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Lecture – 10 

Radiative Heat Exchange between Diffuse Gray Surfaces 
 

Hello friends, in the previous lecture, we studied the radiative heat transfer between black 

surfaces, now in today's lecture we will study radiative heat transfer between gray diffuse surfaces 

just by converting the surfaces from black to gray, the problem of radiative transfer becomes 

much more complicated as you will see in the derivation of mathematical expressions, the 

problem involves not just algebraic equations but rather integral equations. 

 

So, this class of problem is significantly difficult to solve as compared to the radiative heat 

transfer between black surfaces. 
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So, diffused gray surfaces, we have already studied the classification of the surfaces diffuse as 

we have already studied means, it emits and absorbs radiation equally in all directions that means, 

𝜖 = 𝜖ఒ
ᇱ = 𝛼ఒ

ᇱ = 𝛼 = 1 − 𝜌 

 

 so this is a diffuse emitter and absorber, the emittance and absorptance does not depend on 

direction, it is uniform in all the directions. 

 

And the surfaces are gray that means, the emittance and absorptance do not depend on wavelength 

also so, we have emittance = epsilon(𝜖) and absorptance = alpha (𝛼), they are equal as per 



Kirchhoff’s law but they do not depend on direction or wavelength, so this is we called diffused 

gray surfaces and this 

𝜖 and  != 1 

if it is = 1, then it will become black, they these surfaces are rather called gray. 

 

They have emittance and absorptance value != 1 okay, so when we have emittance ! =1 or < 1, 

the amount of energy emitted by a surface is simply epsilon times the black body emissive power 

Eb, so this is the amount of energy emitted by a surface, okay this is going to be less than what a 

black body would emit and the amount of energy absorbed if let us say H is the amount of energy 

coming in falling onto a surface. 

 

Then the amount of energy absorbed = 𝛼 H 

 A black body would have absorbed all the radiation, while the gray surface absorbs only a 

fraction of the incoming radiation and this fraction is called absorptance alpha so, we define so, 

part of this radiation H is basically absorbed, 𝛼H is absorbed and the rest of it 1 - 𝛼H is basically 

reflected back. 

 

So, we define a quantity called radiosity J, as the sum of energy emitted by the surface and also 

energy reflected by the surface, so the total amount of energy leaving surface is basically defined 

as the radiosity, so it contains contribution from emission and it contains contribution from 

reflection okay, so the first quantity definitely depends on temperature of the surface, so this will 

depend on the temperature of the surface. 

 

And this quantity depends on temperature of the source from which H is coming okay, so these 

two are different in the sense that the temperature of one surface may be significantly different 

from the other, so one value of the energy emitted will be in one spectral range and the other 

value may be in different spectral range, so amount of energy if somebody is interested in looking 

at the structure; the spectral structure of the radiation then this may look like this, okay. 

 

If you look at the amount of energy emitted versus wavelength okay, you will have this kind of 

structure where this could be the black body emissive power at temperature T and this could be 

the spectrum for H at the source temperature okay, so they may be spectrally different regions 

okay but for this calculation diffuse gray, the 𝜖 and Rho (𝜌) or 𝛼 are independent of wavelength, 



while the black body emissive power Eb and irradiation H will depend on the temperature of the 

respective surfaces. 
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And definitely they will depend on wavelength okay, so we write energy balance for a surface 

dA, we take an enclosure just like we did for the black surface okay, it may have some opening 

from which external radiation may come in okay, let us say we have a small element here, okay 

let us call this dA, okay so, the total energy balance for this surface dA includes the  

Energy emitted from this element =  𝜖Eb - energy absorbed. 

 

Now, 

Energy absorbed = 𝛼 H 

now, this total irradiation H may include radiation coming from the entire enclosure as well as 

the radiation coming from outside H0, okay so, it can include both the components so now, we 

will further simplify this equation, the same heat flux on this element dA can also be written in 

terms of radiosity, so radiosity is defined as total energy leaving the surface through emission 

and reflection. 

