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Lecture – 27
PD Controller Design

So, welcome to the lecture on design via root locus and compensation techniques. So, in

the  previous  lecture  we discussed about  PI  controller  design.  In  this  lecture  we will

discuss one example based on PI controller design as well as the pt PD controller design

that is proportional plus derivative controller.

(Refer Slide Time: 00:50)

So, here we say that the PI controller, that is have 2 parts proportional plus integral and

how  with  these  2  parts  we  can  get  the  equivalent  transfer  function  for  these  PI

compensator.

Now, we take one example for this.
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So, we can have let us take the example. So, we have this system here is the gain K. So,

here we have we are giving the step input. So, we want that this is the system and we can

see that here there is no any in this system there is no any pole at origin because there is

no any S. So, this is type 0 system and this type 0 system is subjected to step input.

So, RS equal to 1 by S, now we want to design this system for 0 steady state error and at

the same time we want that the transient response of the system remains for damping

equal to 0.174 line. So, we want that the system is designed for a steady state remain

retaining the transient response corresponding to damping equal to 0.174. So, we know

that this cos theta and so, theta equal to cos inverse 0.174 and we can get, here if we plot

the root locus for uncompensated system.

So, this is sigma j omega we have minus 1 minus 2 and let us have minus 10 and this is

theta equal to 79.98 from here. So, we will have this is the line that is zeta equal to 0.174

and this angle is 79.98. So, we have a root locus will start from the poles and it will go to

cross this line at some point and we get that.

 So, we know that how to find this point that intersect some particular damping line and.

So, this point we can find with the condition that if this point we can select some points

on this  line  and the  point  that  satisfies  the  angle  condition  that  is  the  angle  is  odd

multiple of 2 K plus 1, 180 or odd multiple of 180 degree.



So, that point is on the root locus as well as on this line. So, we find this point is we can

find this point as 0.694 plus j 3.92. So, here we are getting this 0.694 plus 3.926 j and

similarly the other point will be here that if with minus j 3.926 and the third point we will

get here and, that is minus 11.61 minus 11.61 and we are getting gain for which this point

is on the this damping line this case 164.6. So, this is the uncompensated system where

we  are  getting  this  point  on  this  damping  line  that  satisfies  this  transient  response

conditions.

So, this point let us say a now we want to that we want to know that, what is the steady

state error at this point? So, a steady state error here is. So, we first calculate K P equal to

limit G S S tends to 0. So, we will get this is G S is this complete system. So, K upon 1

into 2; into 10 because S is 0 so, and K is 164.6 by 20. So, we are getting 8 as 8.23.

So, we are getting K P as 8.23 now we can find e infinite that is the steady state error that

is 1 by K P. So, 1 by 8.23 and 1 by, sorry; 1 by 1 plus K P so here equal to 0.108. So, this

is the steady state error currently. So, there is some finite error in the system, now if we

want to design compensate in spite of just gain. So, that the steady state error is 0. So, let

us take one compensator. So, we have here we can have in this circuit we can have a

compensator. So, let us have K upon S. So, one pole and we put some 0 in close to the

pole that is 0.1.
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So, because this pole is at origin and we put at 0.1 close to this. So, that now the system

type is increased, because this complete transfer function will have one pole at origin.

So, the system type is increased and therefore, when we have 1 S here this 0 will keep K

P infinite and K P infinite will keep this steady state to tend to 0. So, we will get this

steady state now, what happens to root locus. So, we have this point. So, here is minus 1

minus 2 and here is minus 10.

Now, we have one pole here at origin and there is at 10 at 0.1. So, we this root locus will

start and end to this 0 this will start here and this will go to this point. So, the root locus

will and this is the zeta equal to 0.174 line and the root locus is going to cut this line let

us say this is point B and we can find this point B and we get that it is minus 0.678 plus j

3.837.

So, it is cutting this point here and gain is 158.5 and similarly here this second point is

here and third point here and so, on. So, we are getting that here TS equal to 4 upon

sigma d and we see that here we have sigma d earlier uncompensated system this we

have got the steady state 0 we have got by putting one pole at origin, but due to the effect

of this 0, we will get a very small change in the transient response characteristics.

So, we see that here it was 0.694. Now it is 0.678. So, sigma d at B is greater than less

than sigma d at A this 0.678. So, TS B is greater than TS A. So, we can see that we will

have  the  faster  response.  So,  settling  time  is  increased  with  the  same  percentage

overshoot. So, here percentage overshot is same, but settling time increased and still. So,

here we see that there is minor increase in the settling time and. So, we are able to keep

the  transient  response  closer  to  the  earlier  one.  So,  it  is  we  can  see  without  much

affecting or less with less affecting this settling time we have found a steady state 0.

