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Steady State Error, Root Locus

So, welcome to the lecture on application of MATLAB in automatic control.  So, we

discussed in previous lecture how to find the transfer function, find the poles zeros and

how to get the response like step response, impulse response or some arbitrary input,

response under some arbitrary input. 

So, in this lecture we will continue the response of first order and second order system

under step input and then we will discuss about some steady state errors and root locus.

So,  here  we have  this  some of  these problems like  how to  plot  the  response  of  the

following transfer functions.
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So, we have these transfer functions like 9 upon s square plus 9 is plus 9 and there is

some step input because the R s of the step input unit step input is 1 by s.

So, how to find it and transfer function; So, here we can see that in the numerator there is

the  polynomial  which  has  only  one  coefficient  9  and  in  the  denominator  we  have

coefficient 1 9 9. So, we have to first find the system using t of the transfer function. So,

if we know that t f command we use t f num comma den in the parenthesis. So, here num



we will write only 9 and then here 1 9 9 and then we can find the response. So, here we

will first find the system transfer function.

(Refer Slide Time: 02:16)

So, system equal to t f. Now, we define the numerator that is only one coefficient 9 and

then comma the denominator.

(Refer Slide Time: 02:26)

So, we will have 1 9 9; So, 1 9 9. So, and then parentheses close.
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So, here we have got this transfer function 9 upon s square plus 9 s plus 9.

(Refer Slide Time: 02:53)

So, if you want to see the step response. So, we say step says. So, here we can see the

step response of this system. So, there is unity step. So, you can see here this is the step

input 1 and the system response is reaching towards the step input. Now, we want the

pole of the system. So, we can write pole sys and we can get the pole minus 7.8 and

minus 1.1459. 



So, we see the poles are distinct and because this is a second order system and the poles

are distinct we will get a response like what we got here step sys. So, this is the response

that we will get.

Now, let us go for the second system that is here 9 upon s square plus 2s plus 9. So, here

we have in the denominator 1 2 9. So, here we put the system we define sys; So, here 1 2

9. So, this is a system now we get the pole of sys.

(Refer Slide Time: 04:26)

Here we can see that these are the complex pair poles complex poles. So, they are minus

1 plus 2.8 i and minus 1 minus 2.8. So, they are complex poles and if we have complex

poles then this system responds again step sys we can find and you can see here when the

poles are complex we have under damped system. So, damping is less than between less

than 1 so, between 0 and 1.

Now, the earlier system when the roots where the poles were distinct and real the system

was over damped system. So, here we have under damped system and we can see that

this amplitude is decaying with time and there are some oscillations. Now, we take the

third example here 9 by s square plus 9. So, here we have in the denominator 1 0 9. So,

here if I define the system I will say 1 0 9. So, this is the system and transfer function is 9

upon s square plus 9.
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Now, if I get the pole of the system pole sys I will get that here we have real part is 0 and

the poles are plus minus 3 i. So, these poles are on the j omega axis and. So, this is the

case of critical damping and this we will see the response of this system against step

input.

(Refer Slide Time: 06:26)

And, here know we know that when the poles are on the j omega axis there they have the

oscillations.
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And, we can see here the oscillations.

(Refer Slide Time: 06:35)

And, because they are plus minus 3, so, omega is 3 here; So, these are the oscillations

because the poles are on the j omega axis. So, here we find this s square plus 9 case.

Now, we have the another problem that is 9 upon s square plus 6 s plus 9. No. So, so this

case that is 9 upon s square plus 9 is undamped undamped case.



Because, here we have the damping that is damping is defined if we have a system like b

upon s square plus a s plus b this is our G s. So, our damping a equal to is a by 2 root b

and omega is root b.

So, here in this case when we treat the case 9 upon s square plus 9, 9 upon s square plus

9. So, we had here a equal to 0 and b equal to 9. So, a is 0. So, damping is 0 and b equal

to 9. So, omega n equal to root 9. So, we were getting 3. So, this is the natural frequency

of the system and this is undamped response of the system. So, what we saw here, this

this is the undamped response. There is no damping in the system. So, this is the natural

response of the system with the natural frequency that is omega n equal to 3.

Now, we come to the last case here this one; So, 9 upon s square plus 6 s plus 9. So, here

s is 6 here s coefficient.
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So, we can write the system here is 6. Now, we have 9 upon s square plus 6 s plus 9. So,

we get  the poles  of  the system. So,  we get  the pole.  So,  we get  here  the poles  the

imaginary part is 0, both the poles are on the real axis and they are equal.

(Refer Slide Time: 09:40)

So, this is the critical damping case and if we see the response of the system step sys, so,

we will get this response. So, this is the critical damping response.

Now, we come to the last case that is G s equal to 50 upon s plus 50. So, we have G s

equal to 50 upon s plus 50. So, we can see that this is a first order system because here

the power of s is 1.
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So, now, if we want to write this in MATLAB, so, we define the system. So, t f is 50 here

in the numerator and here we will have only s plus 50, so, 1 and this is 50 and there will

not be the this term. So, we have only 1 and 50 now, this is the system; So, 50 upon s

plus 50. Now, we define the pole, so, pole sys that is equal to minus 50 now. We get the

step response. So, we get it.

