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Solution Methods for Governing Integral Equations 
 

Welcome friends, in the previous lectures we have discussed radiative heat transfer between 

flat surfaces, we discussed black surfaces, we discussed gray surfaces, we also solved a number 

of numerical problems for which analytical solution was easy to calculate. We also introduced 

the method of electric networks to find a solution for the gray surfaces, but these methods, the 

electric network method and the analytical method may not be applied when we are dealing 

with a large problem. 

 

A large problem with large number of enclosure surfaces makes it difficult to solve these 

problems by hand. So we have to either employ a computer, we have to go for some kind of 

numerical technique to solve these problems. So in this lecture we will study a few of these 

techniques to solve problems where we have the size of the problem is large or where we cannot 

approximate the enclosure with flat surfaces. 
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So just a quick recap to what we have done, in enclosure the radiative heat flux q at any location 

r. So this is the vector of the location r, if we take it with respect to some kind of origin, the 

heat flux at this location is made up of 2 components, one is the emitted energy, and one is the 



absorbed energy. So this is the energy balance for small element or at any location given by 

the vector r. 

 

In the second term we have what we call irradiation, so this is irradiation okay, so for a gray 

surface we define radiosity (J) so irradiation can be written in terms of radiocity that is the total 

energy leaving at any location is called radiosity. It has 2 components. The emission from the 

surface and reflection of any radiation coming on to that element. So radiosity has 2 

components emitted component and reflective component and we have to integrate over the 

entire enclosure with proper view factor. 

 

So with proper view factor we have to integrate over the enclosure and this will give you the 

total irradiation, total incoming radiation at surface dA from all the enclosure and we may have 

also an external component of irradiation coming from outside the enclosure. So these relation 

we have already discussed and this relation reduces to Ebr – ∫ 𝐸௕(𝐫ᇱ)𝑑𝐹ௗ஺ିௗ஺ᇲ
஺

𝐻௢(𝑟) (the 

second term)  which is very similar to the previous term. 

 

The only thing is the epsilon and alpha for the black surface have value = 1 and the radiosity 

(J) will simply reduces to emissive power okay. So these relations we have already developed. 

Now we will see how we can basically use this method to solve for an large enclosure okay. 
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So in the previous lectures on gray and black surfaces we have derived algebraic equations, we 

assume that the enclosure, any enclosure can be divided into finite number of surfaces, okay, 

so this is approximation which sometimes is good, but sometimes it may give you wrong 



results. We will see we cannot and we should not approximate the enclosure with flat surfaces, 

but for the time being we assume that the enclosure is approximated with flat surfaces. 

 

So if there are n flat surfaces which we have divided the enclosure into. Some of the surfaces 

have known heat flux value. So some of the surfaces, the q is known, while on some other 

surfaces the temperature maybe known okay and the heat flux maybe unknown. So let us say 

from i = 1 to n, we know q values and for i = n+1 to N the temperature is known that is emissive 

power is known but that flux is not known. 

 

So total number of unknowns will be N and some of these unknowns maybe flux and some of 

these unknowns maybe temperature. So we write our energy balance equation that we have 

derived earlier. We introduce variable called Kronecker delta. So 𝛿௜௝ is simply = 1, for i = j and 

= 0 for i≠j. So this is just for computer notation, we have introduced this parameter. So on the 

left hand side we have unknown fluxes for the unknown emissive power or the unknown 

temperature for the first n surfaces. 

 

On the right hand side, we have known fluxes qi external irradiation and irradiation from the 

surfaces n + 1 to N for which the temperature is known okay. So we can write down the energy 

balance equation in this form. Now one thing to note here is there are total n variables here. So 

first we are trying to solve for the temperature here and once we know the temperature or the 

emissive power we can calculate the heat flux for surfaces n + 1 to N okay. 

 

Now this equation can be written in matrix form A times eb (Aeb)= b where the matrix A 

contains the coefficients on the left hand side. So the diagonal coefficients we have i = j. So 

we have 1-Fij from the first term, off diagonal elements will have i≠j, so delta ij will be = 0. 

So we have – Fij terms in the off diagonal and the eb vector contains the emissive power, the 

unknown emissive power for the first n surfaces. 

 

So this will have dimension of n x 1, this will have dimension n x n and the right hand side the 

vector b contains the non-fluxes for the first n surfaces, external irradiation on the surfaces and 

irradiation from all other surfaces for which the temperature is known okay. This also has 

dimension (n x 1). Now this is the system of linear equation which is very easy to solve. 