 

And it is J and – H; H is total irradiation, so this is total energy leaving and this is total 

incoming energy of course, radiative energy, okay and this is total emission and this is total 

absorption okay, so we can write heat flux in terms of either black body emissive power and 

irradiation or radiosity and irradiation now, 

Total irradiation on to 𝑑𝐴:  



𝐻(𝐫)𝑑𝐴 = න𝐽(𝐫ᇱ)
஺

𝑑𝐹ௗ஺ᇲିௗ஺𝑑𝐴ᇱ + 𝐻଴(𝐫)𝑑𝐴 

 as contribution from the entire enclosure just like we did in the case of blackbody. 

 

So, we take view factor from dA’ , let us say dA’ is a small area on the enclosure and we have to 

integrate over the entire enclosure, so we multiplied by dA’, so we take the view factor between 

these 2 surfaces and 𝐽(𝐫ᇱ) is the radiosity from this element dA’ okay, so this is the total amount 

of irradiation plus irradiation from the component coming from outside the enclosure, okay. 
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So, we substitute this value of irradiation, okay before we do that we simplify as we did in the 

case of blackbody enclosure, we write 

𝑑𝐹ௗ஺ିௗ஺ᇲ𝑑𝐴ᇱ= 𝑑𝐹ௗ஺ᇱିௗ஺𝑑𝐴 

 we substitute in this equation and we cancel out dA from both the sides, so we get the expression 

for irradiation, this is called irradiation at location of the small vector dA, radiosity integrated 

over the entire surface multiplied by the small view factor + outside irradiation, okay. 

 

So, we substitute this expression in the expression of heat flux and we get this expression, so  

qr = the energy emitted by the surface - energy absorbed by the surface 

so this is how we can calculate the heat flux for a diffuse gray enclosure, now the difficulty in 

solving this expression is that it includes an unknown quantity radiosity in this integral equation, 

this type of equation is called integral equation. 

 



And we have an unknown quantity J coming into this integral, so first of all we have to solve for 

J and then we can find out heat flux. 
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So, what we do is; we use the same expression okay, so what we do is; we use this expression 

okay, this equation we use okay, from this equation we can solve for the radiosity J, okay so 

radiosity can be written in terms of  

𝑞(𝒓) = 𝜖(𝐫)𝐸௕(𝐫) − 𝛼(𝐫)𝐻(𝐫) 

 and taking the Hr on this left hand side, we can solve for radiosity. So, using that relation we can 

solve for the radiosity  

 the radiosity at any location R = 𝜖 times the black body emissive power plus the reflected part 

of the radiation and outside radiation. 

𝐽(𝐫) = 𝜖(𝐫)𝐸௕(𝐫) + 𝜌(𝐫) ቈන𝐽(𝐫ᇱ)
஺

𝑑𝐹ௗ஺ିௗ஺ᇲ + 𝐻଴(𝐫)቉ 

 

So, what we have just done is basically, substituted the value of H in this relation, okay we have 

substituted the value of H in this relation and solve for 𝐽(𝐫) okay, so once we solve for 𝐽(𝐫), we 

get the results for radiosity now, if on any surface the heat flux is specified rather than 

temperature, let us say there is a surface out in the enclosure or some element in the enclosure for 

which the; for which the temperature is not known rather the heat flux is known. 

 

Then we can write down the radiosity in terms of heat flux also from the same equation, okay so 

from the same equation, the radiosity is simply q + H(𝐫), okay, so 



𝐽(𝐫) = 𝑞(𝐫) + න 𝐽(𝐫ᇱ)
஺

𝑑𝐹ௗ஺ିௗ஺ᇲ + 𝐻଴(𝐫) 

 The irradiation, so we can solve for radiosity using these two expressions, this is for known 

temperature and the other expression is for known heat flux but the problem is still not solved, 

why; this is not a normal equation, you cannot solve for radiosity just like an algebraic equation. 