So, we can see that this is a first order response here and this response is leading to the

unity step input and if we take this cursor here. So, we can see here amplitude is 0.62 and

we define in this as it is happening at time equal to 0.0193 or is about 0.02. So, when

from this curve we can find the time constant that is the response reaches to 63 percent

and so, we can reach it the time constant we can get about 0.02 second. So, this is the

response of the first order system. So, here we can obtain the response of first order and

second order system in MATLAB.
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Now, come to the another problem that is the steady state error and steady static error

constants. So, we have this unity feedback system and for the given system we have to

find the static error constants and we have to find the transfer sorry error steady state

error, for the standard input that is step ramp and parabolic input.

(Refer Slide Time: 13:14)

So, here we have this function, that is, 500 so, s plus 2, s plus 5, s plus 6 and then s, s

plus 8, s plus 10, s plus 12; so, this is the G s of the unitary feedback system and we have

to find the static error constant and steady state error for step ramp and parabolic inputs.

So, we know that this system is type one system and we know that if we the static error

constants we have already defined. So, K p equal to G s; s tends to 0, then K v equal to s



G s when limit s tends to 0 and K a equal to s square G s. So, these are the and from here

we find static error equal to 1 by 1 plus K p we have already defined from here in finite

equal to 1 by K v and here in finite equal to 1 by K a. So, these formulas we have already

discussed.

So, let us first define these numerator and denominator. So, we have. So, first we clean

this screen, clc.

(Refer Slide Time: 15:20)

Close all and clear all. So, we clear the workspace and closed all the figures and then

again we clean this screen.

(Refer Slide Time: 15:33)



So, now, we let us define num g equal to 500 the numerator we are defining with 500

into  the  polynomial  minus  2  minus  5  minus  6.  So,  we  define  this  polynomial  for

numerator. So, minus 2 minus 5 minus 6 into 500, then denominator; So, deng equal to,

so,  polynomial  0  minus  8  minus  10  minus  12.  So,  this  is  we  have  defined  the

denominator.

Now, we can get the transfer function G equal to t f num g comma deng.

(Refer Slide Time: 16:47)

So, we have obtained this transfer function. So, we can see here G if we enter G we have

got 500 s cube plus 500 into 500. So, we have got this transfer function. Now, we have to

find the equivalent transfer function we can get that is T equal to with unity feedback, so,

T equal to feedback. Feedback we get G comma 1. So, unity feedback and we have got

this transfer function. Now, for the step input we want to calculate K p.

So, here K p equal to dc gain dc gain G. So, what we are doing here dc gain evaluate the

K p of G for s equal to 0. So, dc gain command sys putting just s equal to 0, because here

K p define s tends to 0 for G s. So, this will be evaluated for s, when s is tending to 0. So,

we will get K p.

Now, we will calculate the steady state error equal to 1 by 1 plus K p, 1 by 1 plus K K p.

So, ok. So, we can see what is K p.
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So, K p we have bought in finite because this is a type one system. So, if we give the step

input we must get and ess equal to 0. So, it steady state error 0. Now, come to the ramp a

ramp input. So, our for ramp input we have to get s G s. So, we have to multiply s in the

numerator. So, we are doing this num numerator we are redefining num nums g equal to

conv 1 0. So, this is a polynomial that is s and 0. So, that is the just s 1 0 and we are

earlier num g num g.

So, here we have conv, so, we have got s into the numerator of this G s and densg equal

to same as earlier denominator because we are not changing. So, we can say den s g

equal to deng, deng because it is the same, but we have just renamed another variable

also with the same denominator. So, densg equal to deng, so, we have got.

Now, we want s G equal to t f transfer function num sg comma den sg.
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So, we have defined s into G. So, now, we have obtained s into G. Now, we have to put

the limit s equal to 0 so, by using dc gain command. So, to get kv. So, kv equal to dc gain

sG sG. So, kv equal to dc gain sG. So, we have got and ess now equal to 1 by kv. So,. So,

we can see what is kv. So, kv equal to 31.25. So, this is type one system we are getting a

finite kv value and we will get the finite error. 

So, we are getting 0.032 steady state error for this system now, we go for parabolic input.

So, parabolic input we have to put s square G we have to get s square G. So, we will

repeat this num nums 2 g equal to conv conv. So, here we have one 00. So, it is just s

square plus 0 s plus0. So, s square and you multiply conv function multiplies this with

the ne num G.

So, we are getting the numerator for the parabolic input and then dens dens 2G equal to

same as because this is the same. So, we can say deng. So, we got this now s square G or

s 2G we say s 2G equal to transfer function that is num 2 nums 2G comma dens 2G and.

So, now, we will use here we can also use one more command s 2G equal to mean real s

2G. So, that we forgot to use in the last part. So, here mean real command will cancel the

common terms in the numerator and denominator because we do not need those terms

they will if they are in the polynomial in the numerator there is suppose s plus 2 and in

the denominator also s plus 2 they will be cancelled.