So,  we  have  designed  this  system now  we  come  to  another  system  that  is  the  PD

controller.
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So, here we can in this diagram we can see the response of the 2 system. So, this is

uncompensated system and we can see that uncompensated system is of course, there is

this is the transient response characteristics, but the steady state error is large; however,

with the ideal integral compensation we have increased the we have improved the steady

state error because steady state error is tending to 0 and at the same time we see that

settling time is larger.

So, here it settles earlier, but now we are saying that the settling time is increased for this

system.  So,  we have  got  larger  settling  time.  Now we come to  the  ideal  derivative

compensator.  So,  ideal  derivative  compensator  we  used  to  improve  the  transient

response, because the PI controller we used to improve the steady state error. Now, this

ideal derivative compensation technique we used to improve the transient response. So,

we find we want to find some desirable percentage overshoot and a shorter settling time

than the original system.

So,  it  means we want  to  improve the transient  response we want  sort  fast  response,

because we want shorter settling time. So, this we can do by choosing an appropriate

closed loop pole location on the s plane. So, if we want to improve the transient response

we can select a point on the root locus or on the s plane. So, that we can get the desired

transient response; however, if the point, that is giving the desired transient response is

not on the root locus.



Then we need to use this PD controller if it is under root locus, then simple gain can we

can obtain some value of gain that will give that response, but if it is not on the root

locus. So, we have to augment PD controller or PD compensator to the system and that

to obtain the desired transient response. So, in this case we add a single 0 to the forward

path.

(Refer Slide Time: 15:54)

So, ideal PD controller we can see it is similar to. So, here we say that we are going to

add a 0 to this plant.
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Now, this  PD controller  is  proportional  plus derivative.  So,  we have this  RS here is

proportional part let us say that is K 1 and then here is the derivative part and here is the

G S and here is C S and derivative means we have K 2 into S. So, Laplace transform of a

derivative. So, we have a derivative. So, d by d T function. So, the Laplace transform is

K 2 S. So, in time domain it is derivative d by d t, but in s domain it is K 2 S.

So, now if we want to find G C S, we have K 1 plus K 2 S. So, this is the transfer

function now we can have K 2 S plus K 1 by K 2. So, K 1 by K 2 will help to select the

location of the 0, that is z c and that is equal to the. So, K 1 by K 2 is equal to z c; if we

compare here and K 2 is equal to K. So, K 2 is selected as the gain proportional. So, here

K corresponding K is K 2 and K 2 by K 2 is z c.

So, we can get K 1 and K 2 and we can get this PD controller circuit. So, now, let us take

one example for PD controller. So, we have a system here.
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So, R S. So, we have this system and this system we have to this is an uncompensated

system and we have transient response corresponding to the damping equal to 0.4 line.
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So, we want to keep the percentage overshoot or damping corresponding to this line at

the same time we want to reduce the settling time.

So, we want to improve the speed of the response. So, faster response we want. So, here

we can see the settling time is 4 upon zeta omega n and therefore, if we want to improve

this settling time; however, percentage overshoot is function of the damping and. So, the

damping will be constant if we want to move with 0.4 lines. So, if we plot the root locus

for this system we can see here. So, here minus 1 minus 2 and minus 5 there is no any all

the zeros are at infinite open loop 0.

So, we have this root locus and we have this is the line corresponding to zeta equal to 0.4

this is a line and from this angle from here is 113.6 degree. So, now, the root locus that

will pass here and it will pass through this path and it is going to cut here at point a and

this point a is minus 0.939 plus j 2 0.051 and the gain K we are getting is 23.72.

So, in this diagram we can see here we have this pole minus 1 minus 2 and minus 5 and

the third this corresponding to K equal to 23.72 we are getting the location of these

closed loop poles as minus 0.939 plus minus j 2.151 and the third pole is at this location

beyond minus 6 and this line uncompensated this is showing the response of this system

this line black line uncompensated response.
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Now, we want to because if we want to have a PD controller we have to add here zero.

So, here it should be K S plus z c this is the compensator PD compensator we are going

to add 0. So, let us we try three conditions we add and check whether we are adding 0 at

minus 2 minus 3 and minus 4. So, we are adding this z c is 2, 3 and 4. So, z CS plus 2.

So, we are getting S equal to minus 2 here this zero. So, first condition is we are going to

add a 0 at this location itself.

