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Non Gray Surfaces 
 

Hello friends we are discussing radiative heat transfers between surfaces so far in this course we 

have focussed on black and gray surfaces. In this lecture we will focus on radiative heat transfer 

between non gray surfaces  
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So, the gray surfaces are basically defined as where the emittance does not depend on wave length 

so 𝜖ఒ = 𝜖, so the emittance is constant over a surface over a wave length. Such a surface is defined 

as gray, so far we have only discussed gay surfaces and black surfaces with diffused and specular 

reflection. Now we will look at the surface is when these surfaces have different magnitude of 

emittance over different spectral range.  

 

What you see in this slide is basically an approximation of the emittance variation with wave length 

as we have seen in our lecture on properties of materials. The emittance may actually very 

continuously over the wave length. So, for some materials it will be constant at long wavelength 

region while wearing sharply in the short wave length region. While for some other materials it 

may be constant at short wave length region. 



 

And then decrease at long wavelength region but in this example or in this course we will mainly 

focus on materials that have variation of emittance with wave length in the form of bands. So, as 

it is seen in this slide in these figures the emittance for surface one let us say this is surface one 

has large value at sharp wave lengths and almost negligible at long wavelength and for surface 

too.  

 

The emittance is negligible like short wavelength while it has a large value at high wave length 

region so although emittance is a function of wave length but we have taken a simplified case. 

Where wave length is basically constant over a given wave length region so the analysis for this 

type of problems will be very similar to what we have done for the gray surfaces. The expressions 

that we have derived for heat flux (q) and Radiosity Ji are equally valid for this case. 

 

Also the only thing is now we will have to solve for heat flux for each wave length for each surface. 

And we have to solve for radiosity for each wavelength for each surface so that the expressions 

that are developed are valid here. The only thing is we have to basically do a spectral calculation 

so this is called spectral flux spectral heat flux and this is called spectral Radiosity and we use the 

term spectral. To basically defined that the quantity is valid only for a given wavelength.  
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So, the relationship that we have already developed I am just reading them again so we develop 

this relation for a gray surface where there was no dependence of any quantity on wave length. 

Now when we have a non gray surface all the quantities be it flux, emissive power, Radiosity, 

irradiation or even the emittance has to be taken into account for each wave length. So, the first 

expression the first equation gives you a spectral heat flux.  

 

That means the heat flux at a given wavelength divided by emittance spectral emittance again this 

is at a given wavelength is equal to a spectral emission power – summation of all N surfaces in the 

enclosure. So, we are basically talking about and closer divided into N surfaces, so we have j=1 to 

N, total N surfaces. And then we summed over all the surfaces Radiosity (𝐽ఒ௝), radiosity, spectral 

Radiosity of each surface and the view factor. 

 

The view factor is purely geometric so the wave length does not appear in this so we have a view 

factor or geometric view factor and then irradiation. Irradiation again may depend on wave length. 

So, this is the energy balance for a surface at a given wavelength we have expression in terms of 

Radiosity and emission power. We can basically eliminate the irradiance here so we can write the 

heat flux as 
ఢഊ೔

ଵିఢഊ೔
[𝐸௕ఒ௜ − 𝐽ఒ௜]. 

 

So, this is the emission power and this is the Radiosity now we can eliminate the Radiosity as we 

have done for gray and black gray surfaces. And we can get this expression for heat flux so these 

expressions we will solve for a non gray surfaces where we are trying to find out heat flux at a 

given wavelength. We have eliminated the Radiosity from this relation using the above two 

equations using these two equations we eliminated the Radiosity. 

 

And we have calculated the heat flux the spectral heat flux once we know the spectral heat flux 

the total heat flux can be calculated by integrating the spectral heat flux or all the wave lengths 

flux qi at a given surface i is simply equal to integration from 0 to infinity. That is all the wave 

lengths and the integrant is being spectral heat flux. Similarly, the total black body emission power 

at a surface Ebi is integration over all the wave lengths of the spectral emission power. 

 



Spectral emission power is basically nothing but the plank function these type of problems if you 

try to solve this for each wave length. So, we have to solve for 𝑞ఒ for all wavelengths. So, wave 

length may vary from 0 to infinity. We have to take some finite number of wave lengths each 

wavelength maybe the interval from 0 to infinity maybe divided into 𝜆ଵ, 𝜆ଶ and so on.  

 

Okay times 𝜆୑, there may be thousand wave length that you want to evaluate this integration 

through numerical scheme or there may be millions of points. So, this method where we have to 

find spectral heat flux at large number of wave lengths is called line by line method where we have 

to find out the heat flux at each wave length and then we find the total heat flux by integrating over 

the spectral heat flux.  
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So, there are two ways of simplifying this problem we know that in this case the emittance is not 

continuously varying over wave length rather it is having a constant value in one spectral range 

and another constant value in another spectrum range. So, the first approximate method to deal 

with this type of problem is called semi gray approximation. For example, we have let us say 

surface maintained at same temperature of let us say 300 Kelvin. 