 



We can program this equation and we can apply any linear solver like Gauss–Seidel to solve 

for the unknown temperature or emissive power e . Once the emissive power is known we can 

find out the unknown heat fluxes by just substituting this values in the original equation okay. 
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So this was for the black surfaces okay, for the gray surfaces similarly we can write down the 

energy balance equation, the only difference between black surfaces and gray surfaces is that 

the unknowns contain the heat fluxes. For some surfaces unknown may be heat fluxes. For 

other surfaces the radiosity may be unknown okay. So the radiocity contains both reflection 

and the emission okay. 

 

So we have to solve for the entire N surfaces simultaneously. We have to solve for this 

simultaneously for the entire N surfaces. So as before we write the equation for the unknowns, 

the first N unknowns contain the unknown emissive power. The second term on the left hand 

side contains N unknowns. So we have this N unknowns here in terms of the emissive power 

okay. 

 

And the rest n + 1 to N unknowns contain the unknown heat flux as the variable. So the total 

size of the matrix that we will form in this case for the gray surfaces will be N okay. So we 

have to solve simultaneously for the unknown fluxes and the emissive power okay. So right 

hand side contains the known terms, so we know the heat flux for the first N surfaces. 

 

So the first term on the right hand side is known, external irradiation is known and the last term 

on the right hand side is the emissive power because the temperature for surface is n + 1 to N 



is known, so this term is also known. So again we write this as a system of linear equation A 

X = B. 
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But this has little expanded matrix, the matrix looks like this. So this part of the matrix contains 

the view factors that relates to the emissive power. The first n terms contains emissive power 

as the unknowns and the rest n + 1 to N contains heat flux as unknown okay. So similarly the 

matrix structure is like this. The left top corner contains elements which directly relates to the 

emissive power as in the previous example of black surfaces we have diagonal terms 1-Fii. 

 

And off diagonal terms as Fij while this part of the matrix in the right hand side of the matrix 

contains terms which relates to the heat flux okay. So it has the emittance and reflectance 

appearing in the terms because it relates to the heat flux. Just looking at the equation it will be 

clear that reflectance appears in the heat flux term and it does not appear in the emissive power 

term. So this is the structure of the matrix. 

(Refer Slide Time: 11:23) 



 

The right hand side again contains the non-fluxes for the first hand surfaces, external irradiation 

and known emissive power from surfaces n + 1 to N and we can apply the same or similar 

method for the system of linear equation to solve this type of problems. So this is how we can 

basically write the energy balance equation for surfaces in an enclosure which is an idealized 

case and solve it on a computer okay. 

 

So I again recap why we call it idealized enclosure because we have divided the enclosure into 

number of finite surfaces okay, which may not always be good in all type of problems. For 

example, if we have surface okay and let us say we want to maintain or heat the surface 

uniformly over the entire area, we want let us say the temperature of the surface to be 

maintained at 1500 kelvin and we do not want the temperature variation of the surface should 

not be greater than let us say 1 degree centigrade. 

 

So that entire surface should be maintained at uniform temperature and the surface is heated 

using some heater, let us call this is heater plate okay and we want to heat this plate. So this is 

plate to be heated and maintain at certain temperature uniformly. So one thing that we should 

do is we cannot approximate the surface as single surface because if we do it then this will just 

give us an average heat flux or average temperature. 

 

But if we want to know the temperature variation along the plate we have to take into account 

how the radiocity J varies along the surface okay. So this J has to be calculated at each and 

every point and we should not approximate this surface with finite width or finite dimension 



plates okay. So we start with the same equation that we develop for the heat flux for a gray 

surface. The emitted part, the absorbed part okay. 
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And for black surface this will be just equal to 1 and radiocity will be simply equal to emissive 

power. Now if the emissive power is constant, if temperature is known, if temperature over all 

the surface is known then the integral in this equation can be evaluated first and then 

subsequently we can solve for the flux. So please note if the temperature at all the surfaces is 

known we can solve for this integral before we solve for the flux okay. 

 

So this integral part of the equation can be separated from the algebraic part okay and the 

equation becomes pretty simple okay. On the other hand, if we have heat flux as unknown then 

definitely the problem is going to be complicated. So if temperature is unknown then we have 

basically a variable appearing in integral. So we have a variable appearing in integral and then 

it becomes an integral equation. 

 

It is not a algebraic equation anymore, it becomes an integral equation and this fact is much 

more manifested in gray surfaces. So for gray surfaces we write the same energy balance 

equation as we have done before and we see that the unknown heat flux is appearing in the 

integral and known emissive power may also appear in the integral although if temperature for 

some surfaces is known then this integral can be evaluated very easily. 

