduction together with radiation there may be convection together with radiation. And these 

two modes of radiative transfer and conduction or conductivity transfer maybe coupled to each 

other that means they affect each other and or they may be independent of each other in that case 

we may solve the problem of conduction and radiation or convection or radiation independently. 

 

So in this lecture, we will study how the conduction and radiation problem can be solved together 

we will also study how the convection problem and radiation volume can be solved together.  

(Refer Slide Time: 01:20)  

 

So there are many applications for example, in space the spacecraft has to dissipate heat generated 

within the space craft the heat transfer within this space craft is merely governed by conduction 

while the dissipation of heat from the surface of the space craft is mainly going by radiation. Such 

space crafts the dissipating surfaces of this is space crafts are normally pointed away from the sun. 

 



So we can safely assume that they are not irradiated by any emission outside the spacecraft the 

solar radiation or I need addition coming from outside can be neglected. So these surfaces dissipate 

heat through radiation into the atmosphere or into space and energy transfer within the surface of 

the space craft is governed by conduction. Similarly, there may be some cases where for example 

in many applications related to combustion.  

 

Where conductive heat transfer takes place inside some tube or a combustion chamber while the 

surface is radiate the energy into the environment and leads to heating or cooling of the wall.  
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So first we will study the conduction and surface radiation we take an example of a fins which has 

which is a typically used to dissipate heat in space craft. In this case we have taken a special 

configuration we have actually symmetric a configuration radially located fins around the tube the 

fins have a what we call a rectangular cross section. The rectangular cross section of the fin have 

thickness (2t). the thickness of this rectangular cross section of the fin has (2t) and we will make 

certain assumptions as this customary in many conduction problems. 

(Refer Slide Time: 03:31) 



 

We assume that the temperature of the fin varies in the radial direction only that means the 

temperature is not a function of theta (𝜃) that means it does not vary from fin to fin at a given 

radial distance and it also does not vary in the axial direction the axial direction is rather taken 

very long. We assume that the N loss is from the tip of the fin are negligible by convection as well 

as radiation. 

 

The conductivity of the material of the fin is known and is constant the base temperature of the fin 

so we have this fin which is radiating energy from both the surfaces. Here we do not have energy 

so we have assumed that the N losses are negligible and the best temperature is maintained at 

constant temperature =Tb. There is also no external irradiation that means solar energy is not falling 

onto this fin. 

 

And the space is at very low temperature approximately close to 0 so there is no radiation coming 

from the space also okay they also assume that the surface of the fin the radiative properties are 

Gray diffuse and the fin itself is opaque.  
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So the energy balance for a cross section of fin so we take this cross section of fin and we write 

down the energy balance for this fin. So basically what we have is energy coming in through 

conductive heat flux and energy going out through conductive heat flux and then from the surface 

we have energy leaving the fin through radiation. So we write this energy balance equation. 

 

So the equation is energy coming in through conduction is = energy going out to conduction and 

radiation combined. Now we intentionally chose the thickness of the fin as 2t so factor 2 basically 

cancels out so we get this differential equation[ 
ௗమ்

ௗ௫మ
=

ଵ

௧௞
𝑞ோ](d square t/dx square) so temperature 

is varying only in the direction radial direction of the fin and the radial direction here is represented 

by a coordinate x. 

 

So[ 
ௗమ்

ௗ௫మ
=

ଵ

௧௞
𝑞ோ] where 𝑞ோ is the radiative heat flux that we need to solve through Radiosity 

relation. Now in this problem we see that the problem is going to be a coupled problem why a 

couple because in conduction equation we have a radiative source term that is appearing so 

conduction equation this is conduction equation where we have a source term for a radiative heat 

flux okay. 

 

Similarly, in the radiative equation the radiative equation is written by as we have already 

developed for Gray surfaces so 𝑞ோ the flux at any location x we are talking about two fins so if you 

look at the configuration of this geometry they will be radiative heat transferred between two 



adjacent fins okay. So we call one fin aligned in the x direction as and another fin which is adjacent 

to it is 𝑥ଶ okay. 