 

And irradiated by solar radiation so we know that the solar radiation contains most of it is energy 

in the wave length region from 0 to let us say 4-micron. So, most of the solar energy comes into 

this a spectral range. While this plate which is maintained at 300 Kelvin will emit most of its 



radiation in the wave length region > 4 micron. So, what do we do is we split the problem into two 

parts? 

 

 One part contains heat transfer radiative heat transfer because of the solar energy which is in the 

0 to 4-micron region. And another part which is > 4-micron region does not contain solar energy 

because we do not have solar energy in that spectral range. So, we have spirited the problem into 

2 parts we apply the energy balance equation for heat flux on the two parts of the spectrum so this 

is the first part for lambda (𝜆). 

 

Let us say 4 micron and this question is for lambda > 4 micron once we have solved these 2 

equations for the heat flux. Please note there is no wave length here because the emittance is 

assumed to be constant so we have a value of emittance at epsilon 1. And here we have the value 

emittance epsilon 2 and which is constant over the wave length region < 4 micron or > 4 micron 

so the lambda (𝜆) does not appear here. 

 

Because we have assumed that the spectrum can be divided into 2 regions each region can 

considered to be gray. Once we have calculated the heat flu the total heat flux qi is simply the heat 

flux q1i + q2i ,that is the radiative heat flux from the two semi gray approximated fluxes. So, the 2 

regions lambda (𝜆)< 4 micron gives you a heat flux q1i and the other region lambda (𝜆) >4 micron 

gives you flux q2i and we add the 2 components and we get the total radiant flux so this method is 

called semi gray approximation. 
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We will solve one problem to demonstrate how a non gray surface basically can perform or 

increase the efficiency of a collector. Now this problem of solar collector we have been doing we 

have solved it for a number of cases. We have seen the solar collector problem on without reflector. 

So, this problem we have seen that without reflector it performs poorly well very poorly without 

the reflector the efficiency is very poor. 

 

We have also saw this problem with the gray and diffuse reflector so we have done that gray diffuse 

reflector and we have seen that in previous lectures that once we put a great diffuse reflector some 

part of the energy is actually reflected towards the plate while some part of the energy is reflected 

back into the atmosphere. So, this plate great diffuse plate significantly improved the efficiency of 

the collector plate. 

 

But the efficiency can further be improved by putting a mirror the advantage of putting a mirror is 

that it reflects only in a certain direction. That means it reflects most of its energy towards the 

collector plate and not towards the atmosphere. So, that is the advantage of the mirror which is 

basically a specular reflector. No the 4th type of modification to this problem that we are going to 

solve today includes non gray reflector. 

 



So, no gray reflector it is diffuse we will assume diffuse but it is non gray so that means some part 

of the energy will indeed be reflected back to the atmosphere. So, first of all let me give you the 

governing equations we just learn.  
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So the governing equation for this problem is q1 or basically 
௤భ

భ

ఢభ
భ − ቀ

ଵ

ఢమ
భ − 1ቁ 𝐹ଵଶ𝑞ଶ

ଵ = −𝐻଴ଵ
ଵ +Eb1 -

F12 Eb2.this is the 1st equation and for surface 2, 
௤మ

భ

ఢమ
భ − ቀ

ଵ

ఢభ
భ − 1ቁ 𝐹ଶଵ𝑞ଵ

ଵ = −𝐻଴ଶ
ଵ +Eb2 –F21 Eb1. so 

these 2 equations have been written for the 2 surfaces for the spectral range lambda (𝜆) > 4 micron 

and we know that within the spectral range both the surfaces will not remit any radiation. 

 

That emission from the surfaces will be in the wave length range > 4 micron. So, these quantities 

can be neglected and 𝐻଴ଵ
ଵ  is simply = qsuncos 𝜃 and 𝐻଴ଶ

ଵ  = qsun sin𝜃. so our equation now simplifies 

to basically 
௤భ

భ

ఢభ
భ − ቀ

ଵ

ఢమ
భ − 1ቁ 𝐹ଵଶ𝑞ଶ

ଵ = − qsuncos 𝜃 that is called as equation 1 and 
௤మ

భ

ఢమ
భ − ቀ

ଵ

ఢభ
భ − 1ቁ 𝐹ଶଵ𝑞ଵ

ଵ 

= - qsun sin𝜃,this is equation 2 and these equations are for lambda (𝜆) < 4 micron spectral range. 