 

Because we have radiosity appearing on the left hand side but we have radiosity appearing on the 

right hand side and that too under an integral, these type of equations are called integral equations 

and they are not easy to solve, okay so it is very difficult to evaluate these equations because 

these are integral equations, unless and until we simplify, do some simplification it is very 

difficult to solve, okay. 

 

Now, how do we solve it so, we basically write down the expression from previous, we take the 

same expression q =; this expression we take 

𝑞(𝐫) = 𝜖(𝐫)𝐸௕(𝐫) − 𝛼(𝐫)𝐻(𝐫) 

okay and subtract the heat flux again multiplied by 𝛼q, so we solve for q - 𝛼q, okay this gives 

us 𝑞 − 𝛼𝑞 = (𝜖𝐸௕ − 𝛼𝐻) − 𝛼(𝐽 − 𝐻) 

so from the same equation we have just; we are just trying to manipulate, okay and this simplifies 

to. 

𝑞 − 𝛼𝑞 = 𝜖𝐸௕ − 𝛼𝐽 

 

So, from this we can solve for heat flux q 

 𝑞(𝐫) =
𝜖(𝐫)

1 − 𝜖(𝐫)
[𝐸௕(𝐫) − 𝐽(𝐫)] 

 

kay so this is the expression for the heat flux, okay or in terms of heat flux, we can solve for 

radiosity  

𝐽(𝒓) = 𝐸௕(𝒓) − ൬
1

𝜖(𝒓)
− 1൰ 𝑞(𝒓) 
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So, from this our problem has greatly simplified, what we have done is; we have found a solution 

for radiosity which was appearing in the integral equation okay, in terms of heat flux so, our 

objective is to eliminate radiosity because in calculations, radiosity is not our objective, our 

objective is the heat flux, so what we have done is; we have written radiosity in terms of heat 

flux, okay by manipulating the governing equation of this problem. 

 

And once we have radiosity, we will substitute it back in the governing equation to calculate the 

heat flux, so when we put it back in this equation okay, so this is the equation for heat flux, now 

we have calculated J in for heat flux, we will just put it back okay, the nature of the equation is 

not going to change okay, the nature of the equation will remain integral equation, okay this is 

something you cannot simplify as compared to the blackbody radiation where we did an 

encounter this problem of integral equation. 

 

The integral equation is inherent for gray problems okay so, this problem will remain, and our 

equation now in just q as a variable reduces to now,  

𝑞(𝐫)

𝜖(𝐫)
− න ൬

1

𝜖(𝐫ᇱ)
− 1൰

஺

𝑞(𝐫ᇱ)𝑑𝐹ௗ஺ିௗ஺ᇲ + 𝐻଴(𝐫) = 𝐸௕(𝒓) − න𝐸௕(𝒓ᇱ)
஺

𝑑𝐹ௗ஺ିௗ஺ᇲ 

this is not a unknown, I mean you can easily calculate this last term because Eb is known to you, 

if you know the temperature of the surface, you know the term and you can easily integrate it, 

 

But this term is not easy to calculate because q is a variable and it is appearing inside an integral, 

so this is an integral equation okay, so let us see how we can solve problem of this type okay. 
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So, just like we did for the blackbody enclosure, what we will do is; we will break the enclosure 

into a number of flat surfaces okay, let us say N surfaces we will break, so this is going to be our 

first simplification, okay so, this is Aj where j varies from 1 to N, so we have divided the enclosure 

into N flat surfaces, okay. When we do that we also assume that the radiosity is uniform over a 

surface, okay. 

 

This is just like an assumption we make in the blackbody case, where we assume that the 

temperature is uniform over the surface, so here we are assuming radiosity is uniform over the 

surface okay, so this equation, the value of Eb can be taken out okay, it is independent of the 

location, it is just a variable for a given surface, okay and then we have summation over all the 

surface, the view factor from a surface di, let us say this is surface i and this is the element di  

okay. 