So, this command we have to use mean real s 2G and once this we do then we can get k

a. So, k a equal to dc gain s 2G. So, we get k a and then ess steady state error one by k a.



So, you can here we can see what is ka? ka we are getting 0 and ess we are getting

infinite. So, this is how we have obtained this steady state error and static error constants

for given system.

Now, we come to the next problem that is find the root locus. So, we have to find the

root  locus  for  this.  So,  we  know  that  we  have  already  discussed  about  root  locus

techniques. So, root locus represents the movement of closed loop poles when we vary

the gain. So, we discussed several rules that may help us to identify the branches of the

root locus and to is catch the root locus.

 However, in MATLAB there is a very simple command that can plot the root locus. So,

we will see we have this system.

(Refer Slide Time: 26:07)

That is K s plus 3 upon s s plus 1. So, this is the. So, this is our input and this is the G s

and this is unity feedback. So, this is our system and we have to plot the root locus. So,

in order to plot the root locus, ok; So, first we see here this G s H s, open loop transfer

function what is this G s H s?
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So, H s is 1 here. So, G s H s is the same as this. So, that is s plus 3 upon s s plus 1 s

square plus 4 s plus 16. So, this is G s H s. Now, for this open loop transfer function this

is  called  open  loop  transfer  function  we  have.  So,  we  have  this  open  loop  transfer

function and. So, first we find the transfer function. So, we define the num equal to. 

So, 1 and 3 because this s plus 3 the coefficient are 1 and 3 then denominator den equal

to. So, denominator is equal to we have some factor. So, convolution we will use the

multiplication of two polynomials. So, first we take this s square plus s. So, we will have

1, 1, 0 1, 1, 0 first polynomial, then we will have 1, 4, 16 the second polynomial. So, s

square coefficient is 1 then s coefficient is 4 and then the constant term that is 16. So, 1,

4, 16.

. So, we have now we can define the system that is equal to t f transfer function num

comma den. So, this is the transfer function we define. So, we obtain this transformer s

plus 3 upon s power 4 plus 5 s cube plus 20 s square plus 16 s, this is the transfer

function. Now, if we calculate the pole of the system then we get these poles. 

So, here we have 0 minus 1 and these two complex poles and zeros. So, 0 sys. So, open

loop poles and open loop zeros. So, that is minus 3. Now, we if we want to plot the root

locus. So, we just simple command r locus, r locus num comma den. So, this simple

command will plot the root locus and we can see here this root locus.
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So, now let us I connect this with the theory. So, we know that first we calculate this

poles and these poles we obtained here we can see here these poles 0 minus 1 and then

minus 2 plus minus 3.46 j. So, these are the 4 poles and the 0 was at s equal to minus 3.

So, now we can focus on this root locus. So, I said that on the root locus we must first

plot this c sigma j omega axis we plot the open loop poles; So, here 0 minus 1 then here

minus 2; So, plus minus 3. So, these are here these two poles and there is one 0 at minus

3. So, here at minus 3 this is minus 2 and here is minus 3, there is a 0.

So, we have 4 poles and we know that here the root locus will lie in this region. So, the

root locus will start from here from here and it should break away at the some point and

then root locus will not lie in this region. So, odd it will lie to the left of the odd. So, 1

and then here we have to hear it or not, but here 1 2 3 4 here also not lie, but it will lie

here it will reach. So, we have we can see we have four finite poles and one finite 0. So,

the one locus will reach to this minus 3, but others 3 will reach to the infinite.

So, how it will happen; So, these are going to break away and let us they are going like

this these two poles they will start and they will meet because they will they will move in

similar way because the 2 poles will be in pair and one will reach to this and other will

reach  to  the  infinite  and  they  will  reach  to  the  infinite  am  and  following  certain

asymptotes, we can find that asymptotes and we can also find where they are cutting the j

omega axis.



So, here we can see this thing. So, these poles going here then leading to the unstable

region and we can find what is the this unstable region we can see here that here we can

find the breakaway point. So, we can see that at gain 1.43 they are breaking away at

minus 0.524 and the real axis. Now, we can see here is breaking point because they are

getting here at breaking and we can see that at minus 4.18 and at gain 189 they are

breaking to the real axis.

Now, we can have we can see the this is j omega axis crossing. So, here at gain 33.9 and

here this would be 0, then about 3.16 of omega, they are crossing to the j omega axis and

they are going to the left. So, the gain limit is 33.9 we cannot keep the gain more than

33.9, otherwise they will reach to the unstable region.

So, here we understood how to find the response of second order system, first order

system, how to find the steady state error under different inputs that is step ramp and

parabolic of a given feedback system, then how to plot the root locus using MATLAB

and how we can relate these plots with theory that is already discussed in the lectures and

we can give some get some insight into the quick insight into the problem. 

So, I stop this lecture here and we will continue in the next lecture.

Thank you.