 

And due to symmetry we do not have to worry about the fin on the other side. So there will be 

exchange of radiation between two adjacent fins. So we have introduced a Radiosity 𝐽ଵ okay which 

depends on radiation on adjacent surface okay and we have emission from the surface okay now 

because of the unknown temperature of the fin T the problem is coupled to the conduction okay. 

 

So we have an unknown temperature T1 which is the temperature of the fin surface at any location 

𝑥ଵ  which is linked to the conduction equation. So this is the you can call it radiation equation. 

Okay so definitely these type of problems are very difficult to solve analytically so we have to 

solve this specially because of the dependence of radiative flux on Radiosity which is continuously 

varying with x. 

 

This will give us again a Fredholm type of integral equation which we know how to solve using 

numerical methods. So the combined couple problems is going to be much more difficult. 
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So the boundary condition we have is temperature of the fin at x=0 is that is at the basis constant 

Tb and the end losses are negligible so dT/dx at x=L=0. So this is the boundary condition for the 

conduction problem a two dimensional conduction problem requires two boundary conditions a 



second order boundary equation requires two boundary conditions. So these are the two boundary 

condition for the conduction problem. 

 

So we will not attempt to solve this problem because its very difficult to solve this problem 

analytically we will just leave the development of the problem by giving a nondimensional form 

of these equations. We define a non-dimensional temperature as temperature of the fin[ 𝜃(𝜉) =

்(௫)

்್
 ]at any location x divided by its base temperature. So this is the non-dimensional temperature 

theta where theta is basically a non-dimensional length x/L. 

 

Non-dimensional Radiosity [𝒥(𝜉)=
௃(௫)

ఙ்್ర ]is defined as actual Radiosity at location x divided by black 

body emissive power at temperature Tb .and then we define one parameter non-dimensional 

parameter𝑁௖. In the numerator we have the conduction term where we have k conductivity times 

thickness 1/2 thickness t and in the denominator we have a radiation term 𝜎𝑇௕
ଷ𝐿ଶ. Now this 

particular non-dimensional parameter is often called plank number. 

 

Which is basically a ratio of conductive heat transferred to radiative heat transfer. Now with this 

non-dimensional parameters we can write our equations the conduction equation as this is modified 

non-dimensional conduction equation so non-dimensional temperature 
ௗమఏ

ௗకమ
=

ଵ

ே೎

ఢ

ଵିఢ
[𝜃ସ(𝜉) −

J(𝜉)]. 

 

So of course this is a nonlinear equation and it has to be its all using numerical methods the non-

dimensional Radiosity relation can be written we have already discussed how to evaluate this in 

case of Gray surfaces so we have what we call emission term theta is unknown here so it is coupled 

to the conduction problem and we have this function what we call Kernel function that depends on 

view factors and all so this is for the irradiation term or absorption  

 

Okay so this becomes an integral equation so we have to solve these equations conduction equation 

which is non-linear and radiation equation for Radiosity which is basically integral equation. So 

both the equations are difficult in their own sense and have to be solved using some kind of 



numerical scheme. The boundary conditions the modified boundary conditions in non-dimensional 

parameters becomes 𝜃 =1 for 𝜉 = 0 and   
ௗఏ

ௗక
 =0 for 𝜉 =1. 

(Refer Slide Time: 11:40) 

 

Now just like we define fin efficiency in case of conduction and convection combined mode heat 

transfer we also define fin efficiency for conduction and radiation. So the fin efficiency is defined 

as heat loss actual heat loss from the fin divided by an idealised situation where we have a black 

fin at an isothermal temperature Tb. 

 

So if such an idealized fin exists then the heat loss from that fin we compare our actual heat loss 

from that fin and the ratio is basically defined as the fin efficiency. Why we have taken 

denominator as black fin an isothermal fin because black surfaces basically radiate the maximum 

amount of energy. So the fin will be more of most efficient when its temperature will be highest 

when its emission power will be highest that is black body at isothermal temperature Tb. 