 

So, we are calculating the view factor Fdi-j as per the argument that we made in the case of 

blackbody that the view factor is not uniform, you can have radiosity uniform, you can have 

temperature uniform over the surface but you cannot have the view factor uniform over the 

surface, you can have an average view factor but not a uniform view factor. So, first of all we 

will assume that the view factor varies over the surface. 

 

So, we just left with Fdi and j okay and minus the incoming radiation, 

𝑞௜(𝐫௜)

𝜖௜(𝐫௜)
= 𝐸௕௜(𝐫௜) − ෍ 𝐽௝𝐹ௗ೔ି௝(𝐫௜) − 𝐻଴௜(𝐫௜)

ே

௝ୀଵ

 



 now we will take the average, so what we will do is; we just take an average over the surface Ai 

over the surface, this is the average heat flux on Ai, okay, average emissive power, then this is 

view 2 factor between finite element areas Ai and Aj, okay again, this is going to be an average of 

the small element view factors and then average value of the irradiation, okay. 

𝑞௜

𝜖௜
= 𝐸௕௜ − ෍ 𝐽௝

ே

௝ୀଵ

𝐹௜ି௝ − 𝐻଴௜  

So, this is the first expression basically what we have got okay, now we have another expression 

again coming from the same relation, from this relation we have this another expression for q, 

okay so 

𝑞௜ =
𝜖௜

1 − 𝜖௜

[𝐸௕௜ − 𝐽௜] 

now this expression we have to basically find out, what we have to do is; eliminate J between 

these two equations, this is the same exercise that we are doing, we did for the integral form of 

the equation. 

 

Now, we are just doing it for the summation, okay because we have divided the enclosure into 

many, many surfaces, so we have to eliminate Ji between these 2 equations and once we have 

what we get is basically an equation in just heat flux, okay so, we have eliminated using this 

equation, substitute the value of Ji into this expression, okay in terms of qi, okay. 

𝑞௜

𝜖௜
− ෍ ቆ

1

𝜖௝
− 1ቇ

ே

௝ୀଵ

𝐹௜ି௝𝑞௃ + 𝐻଴௜ = 𝐸௕௜ − ෍ 𝐹௜ି௝𝐸௕௝

ே

௝ୀଵ
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And what we get is basically this kind of equation, okay so qi upon epsilon i from this term okay, 

Ebi and then we have substituted for the Ji in terms of q and we have taken it on the left hand side, 

so this is our final equation okay, so for gray surfaces this will be used as the equation to solve 

for, okay, this is the first form for radiative transfer between gray surfaces. 

We have finite number of surfaces in an enclosure, all are gray and this is the first form now, 

second form as we did are derived in the black body case, we write Fij as per the summation rule 

and we can just write it as 

෍ 𝐸௕௜𝐹௜ି௝

ே

௝ୀଵ

= 𝐸௕௜ 

 we substitute for Ebi using this expression and we get this relation in terms of the difference of 

emissive power of the two surfaces, this is the second form okay.  

 

So, the two forms we derived earlier also now, also we are basically deriving the same, this is the 

second form okay. Now, let us see what happens when we substitute 

𝜖 = 1 

in this case that is the surfaces are black okay, I will just use this equation so, in this equation let 

us put  

𝜖௜ = 𝜖௝ =1 

 

we get q 

𝑞௜ + 𝐻଴௜ = ෍ 𝐹௜௝൫𝐸௕௜−𝐸௕௝൯ 

 

And this is same as for the black enclosure that we derived in the previous lecture okay, so just 

by substituting the 𝜖 = 1, this relation has reduced to the same relation that we derived for the 

black enclosure, so these 2 equations we will use to solve for radiative heat transfer in a gray 

enclosure, the enclosure is divided into a finite number of surfaces, j = 1 to N, okay. 
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So, let us solve one problem, we have two isothermal gray concentric spheres okay, the inner 

sphere has radius of 𝑅ଵ and outside sphere has radius 𝑅ଶ, the temperature of the inner sphere is 𝑇ଵ  

and emittance is 𝜖ଵ, outside sphere has temperature  𝑇ଶ and emittance 𝜖ଶ and everything is 

uniform okay, so we have to find out radiative heat flux between two spheres okay. 