 

Now similar equations similarly for lambda (𝜆) > 4 micron we can write it as 𝑞ଵ
ଶ (remember the 

super script here represents spectral range) 
௤భ

మ

ఢభ
మ − ቀ

ଵ

ఢమ
మ − 1ቁ 𝐹ଵଶ𝑞ଶ

ଶ (the view factor does not change) 

= Eb1 - F12 Eb2, so here Eb1 and Eb2 are non 0 because 2 surfaces will emit and absorb within this 



spectral range while the solar radiation coming from outside if taken 0 very less contribution with 

their in this spectral range and similarly for surface 2: 
௤మ

మ

ఢమ
మ − ቀ

ଵ

ఢమ
మ − 1ቁ 𝐹ଶଵ𝑞ଵ

ଶ = Eb2- F21 Eb1. 

 

Let us call this equation 3 and this equation 4, so we have 4 equations and we have unknowns here 

4 unknowns 𝑞ଵ
ଵ, 𝑞ଵ

ଶ, 𝑞ଶ
ଵ, 𝑞ଶ

ଶ and there is another unknown here Eb2 so we need a one more equation. 

So let us see how we will solve this so solve we will take a special case. 
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𝜖ଵ
ଵ =1.0 and let me just 𝜖ଶ

ଵ= 0.0 for lambda (𝜆) <4 micron and 𝜖ଵ
ଶ= 0.0 and 𝜖ଶ

ଶ= 1.0 for lambda (𝜆) 

> 4 micron that means surface act as a perfect black body perfect absorber or they act as a perfect 

reflector surface 1 act as a perfect absorber for lambda (𝜆) <4 micron and it act as perfect reflector 

for lambda (𝜆)> 4 micron so we will put this values in the governing equation. 

 

So, let us add equation 1 + F12 times * equation 2 and we get when we do that 
௤భ

భ

ఢభ
భ −

ቀ
ଵ

ఢమ
భ − 1ቁ 𝐹ଵଶ𝑞ଶ

ଵ + 𝐹ଵଶ
௤మ

భ

ఢమ
భ − ቀ

ଵ

ఢభ
భ − 1ቁ 𝐹ଵଶ𝐹ଶଵ𝑞ଵ

ଵ = −F12 q sin𝜃 − 𝑞 cos 𝜃, where q is basically = qsun. 

simplification gives you 
௤భ

భ

ఢభ
భ + F12𝑞ଶ

ଵ − ቀ
ଵ

ఢభ
భ − 1ቁ 𝐹ଵଶ𝐹ଶଵ𝑞ଵ

ଵ = − q(F12 sin𝜃 + cos 𝜃).okay, so this is 

what we have got we can put now 𝜖ଵ
ଵ= 1.0. So, we get 𝑞ଵ

ଵ +  F12 𝑞ଶ
ଵ and (then 2nd the quantity 

becomes 0) = − q(F12 sin𝜃 + cos 𝜃). 

 



So, let us call this equation as equation number 5 now similarly we will write equation 3 * F21+ 

equation 4, adding these 2 equations we get 𝑞ଶ
ଶ +  F21 𝑞ଵ

ଶ= 1- F12 F21 Eb2 let us call this equation as 

number 6 so now you should note that. 

(Refer Slide Time: 21:47) 

 

For lambda (𝜆)  < 4 micron the reflector plate 𝜖ଶ
ଵ  = 0 that means it is a pure reflector whatever 

energy whatever solar energy falls on this reflector plate all of this energy is reflected back and we 

get 𝑞ଶ
ଵ = 0 so in this expression 𝑞ଶ

ଵ will be = 0 and we get 𝑞ଵ
ଵ = -q(F12 sin𝜃 + cos𝜃), and this value 

given q = - 1000 [(F12 is) 1/4 sin 30+ cos 30] and this value comes out to be -991 W/mଶin the range 

lambda (𝜆) has 4 micron. 

 

The energy absorb or the energy flux on collector plate is -991 W/mଶand how about 𝑞ଵ
ଶ. Now 𝑞ଵ

ଶ 

is energy exchange with the collector plate in the spectral range lambda > 4 micron. In the 4-

micron region there is no solar radiation coming and that is why 𝑞ଵ
ଶ  will be simply = 0. 𝑞ଵ

ଶ  is 

simply = 0 and that is why we get q1 = 𝑞ଵ
ଵ + 𝑞ଵ

ଶ = -991 W/mଶ, so this is very high factor efficiency 

for the semi gray approximation.  

 

If the plates are not semi gray if the plates are gray that means they absorb and they emit radiation 

or all over the spectral range. Then what we will get is q1 = Eb1 (now the energy will be emitted 

by the plate) – q cos𝜃. so outgoing −incoming and this will be equal to 5.67 * 10ି଼ (Stefan 



Boltzmann constant and the temperature of the surface is ) 350ସ – 1000 cos30 and this value comes 

out to be -15 W/mଶ, which is negligible. 

 

 So, just by making the plates semi gray we have increased the collector efficiency significantly. 