 

That is going to give us the maximum amount of energy emitted by the fin. So that is why we have 

taken it in the denominator and the denominator can be evaluated analytically it will be basically 

= 𝜎𝑇௕
ସ(1 − 𝐹ଵିଶ) because some part of the radiation will actually be interchange with the adjacent 

fin. So the factor(1 − 𝐹ଵିଶ) appears because of that geometric configuration. 

 



So this is our heat loss from idealize fin or black fin at constant temperature Tb okay now heat loss 

from the actual heat loss can be calculated in two ways once we have solved the problem the 

conduction and radiation problem. We know radiative heat flux as a function of facts we know 

temperature as a function of facts so either so we can solve dT/dx once we know T as a function 

of x and calculate the actual amount of heat transferred by calculating the gradient dT/dx at x=0. 

 

Or we can basically integrate the radiative heat flux from 0 to L both the integration well give you 

the same results okay and this will appear in the numerator and the ratio is defined as the fin 

efficiency.  
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So as I said these problems can be solved numerically a very difficult to solve analytically I have 

I am showing you here when figure that basically explains how the efficiency of the fin varies on 

this chart we see that the efficiency is going to decrease when the fin goes from black to Gray okay 

if the emittance is 1 the fin is black the efficiency is highest and if the emittance is less let us say 

0.5 the efficiency is going to go give go down. 

 

And the reason is I already explained because the black surface emits most amount of radiation 

similarly the fin efficiency decreases with 1/radiation the plank number. So 1/Nc is the inverse of 

the plank number Nc is the plank number. So the radiative efficiency of the fin decreases with this 



number now the region is let us say if you have highly conducting fin or the value of k is large 

then 1/Nc is going to be very small. 

 

The conduction basically dominates the fin will be isothermal and efficiency of the fin is going to 

be large okay. So with the radiation number with plank number 1/plank number the efficiency of 

the fin decreases okay. So numerically these type of problems can be solved we will not attempt 

to solve any example analytically in this lecture. Next, we will discuss his combined mode 

convective and radiative heat transfer. 
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In combined mode convective and radiative heat transfer the surface radiation from a surface and 

this could be internal flow let us say flow through a pipe with the surface of the pipe is heated with 

constant heat flux as is shown here or it could be external flow over a flat plate with a surface of 

where the plates surface is heated with constant temperature or constant heat flux. Now due to 

radiation emitted from these surfaces either the plate surface. 

 

Or the pipe inner surface that heat absorbed by the fluid is going to change okay because some 

amount of energy is lost due to radiation the temperature of the fluid or the temperature of the wall 

of the pipe or flat surface is going to change. Okay now in this particular configuration the fluid 

enters a pipe with a mean temperature of 𝑇௠ଵ and it exists the pipe with a mean temperature of 

𝑇௠ଶ. 



 

Now the surface on the left hand side the pipe inlet surface or inlet circle is exposed to an 

environment maintained at temperature 𝑇ଵ. It could be like this we have a basically let us say some 

kind of Furness and we have some environment and the pipe basically take some kind of fluid 

okay and this fluid basically takes fluid to the discharges the fluid to some environment we 

maintain that temperature 𝑇ଵ okay. 

 

So the two ends of the tube are going to be at different surfaces okay now what we have basically 

assumed here is that the fluid itself does not absorb radiation that is it is nonparticipating medium. 

If the fluid absorbs radiation, then definitely radiation will increase the temperature of the fluid. 

But here we are assuming that the fluid is nonparticipating radiatively and only role of radiation is 

basically heat loss from the ends of the pipe. So we write an energy balance equation for a small 

elemental volume let us call this elemental volume dV. 
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Okay, this is the boundary conditions that we will apply I have already explained this. This is 

constant heat flux problem, the tube surface is maintained at constant heat flux 𝑞௪ while the 

temperature of the surface is changing with respect to 𝑥. So both 𝑇௠ is a function of x and 𝑇௪ that 

is wall temperature is a function of 𝑥 okay and the heat transfer coefficient is assumed to be 

constant. So we assume that heat transfer coefficient is not varying with the pipe length. 