 

So, let us solve this problem, so we will use this equation, let me just write down the equation 

first, so this equation we are going to use, so the equation we will use is  

 

𝑞௜

𝜖௜
− ෍ ቆ

1

𝜖௝
− 1ቇ

ே

௝ୀଵ

𝐹௜ି௝𝑞௜ = 𝐸௕௜ − ෍ 𝐹௜ି௝𝐸௕

ே

௝ୀଵ

 

 there is no H0i, so we will just ignore  
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So, surface 1, that is the inner sphere, we write 

 

𝑞ଵ

𝜖ଵ
− ൤

1

𝜖ଵ
− 1൨ 𝐹ଵଵ𝑞ଵ − ൤

1

𝜖ଶ
− 1൨ 𝐹ଵଶ𝑞ଶ = 𝐸௕ଵ − ෍ 𝐹ଵ௝𝐸௕௝

ଶ

௝ୀଵ

= 𝐹ଵଶ[𝐸௕ଵ − 𝐸௕ଶ]  

Then similarly for surface 2,  

𝑞ଶ

𝜖ଶ
− ൤

1

𝜖ଵ
− 1൨ 𝐹ଶଵ𝑞ଵ − ൤

1

𝜖ଶ
− 1൨ 𝐹ଶଶ𝑞ଶ = 𝐹ଶଵ[𝐸௕ଶ − 𝐸௕ଵ]  

 

So, now let us look at the view factors, so  

F11 = 0 

F12 = 1 

then,                                                             F21   = A1/ A2 

this is from the tables okay, so we can easily calculate the view factors,  

and                                                    F22 = 1 - F21 = 1 – A1/A2 

 okay so, this is how we have calculated the view factors now, let us simplify the equations, so 

we have  

𝑞ଵ

𝜖ଵ
− ൤

1

𝜖ଶ
− 1൨ 𝑞ଶ = 𝜎(𝑇ଵ

ସ − 𝑇ଶ
ସ)  

൤
1

𝜖ଵ
− 1൨

𝐴ଵ

𝐴ଶ
𝑞ଵ + ൤

1

𝜖ଶ
− ൬

1

𝜖ଶ
− 1൰ ൬1 −

𝐴ଵ

𝐴ଶ
൰൨ 𝑞ଶ = −

𝐴ଵ

𝐴ଶ

(𝜎(𝑇ଵ
ସ − 𝑇ଶ

ସ) )  
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So, this is how we have basically written these 2 equations now, we have to solve for either q1 or 

q2, so we can eliminate either q1 from this equation or we can eliminate q2 equation q2 from this 

equation. 

So, let us eliminate q2 from this equation okay, so and we will solve for q2, so we get q1 =; and 

this is going to depend on the areas of the sphere, 

𝑞ଵ =
𝜎(𝑇ଵ

ସ − 𝑇ଶ
ସ) 

1
𝜖ଵ

+
𝐴ଵ
𝐴ଶ

ቀ
1
𝜖ଶ

− 1ቁ
  

so this is basically the expression for the heat flux for black enclosure now, just note down that 

q1 should reduce to the black body relation that is  for the black enclosure. 