 

So the only unknown appearing in the integral will be then the heat flux okay. So we have what 

we call integral equation in this cases when we are finding the heat flux by not dividing the 



enclosure into finite number of surfaces. The good advantage of dividing the enclosure into 

finite number of surfaces was to convert the integral equation into algebraic equation, but if we 

do not do that we have to solve for the integral equation and there are number of methods to 

solve this equation. 
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This type of equation where we have a variable, let us say the unknown function phi (∅), it 

could be radiocity, it can be heat flux, appearing in the integral on the right hand side also. So 

this type of equation is called integral equation and this particular equation is called Fredholm 

integral equation of second kind. The K appearing in this equation is called the kernel function. 

 

The F is the known function and ∅(𝐫) is the function that we want to evaluate, it could be 

radiocity, it could be heat flux. So this Fredholm equation we need to solve if we want to find 

out the exact distribution of heat flux over the enclosure. So there are number of methods. 

Analytical methods are also possible and numerical methods are also possible. 
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Although the analytical methods are mathematically quite involved and time consuming. So 

most of the time we prefer to solve these type of problems using numerical methods and the 

numerical methods provide good accuracy also. So in analytical methods we have what we call 

Kernel approximation method and in numerical methods there are many methods but 3 most 

important methods used is successive approximation method, quadrature method and 

variational methods or Galerikin method okay. 

 

These methods are basically used extensively to solve problems in gray enclosures. So I will 

discuss the successive approximation method and quadrature method in this lecture. 
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So I just give you an outline of the kernel approximation method, the method when applied to 

real problems becomes the mathematics become quite involved, so I will not take an example 



of this method. The outline of this method is basically we approximate the Kernel function, the 

K using some kind of simple functions like exponential function or trigonometric function or 

hyperbolic functions. 

 

So these type of functions are used, the series of these function is used to approximate the 

kernel function okay and these functions are then substituted in the integral and the integrals 

are then evaluated very easily by calculating the integral of these trigonometric or hyperbolic 

functions, the integral equation is converted into a differential equation which can be solved 

easily as compared to the integral equation. 

 

So the method in itself is straightforward, but the solution of these integrals and the subsequent 

differential equation becomes quite involved okay. So I will not take any example on this 

method. The next method is successive approximation method. In successive approximation 

method, this is the numerical method, what we do is we basically make a guess of this function 

and substitute this into the integral okay. 
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So let us say we first guess that the distribution function for the heat flux or radiosity the 

unknown function is given by this function f okay and we substitute this function in to the 

integral and solve the integral either analytically or through numerical quadrature. So we solve 

this, in analytical or using numerical quadrature. Once the integral is solved we get a new value 

of the function ∅(𝑟) okay. 

 



And then this value of ∅(𝑟) is again substituted into the integral and a new solution is found. 

So this is an iterative method okay. So let me just again highlight. So we have unknown 

function phi which is basically given by k ∅(𝑑𝑟)as is given here. We can just write it as A 

okay. So we first assume some value of let us call ∅(𝑖)and substitute it here and solve the right 

hand side.  

 

So we get ∅2 as f + k ∅1 dA, this integral we can solve analytically or through numerical 

quadrature. Once this solved we get a new value of the function ∅2 and then we substitute it 

back. So we get ∅3 as f + k ∅2 dA and this keeps on, we keeps on doing this until we get a 

desired result okay. So this method also is quite involved if we try to solve this integral using 

analytical methods. 

 

But it can be an easy method if we use numerical quadrature to solve the integrals. We will do 

one example to demonstrate this method. In this case we have 2 infinite parallel plates separated 

by a distance h. 
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Both the plates are maintained at temperature T and they are exposed to cold environment that 

means we are not including the effect of external irradiation, both the plates are diffuse with 

emittance epsilon. So we have to find out local radiative efflux. So we have to find out q as a 

function of r on both the plates okay. So this is the desired quantity that we are interested in. 

As is clear, we are not interested in average heat flux. 

 



Average heat flux we could have found by the methods we have already discussed okay, but 

we are interested in the actual value of flux as it varies over radius r okay, although this problem 

we have taken is quite trivial due to the one dimensionality of the problem, it is an infinite 

plate. This dimension in third direction is infinite. So the result would be quite similar to the 

average values but still as a purpose of demonstrating the method this problem serves a good 

example. So let us solve this problem. 
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So first of all we write down the expression for radiosity, this is going to be gray, diffuse 

surfaces. So the problem involves gray diffuse surfaces that means the value of emittance is 

not equal to 1 and we have diffusely emitting and reflecting surfaces okay. So we write down 

the radiocity surface 1, J1(x) which is going to be function of x okay, x is the coordinate along 

the direction of the plate , J1(x) = 𝜖𝜎𝑇ସ + (1 − 𝜖) ∫ 𝐽ଶ(x)d𝐹ௗ஺ଵିௗ  
ఠ

଴
 and we can just emission 

and absorption. 