 

So writing the energy balance equation we take an elemental volume 𝑑𝑉 so in this we have 

enthalpy coming in which is equal to 𝑚̇𝑐௣ this is enthalpy coming in 𝑚̇𝑐௣ and the bulk fluid 

temperature 𝑇௠ and enthalpy going out which is 𝑚̇𝑐௣ and the temperature is going to be changed 

here let say temperature is 𝑇௠ here temperature is 𝑇௠ at 𝑥+ ∆𝑥 okay so the temperature is changing 

along the pipeline so then enthalpy is going to change. 

 

And then we have heat added or removed from the wall through convection so the heat transfer 

coefficient is h and this is the temperature difference between wall and the fluid so 𝑇௪  -𝑇௠ so this 

is the amount of heat removed per unit area from the wall surface and we multiply it by the contact 

area of this fluid element which is basically =2𝜋𝑅 and this thickness d𝑥 okay so this is the total 

amount of heat removed by this small element from the surface of the tube okay. 

 

Now as I said the fluid is nonparticipating so no radiation term comes in this. So radiation basically 

comes into this equation through temperature only. So we can write down this equation simply 
ௗ ೘்

ௗ௫
 

so we expand this right hand side with Taylor series and we can write down the differential 

equation the derivative of mean bulk temperature of the fluid at any location 𝑥, 
ௗ ೘்

ௗ௫
=

ଶ௛

ఘ௖೛௨೘ோ
 

where 𝑢௠ is now average fluid velocity and 𝜌 is the density of fluid. 

 



Where R is the radius of the pipe okay so we can write down this differential equation now same 

type of energy we do for the surface element of the pipe that is this surface element this is the pipe 

surface the small element dx okay the area of this element will be of course 2𝜋𝑅dx okay so the 

heat removed or the heat flux on the wall surface qw assuming it to be Gray will have a radiation 

component. 

 

Emission minus absorption term absorption of radiation coming from the two ends as well as 

absorption of radiation coming from other part of the pipe. So the Radiosity contains three 

components radiation coming from left hand radiation coming from right then and radiation 

coming from other parts of the pipe and then we have also heat flux due to convection. So heat 

removed from the pipe surface contains two components. 

 

One is convection which is actually taken by the fluid and one is radiation which is not taken by 

the fluid because fluid is not participating it is basically lost to the environment. 
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So the expression for Radiosity Jx contains emission and the reflection part this is the reflected part 

we have the term in the bracket basically includes comprises of irradiation. So the fluid surface is 

basically eradicated by surface from inlet outlet and other parts of the surface of the pipe okay. So 

there are three components of irradiation, irradiation from outside radiation surface inlet surface 1 

and inlet surface 2 and irradiation from the pipe itself okay. 



 

So that will be basically an integral equation because Radiosity is varying along the pipe surface. 

So again this method this problem can be solved using numerical methods where we have to solve 

one integral equation the Fredholm equation and one equation we have to solve this for convection 

which is basically a linear equation. So these three equations we have to solve we non-

dimensionalized the problem we define a non-dimensional length x/D. 

 

We define non-dimensional temperature or yeah non-dimensional temperature [𝜃(𝜉)]as sigma 

(
ఙ்ర

௤ೢ
)ଵ ସ⁄ .we defined non-dimensional Radiosity as 

௃

௤ೢ
, where 𝑞௪ is a known constant that is the 

heat flux at the wall. Then Stanton number is defined 
௛

ఘ௖೛௨೘஽
and one more non-dimensional we 

defined for the heat transfer coefficient 𝐻 = 
௛

௤ೢ
(

௤ೢ

ఙ
)ଵ ସ⁄  

Okay these non-dimensional numbers we have defined. 

