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Lecture – 13
Second Order System

So, welcome to the lecture, on transient response analysis. In this lecture, we will discuss

about the second-order system. So, in previous lectures, we discussed about first order

system, we know that the highest power of a transfer function will give us idea about the

order of the system. So, if we say second order system means the highest power of S h 2.

(Refer Slide Time: 00:52)

So, system such as; so, if the transfer function is like this b upon S square plus S plus b;

so, this type of system can be second order system.

Now, the poles of this system, if we want to find the poles of this system, we should have

S square plus a S plus b equal to 0. So, we will get two poles, let us say S 1 S 2. Now, the

response of the system will depend on the values of these poles and nature of these poles.

So, if these two poles, they are S 1 S 2, they are real and distinct.  So, we will have

response ct equal to k 1 e power s 1 t plus k 2 e power s 2 t, if they are real and equal.

So, S 1 equal to S 2 equal to S. So, they are real and equal. So, we will have ct equal to k

1 plus k 2 t e power s t or s 2 t. Similarly, if S 1 S 2, they are imaginary. So, for example,



S 1 equal to S 2 equal to plus minus j omega 1. So, in this case, we will have a response c

t equal to a cos omega 1 t minus phi 1. So, it is a harmonic response and when they are

complex. So, S 1 S 2 or complex poles.

So, something S d plus minus j omega d. So, they are complex. So, we will have or we

can also write it. This has a phase in terms of phase. So, minus 5. So, these are the four

cases, because these roots of this equation can be real and distinct. So, we will get the

solution, if the roots are equal and real. So, we will get this solution and if they are

imaginary, we will get this harmonic response and if they are complex, we will get this

type of response.

Now, we take this case. So, when the roots are imaginary.
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So, if we plot these roots on the S plane. So, we will have here let us say this is omega n.

So, here we have j omega n and here it is j omega n. So, these are the two poles of the

system and we are getting that the response is harmonic and this is called the omega n is

called the natural frequency of the system. So, the natural frequency is defined as when

the real part is 0 there is only imaginary part and. So, the poles lie on the imaginary axis ,

both the poles lie on the imaginary axis.

So, this is called the natural frequency and so, here this natural frequency. We can have

when a equal to 0. We will have S square plus b equal to 0. This means S square equal to



minus p equal to j square b. So, S 1 2 equal to plus minus j root b. So, we see that here

root b equal to omega n if we link this equation 2. So, we get that, if we have this kind of

transfer function, the constant term will give you the natural frequency of the system,

when the poles will be on the post will be on the imaginary axis and the system will have

oscillations with natural frequency omega n or we can say b equal to omega n square.

From equation 2 we can have S equal to minus b plus minus under root b square minus 4

into a 1 into b by 2. So, we get minus a by 2 plus minus 1 by 2, a square minus 4 b. So,

we saw that here to get only imaginary part, we put a equal to 0 this part equal to 0. And

so,  we got  plus  minus  b  j  into  b  j  into  root  b,  these  poles  and we defined  natural

frequency. Now, we define one more term that is, damping ratio. So, we know that the

this in the pole, the real part, if the pole is on this, if it is here or in the real part we saw

the effect is the exponential decaying. So, due to this part, real part there will be the

effect of damping and so, the damping ratio is defined.
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Damping ratio is defined that is d zeta damping ratio. So, damping ratio is, is defined as

this real part upon the frequency. So, this real part upon the natural frequency is defined

the damping ratio, and we get a equal to 2 zeta omega n. Now, we can express a and b in

terms of damping ratio  natural  frequency in equation 1 and, so,  we can convert  this

equation the transfer function G S equal to. So, here be equal to omega n square. So, we



put omega n square upon S square plus a equal to 2 zeta omega n into S plus omega n

square.

Let  us say equation number 3. So,  this  is another representation of the second order

differential equation, when, where we have changed that parameters a and b in terms of

damping ratio and natural frequency and this representation is more important, because

based on the damping ratio, we can divide the system. The second order system into four

different  cases that  we discussed, based on the roots.  So,  based on this  we can, the

response of the system will also change. So, we have two form.
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 The second form  G S  equal to omega n square  S square plus 2 zeta omega nS plus

omega n square. This is equation number, let us say 2. So, here S 1 2 we can write as

minus 2 zeta omega n plus minus omega n root zeta square minus 1. So, we can write is.