 

So this is our radiosity, so radiocity contains the emission term and reflection term. So this is 

emission from the plate and this is the reflection from the plate okay. In this expression you 

might have noticed that we have only J2 appearing in this because there is not going to be 

irradiation from the same surface, so we have F11 = F22 = 0. So there is no self-irradiation, so 

the only unknown appearing in the integral is for the J2 okay. 

 

Similarly, we will write this for surface 2 also. So surface 2 the J2 value can be written as , J2(x) 

= 𝜖𝜎𝑇ସ + (1 − 𝜖) ∫ 𝐽௜(x)d𝐹ௗ஺ଶିௗ஺ଵ 
ఠ

଴
, both the plates are of same temperature with same 



emittance, okay. So this is basically the relation. Now we have to find out the view factors first. 

So let us, so I will not do the view factor calculation, we have already done that and this is a 

simple geometry. 

 

So view factor from look up tables can be calculated, so this value will be = dx1, we are trying 

to find out the small element view factor dx1.dFdA1-dA2 = dX2. dFdA2-dA1, this is readily available 

from the look up table, from the tables for the view factor and this value (dx1.dFdA1-dA2 = dX2. 

dFdA2-dA1) = 
ଵ

ଶ

௛మௗ௑భௗ௑మ

(௛మା(௑భି௑మ)మ)
okay. So let me tell you what basically this represent. 

 

So we have these 2 tables, we have a small element area at a distance of x1, the thickness of 

this is dx1 another area we have the distance from the left side is x2 and the area thickness is 

dx2. So the view factor between these 2 surfaces is what we are basically talking in this case 

okay. So now our radiocity relation are both very similar, the expression for J1 and expression 

for J2 are very similar. 

 

So we are going to substitute for the view factors in this relation. So for example J1 (x1), now 

we have introduced specific x coordinate x1 for the plate 1 J1(x) = 𝜖𝜎𝑇ସ + (1 −

𝜖) ∫ 𝐽ଶ(x)
௛మௗ௑మ

(௛మା(௑భି௑మ)మ)య/మ 
ఠ

଴
okay. So as you see the integral is quite involved okay. So we have 

to introduce. 
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So let us introduce non-dimensional parameters okay, so we introduce non-dimensional 

parameters as W as w/h and zeta 𝜉(𝑥)as = x/h okay, so these non-dimensional parameters we 



have introduced and we have also introduced function, this is a non-dimensional function 

which is 𝐽(𝑥) = 𝜎𝑇ସ okay. So the governing equation for the radiocity then becomes, will be 

a function of zeta and this will 𝐽(𝜉) = 𝜖 +
ଵ

ଶ
(1 − 𝜖) ∫  𝐽(𝜉ᇱ)

ௗకᇲ

[ଵା(కᇲିక)మ]
య
మ

ௐ

଴
. okay 

 

So we have just non-dimensionalized the radiocity using this non-dimensional parameters 

okay. Now how do we solve it? So we will use method of successive approximation where we 

have to make a guess. So our in this case phi is basically this function (φ= 𝜉 )and the first guess 

for 𝜙1 will be = epsilon (𝜖). The function f okay. So the first guess we make is the 𝜙1 = 𝜖. 

 

So the second guess for this function will be [𝐽2 = 𝜖 +
ଵ

ଶ
(1 − 𝜖) ∫  𝐽(𝜉ᇱ)

ௗకᇲ

[ଵା(కᇲିక)మ]
య
మ

ௐ

଴
]= 

epsilon + 1/2 1- epsilon okay and then integrate it over 0 to W, so we substitute it here, it is 

constant epsilon d zeta prime and then in the denominator 1 + zeta prime – zeta square power 

3/2 okay. So this is a simple integral, we can solve it and this gives you the value as 𝐽2 = 𝜖 

[1 +
ଵ

ଶ
(1 − 𝜖) ቐ

ௐିక

ටଵା൫ଵା(ௐିకమ)൯

+
క

కమቑ]  

 

Now because of symmetry, the radiocity of the 2 plates will be similar okay. Now we can 

integrate this for the third time it is possible by putting the second iteration into the integral, 

but the integration becomes quite complicated. So we will not evaluate psi 3 okay, it will be 

very complicated to evaluate the integral, we will just approximate the solution by this relation. 