 

And based on these non-dimensional numbers we write our governing equation. So the first 

equation for convection becomes 
ௗఏ೘

ௗక
 where 𝜃௠ is now the non-dimensional temperature =

4 𝑆𝑡[𝜃௪(𝜉) − 𝜃௠(𝜉)] okay. So both 𝜃௪ and𝜃௠ are unknown here. Then from radiative energy 

balance we can write down equation 1 = 𝐻[𝜃௪(𝜉) − 𝜃௠(𝜉)] +
ఢ

ଵିఢ
[𝜃ଵ

ସ(𝜉) − J(𝜉)]now theta 1 is 

known. 

 

It is the temperature at the inlet - Radiosity non-dimensional Radiosity and then we have non-

dimensional Radiosity which can be written as non-dimensional emission power 𝜖𝜃௪
ସ  and emission 

term or irradiation term from the inlet and the irradiation from the pipe other part of the pipe. So 

this is the integral equation in non-dimensional form. So these equations we have to solve using 

some kind of numerical the problem is a couple problem. 

 

Because the temperature the unknown temperatures Tm and Tw appear in both convection and 

radiation equation. 
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We conclude this lecture by showing you the results its very difficult to solve this problem 

analytically but it can be solved through numerical procedures. So what I show you on this slide 

is basically the result for non-dimensional temperatures wall temperature and bulk fluid 

temperature with the actual non-dimensional actual length. So we expect that the fluid temperature 

will increase. 

 

As its also observed the fluid temperature increases with the actual length because the fluid is 

going to absorb energy from the wall through conductive heat transfer. So fluid temperature will 

continuously increase what is surprising is the distribution of wall temperature how the wall 

basically varies if we do not include radiation into effect then we find that the temperature should 

also increase the wall temperature should also increase. 

 

Because we have supplied constant wall heat flux and the bulk fluid temperature is increasing so 

the wall temperature should also increase and it is clear that the wall temperature is indeed 

increasing or rather linearly it is increasing the increase is significant for larger L/D ratio while the 

increase is not very significant if the pipe is short for long pipes this is going to have significant 

increase. 

 

What is surprising and what is interesting to observe in this image is the variation of wall 

temperature when radiation is taken into account. So we see that variation basically leads to loss 



of energy from the pipe surface and we expect that the wall temperature should come down because 

of this loss of energy the wall will be cooler as compared to when radiation is not taken into 

account. 

 

And this is pretty much clear where for all values of L/D 1, 10 and 50 the flux is significantly less 

than the flux value without radiation okay. The decrease is highest in pipes with L/D ratio of 1 and 

the reason is for shorter pipes so this is let us say L/D=1 this is L/D=10 and this is L/D of 50 okay 

so for L/D the fraction of radiation energy loss because now the surface is pretty much exposed to 

the ends. 

 

The ends of the pipe are very close to the surface of the pipe so the fraction of energy lost by 

radiation is much more significant for smaller pipes okay. So here at radiation losses are significant 

and we can see that the temperature difference within without radiation is highest for the case 

L/D=1 here L/D=50 radiation is still there but it is mostly confined to the end regions and we see 

that the temperature drops significantly in the end regions okay. 

 

There is a significant drop in temperature in the end regions but in between the difference between 

the temperature with and without radiation is not much. Okay because radiation effect is hardly 

observed in the middle of the pipe while at the end radiation is significant and it leads to a 

significant reduction of radiative a significant deduction of wall temperature at the end of the pipes. 

 

So I conclude this lecture where we have discussed combined mode radiative transfer the problem 

are coupled and normally governed by Fredholm equation. Analysis of these types of problems 

have to be done through numerical analysis in the next lecture we will discuss problems where 

radiation passes through a medium where the medium is not vacuum rather the medium is emitting 

absorbing and scattering medium. 

 

Such problems, we encounter in large number of applications like combustion furnaces 

atmosphere. So thank you for the time being, we will see you next time. 