𝜖ଵ = 𝜖ଶ =1 

The second term in the denominator will be 0, okay so we just get  

𝑞ଵ = 𝜎(𝑇ଵ
ସ − 𝑇ଶ

ସ) 

okay so, this is for the black and this is for the gray okay, so now one can find out the magnitude 

of the denominator and see what is the effect of this gray emittances on the heat transfer between 

the two spheres okay, so just to see the effect of the gray emittance is let 𝜖ଶ =1, so that the second 

term is 0, okay. 

 

And let us say 𝜖ଵ =; let us say 0.2, okay so we get,  

𝑞ଵ = 0.2𝜎(𝑇ଵ
ସ − 𝑇ଶ

ସ) 

so this is reduced the heat flux from the surface 1, okay similarly, we can put 𝜖ଵ as 1 and take a 

value of 𝜖ଶ and find out what is going to be the effect on heat flux. 
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Let us do another problem okay, in this problem we have a collector okay, a solar radiation 

collector plate, the temperature of this plate is 350 Kelvin okay, now we want to improve the 

efficiency or performance of this plate by putting a vertical highly reflecting plate adjacent to this 

plate okay, so this is called reflector, okay and this is collector plate, okay so, collector plate has 

emittance which is 𝜖ଵ= 0.8, okay. 

 

That means, it is not a very good reflector, it is a good absorber, on the other hand we have put a 

vertical plate adjacent to it which has 𝜖ଶ= 0.1, it is not a very good emitter or absorber of radiation 

but its reflectance is very high that is 0.91 - 𝜖ଶ = 0.9 and it is diffused; both surfaces are diffused 

and by putting this reflector, we assume or we are expect that some amount of radiation falling 

onto the surface will be reflected towards the collector plate. 

 

And the amount of radiation received by the collector plate should increase, so let us see how to 

calculate this problem okay, so we will use the similar method that we basically used in the 

previous problem, so we will use the same relation surface1, we will write the heat flux okay, 

this is our surface 1;  

𝐸௕ଵ − 𝐹ଵଶ𝐸௕ଶ =
𝑞ଵ

𝜖ଵ
+ 𝑞௦௨௡ cos 𝜃 

where theta is the angle made by the solar radiation from the vertical direction, okay. 

 

And surface 2,  

−𝐹ଶଵ𝐸௕ଵ + 𝐸௕ଶ = − ൬
1

𝜖ଵ
− 1൰ 𝐹ଶଵ𝑞ଵ + 𝑞௦௨௡ sin 𝜃 

 

it makes an angle of projection of cos theta on plane 1 of a surface 1 and sin 𝜃 on the vertical 

plate okay now, what we are basically interested in is the amount of flux on surface 1, q1 we are 

interested in, so we will eliminate and q2 is given 0, this is insulated. 

 

So, the reflector plate is insulated, so q2 is 0, so we eliminate Eb2, the temperature of the reflector 

plate is not given, so it is a variable but we do not need it so, we eliminate the variable Eb2 from 

this equation and we solve for q1, so we get 

𝑞ଵ =
[(1 − 𝐹ଵଶ𝐹ଶଵ)𝜎𝑇ଵ

ସ − 𝑞௦௨௡(cos 𝜃 + 𝐹ଵଶsin 𝜃)]

1
𝜖ଵ

− ቀ
1
𝜖ଵ

− 1ቁ 𝐹ଶଵ𝐹ଵଶ

 



okay, now the view factors are easily available from the book, okay for two plates perpendicular 

to each other we can calculate the view factors. 

 

The view factors values I am writing,  

F12 = 1/4 and F21 = 1/3 

okay, it depends on the areas of the two plates okay, so F12 is 1/4 and F21 = 1/3, so substituting 

these values and the values of temperature and emittance, we get 

q1 = - 171.7 watt/meter2 

 okay, this is the amount of radiation received by the surface, the collector plate, okay by direct 

absorption and by reflection from the reflector plate okay. 

So, we have discussed the radiative heat transfer between gray surfaces, in the next lecture we 

will study the method of network and we will try to solve these problems, some more problems 

on this topic using the network method, thank you. 