So, here this root locus we can plot sigma we are going to add here. So, this is minus 1

minus 2 and minus 5 and we are going to add here 10 at minus 2. So, we can see the root

locus will be here it will start and end to this 0 and to this 0 and root locus will start here

it will start here and here is this zeta equal to 0.4 line and. So, this line will cut here to

this line somewhere some point it will cut let us say B and. So, here we can see that at 0

is minus 2 this line is going to cut zeta equal to 0.4 this root locus is cutting at minus 3

plus j 6; 0.7 plus j 6.8 at K equal to 51.25.

So, here what we have done because this point we can see earlier the it was minus point

0.939. Now it is 2.1 and plus j 2.15. Now on the real axis part is increased. So, it is now

minus 3. So, the settling time because this real part is increased the settling time will

decrease the response will be faster. Now come to the next one that is we are adding this

0 at minus 3. So, we are now taking this part. So, we are adding this at minus 3 and we

can see when we are adding 0 at minus 3.
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The root locus will always form at the left of the odd number of poles are 0. So, it will be

here. So, and it will be here.

So, we can see this locus starting at these poles and going like this the other lower part

start here and ends here this part third. So, here it is cutting this damping line at minus

2.437. So, again it this real is more than the uncompensated system. So, in this case also

the settling time is improved? Now come to the compensator 0 at minus 4 when we are

putting here at minus 4 again this root locus cutting at minus 1.869 that is almost double

of this real part of uncompensated system and here also the settling time will improve.

So, now, we can see the responses of these three and we said see that here this is p

percent overshoot each constant we have keep constant percent over suit and the more

negative real and imaginary parts smaller will be TS and T p.
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So, because here TS is four by sigma d that is real part and peak time T p is pi by omega

d that is imaginary part. So, if they are more than larger than the uncompensated system

the corresponding TS and T p will be smaller and so, the response will be faster. So, here

we can see that in compared to uncompensated system for all these three zeros that we

have selected or compensated schemes we have retained the same percent overshoot,

because the damping line is constant all these points are on this damping equal to 0.4.

So, percentage overshoot is the same; however, we can see that at 0 at minus 2, we have

faster response than at minus 3 and then at minus 4 we are getting first the peak time less

in case of 0 at minus 2.
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So,  this  we  can  understand  from  this  table  this  is  uncompensated  systems  transfer

function and they is compensated with 0 at minus 2 and this is compensated 0 at minus 3

compensated 0 at minus 4, we are getting the dominant poles corresponding to the gains

that are passing through the damping line zeta equal to 0.4 and percentage overshoot

25.38 we are getting here the natural frequency changing the system.

So, earlier uncompetitive system as this natural frequency now we have these and we are

getting settling time here we are getting 4.26 in all these three cases we are getting a

great reduction in the settling time here 1.33 here. So, almost one-third here 1.64 and

here 2.14; so, this is almost half settling time similarly we are getting reduction in peak

time. So, here 1.46, but here only 0.46, 0.56, 0.73 and here we can see that K P we have

calculated because this is a 0 type system. So, this position static error constant is valid.

So, we are getting these values, now if we see the steady state error here it was 0.297, but

here it is 0.089, 0.086 and 0.107. So, we see that while we our target was to improve the

transient response using PD controller, but at the same time we were able to also improve

the steady state error, but this may not be always the case it could be also that the steady

state error could be badly affected by improving the tangent response.

But in these cases the steady state error is improved and we see that here second order

approximation is ok; because the third pole here is minus at minus 6 in compared to this

real part is minus 0.9. So, 5 times far if the pole third pole is then the dominant poles real



part then we can approximate as a second order system. So, here it is more than that. So,

here we can have second order approximation, but in this case in this case we can see

that this pole 0 will be cancelled. So, it is perfectly second order system.

Now, here again it is minus 2.4 and here 0 is at minus 3 say at third pole is minus 3. So,

in this case I think there should not be the proper this approximation we cannot take.
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Now, we come to the, this ideal compensation ideal derivative compensation drawback.
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There is some drawback of this ideal derivative compensation we can have this ideal

derivative  compensation  requires  an  active  circuit  to  perform the  differentiation  and

differentiation is a noisy process and the label of the noise is low, but the frequency of

the noise is high therefore, differentiation of high frequencies can lead to large unwanted

signals.

Therefore to get this drawback we need to use the lead compensator that is a passive

systems and. So, therefore, we will also discuss the lead compensator to overcome the

disadvantages  of the PD control  controller  in next  lectures.  So,  these examples  were

taken from the normal as noise control systems engineering reference book.

And I thank you for attending the lecture and see you in the next lecture.