 

So the value of J = J1 = J2 both are going to be similar because of the symmetry is simply 

=σ𝑇ସ, the non-dimensional radiocity. Once the non-dimensional radiocity is known we can 

easily solve for the heat flux Q as a function of r okay. So this was the method of successive 

approximation. The next method is the method of numerical quadrature. 
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This is the very powerful method which can easily be implemented in any computer. Now the 

method of numerical quadrature is very popular in radiation. So what this basically includes 

suppose we want to solve for an integration numerically. So we have a function 𝑓(𝑥) that we 

want to integrate from limits or boundaries A to B, so what we do is we write this integral as 

algebraic sum or weighted sum of the function value f at selected number of node points. 

 

So we evaluate the function at selected number of node points and we multiply by width and 

then sum over those points and that is what basically this integral. For example, let us say we 

want to find out the area under this curve okay. This area will be (A) = ∫ 𝑓(𝑥) 𝑑x from whatever 

limits A to B let us say. Now what we are saying is we have selected few number of points on 

this. 

 

We know the value of the function at these points and the area can be calculated based on the 

value at these points multiplied by some weights assigned to each point okay. Now these points 

may be equally spaced that means these points may be equally spaced or they may not be 

equally spaced okay. If they are equally spaced the method of numerical quadrature are based 

on this approach is called Newton-Cotes quadrature. 

 

And if the location of these point is optimized based on either Legendre polynomial or 

Chebyshev polynomial, this method is called accordingly Gauss-Chebyshev quadrature or 

Gauss Legendre quadrature. In short it is called basically the Gaussian quadrature. So Gaussian 

quadrature is different from Newton-Cotes quadrature in the sense that the points used to 

evaluate this integral are optimized according to the problem okay. 



 

So we can apply this method easily to evaluate the integral in the Fredholm’s equation. So what 

we do is let us say we have a one dimensional program where the limits are a to b, so the kernel 

function has to be integrated from a to b. So we approximate this 𝜑(𝑥)= 𝑓(𝑟), the term in the 

integral is approximated as per the formula given above, b –a/2 weights wj then summed over 

1 to N. 

 

Now N is the order of quadrature, we may have 4-point quadrature, we may have 8-point 

quadrature. So mostly 8-point quadrature for Gaussian works fine. So the value of n can be 

then 8, then the kernel function valuated at the nodes rj and the function phi also evaluated at 

the same nodes okay. So this converts this integral into an algebraic equation which is very 

easy to solve. 

 

Okay once we know the weights and we know the function values, we can solve for this 

equation. Now we can write down this like this. 
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𝜙(𝑟)= 𝑓(𝑟) + ∑ 𝝓௝(𝑟)𝜙(𝑟௝)ே
௝ୀଵ  okay. So we have defined this term as including b –a /2 as phi 

okay. So our equation now reduces to this simple equation which is a system of linear equation 

and the unknown are phi (𝜙) okay, at the respective quadrature points okay. So based on this, 

so we have 𝜙ଵ, 𝜙ଶ, 𝜙ଷand so on as the unknown okay and we can solve the system of linear 

equation very easily and the method works very fine. 

 



So just a quick look how basically we are doing it suppose we have an enclosure like this how 

the problem is different from finite number of surfaces and finite number of quadrature points. 

In finite number of surfaces, we divide the enclosure into finite number of flat surfaces like this 

okay and we calculate it average heat flux over the entire surfaces. Now in this case quadrature 

we are not selecting flat surfaces we are just taking the quadrature points okay. 

 

And evaluating our function at those points okay and we assume that if we evaluate the 

quadrature in this way we can approximate the heat flux over the entire enclosure. So this 

method is much more accurate than the method used by approximating the enclosure with flat 

surfaces. So I will show you one graph explaining the accuracy of this method. So on this graph 

we are plotting the non-dimensional heat flux for the same problem that we have just solved. 
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Two infinite parallel plates, the x axis is non-dimensional x, and y axis is non-dimensional heat 

flux and we see the solid line is the exact result and the exact result is in good agreement with 

the quadrature result, numerical quadrature result with 5 points taken, 5 nodes taken on the 

other hand the successive approximation method and the kernel approximation methods are 

not that accurate okay. 

 

So the two methods are quite involved mathematically, difficult to solve and they are not in 

good agreement with the exact results. On the other hand, the quadrature is the powerful 

technique that gives you good results and it is easy to solve on computers. So thank you for 

your kind attention. In this lecture we learnt an accurate technique to find heat flux without 



approximating the enclosure with flat surfaces. In the next lecture we will learn something 

about specular reflection, thank you. 