On the other hand, if we take gray plate gray collector plate without the reflector then our flexibility 

q1= (simply) – q cos𝜃 and that will be = −866 W/mଶso this is non gray collector plate without 

reflector and this grays are with no reflectors. So, both the cases if you do not assume reflector 

does not create that much difference.  

 

The biggest difference in the character efficiencies coming by making the collector paid as non 

gray. Just by making the plate non gray we have increased the efficiency from - 15 watts per meter 

squared to – 866 W/mଶwithout reflector and -991 W/mଶwith the reflector. So, this was an example 

on semi gray approximation method for non gray plates there is another approximate method and 

the method is called band approximation. So, here what we do is we in the previous example we 

have a typical case. 
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Where emittance was constant over only 2 spectral ranges so we have what we call 0 to lambda 

(𝜆) critical or let us say 𝜆௖ and then 𝜆௖ to infinity. We have only 2 ranges so we could apply the 

semi-gray approximation. Now it may happen many times that the wave length region may not be 



so benign of emittance value may actually vary like this or approximated like this. So let us call 

this 0 to 𝜆ଵ, 𝜆ଶ, 𝜆ଷand so on.  

 

So, what we have in this case is basically what we call band approximation so in different bands 

so 𝜆ଵ to 𝜆ଶis basically a band spectral band. So, in different bands we have a gray value or a 

constant value of emittance. But there may be more than a 1 or 2 such bands. So, there may be 

multiple spectral bands so let us say we have m number of such spectral bands spectral intervals.  

 

So, what we do is we take the equation of radiative heat transfer for non gray plates that is the 

spectral heat flux for the equation of spectral heat flux. And what we do is we integrate this 

equation our wavelength region 0 to infinity. Now what we do is basically we have to find out the 

total heat flux which is basically equal to the spectral heat flux integrated over all the wave length 

region.  

 

Now what we have done is we have divided this integral [∫ 𝑞ఒ೔
 d𝜆

ஶ

଴
 ]into number of integrations 

0 to let us say 𝜆ଵ, [∫ 𝑞ఒ೔
 d𝜆

ఒభ

଴
+ ∫ 𝑞ఒ೔

 d𝜆
ఒమ

ఒభ
+ ∫ 𝑞ఒ೔

 d𝜆]
ଷ

ఒమ
 and so on. There may be such bands so 

what we have done is we have split the interval or in their integration the spectral integration into 

number of small intervals.  

 

Now each of these intervals do not overlap that is the time conditions 0 to 𝜆ଵ, 𝜆ଵ to 𝜆ଶ these spectral 

intervals do not have any overlap. So, once we do that we can assume that the 𝑞ఒ೔
 is independent 

of lambda for each spectral interval. That means within each spectral interval the flux q does not 

depend on the wave length. So, this can be just taken out of the integral. 

 

And we can write down this as 𝑞௜
ଵ or lets us use a superscript 𝑞௜

ଵ + 𝑞௜
ଶ  + and so on and then 𝑞௜

୑   

so our heat flux basically summed over all the spectral intervals. So qi total heat flux is basically 

sum M= 1 to N, M spectral intervals or bands and the average heat flux over each band so that is 

what we have basically done. So, the heat flux  𝑞ఒ೔
 can be written as 𝑞௜

୫/ 𝜖௜
୫. Now the emittance 

also is constant over each spectral interval.  

 



So, it can be taken out of the integral and we have on the right hand side 𝐸௕ఒ௜ now once we have 

to calculate the  𝑞ఒ೔
 over the spectral interval or band from 𝜆ଵ to 𝜆ଶ, this non-dimensional or 

parameterized black body function appears. So, 𝐸௕ఒ௜ integrated from 𝜆ଵ to 𝜆ଶ can be written in 

terms of difference between the parameterized black body emission power emission powers.  

 

So, this is 𝜆ଵ to 𝜆ଶ, 𝐸௕ఒ௜ is simply equal to f function at (𝜆Ti) – f function (𝜆1Ti).  that is the one 

thing we have incorporated in this equation. So, our final equation for this band approximation 

becomes [f (𝜆mTi) - f (𝜆௠ିଵ𝑇௜)] -  j = 1 to N,  similar thing for all the emitting surfaces. f (𝜆mTj) 

where Tj is now the temperature of the surface j - f (𝜆௠ିଵ𝑇௝.  

 

So, this represents the emission power within that spectral interval so this is how we can apply the 

band approximation method to solve non gray problems. Semi gray method was relatively easy 

band approximation method because of large number of bands. Maybe become a little more 

complicated than the semi gray approximation. So, thank you for your patients in the next lecture 

we will discuss about combined mode heat transfers. 

 

We had conduction and convection is combined with radiation and we will see how in different 

applications this combined more heat transfer maybe useful and how to evaluate the governing 

equations for these types of problems. Thank you. 