So, these are the two roots for this equation number 2. This transfer function and now,

we can see this case inside. So, if zeta equal to 1 will have  S 1 2 equal to. So, if zeta

equal to 1, this is 0. So, we will have minus zeta omega n minus zeta omega n and minus

zeta omega n. So, the roots are equal and real. So, this is, this system is called critical

damped system and when we want to present the roots of this system we have these roots

or real axis and the same here.

So, minus zeta omega n, when we have zeta it is greater than 1, we have 2 roots S 1 2

equal to minus zeta plus minus root zeta square minus 1 omega n. So, here the roots are 1



with plus another with minus. So, the roots are real and distinct, because zeta is greater

than 1. So, this under root is, part is greater than 1 and greater than 0. So, this is real and

distinct. So, if we want to present this, we can present something like here. So, first root

S 1 S 2, we can represent. Now, third case is when zeta is equal to 0. So, when there is no

damping. So, in this case we will have S 1 2 equal to plus minus j omega n. So, this is a

case of imaginary roots. So, here j omega n and here minus j omega n .

So,  this  is  undamped  system no  damping  and  this  defines  natural  frequency  of  the

system. Now, if zeta is less than 1. So, if zeta is less than 1, we will have here, S 1 2 is

equal to minus zeta plus minus. So, here zeta is less than 1. So, to make this quant, under

root quantity positive. Let us, we put 1 minus zeta square and we take here j under root 1

minus zeta square. So, j is under root minus 1 and here omega n. So, we see that these

roots when zeta is less than 1, these roots are complex pair and we can represent these

roots here, sigma j omega and the constant term is minus zeta omega n and we represent

this here on the S plane.

So, this is minus zeta omega n and this is plus j omega n root 1 minus zeta square and

this  is  minus j  omega n root 1 minus zeta  square.  So,  we have represented the four

conditions of damping gives the four different conditions of the roots and we know that

these  four  conditions  of  roots, where  the  roots  are  real  distinct  equal  imaginary, or

complex we saw that the response of the second order system varies and we can see here.
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The response of these systems. So, here is zeta equal to 1. We can see critical damped

system. So, zeta equal to 1, the first one we have the equal roots and real equal and real

roots. So, here the response of the system we can see, this is for the critical  damped

system. Now, for zeta greater than 1. So, zeta greater than 1, here we can see zeta greater

than 1 that is. So, this system zeta greater than 1. We called over damped system. So, this

zeta  greater  than  1 is  over  damped system and we can see  the  response of  an over

damped system. Now, zeta equal to 0, here is the zeta equal to 0. So, this is a response

against a step input. So, we are, our step input is ah, we have unity, a step input and we

are looking the response of the system against this input. So, here we have undamped

system, we can see there are oscillations for under undamped system, because there is no

damping, the amplitude will remain the same and it will not change with the time.

So, this is undamped system and the frequency of this undamped system is called the

natural frequency and that we can see, how the natural frequency is represented on the S

plane, the  complex  plane. Now, we  come  to  the  under  damped  system,  where  the

damping is less than 1. So, 0 is less than damping ratio, is less than 1 for under damped

system. Here, we can see the values overshoot here and then they come down and after

several oscillations, it  reaches to the final value and we saw that when the brutes or

complex, we had two parts; one was exponential part, and the second was the cosine or

harmonic part and therefore, here in the under damped system, we have one oscillations

and the same time the amplitude is going to decay with the time. So, now let us have one

example. So, if we have GS equal to 36 upon S square plus 4.2 S plus 36.
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We want to know the damping, and natural frequency of this system. So, we know that

we can represent, this is our system, we have to compare this part with this part and we

will  find the damping and natural  frequency. So, here we see that  here, 36 equal  to

omega n square. So, omega n square equal to 36. So, this implies that omega n is 6. Now,

this 4.2 is equal to 2 zeta omega n, because this is the coefficient of  S and here is the

coefficient of S is 4.2. So, 2 zeta omega n equal to 4.2.

So, here we write 2 into zeta, into omega n, we have already got 6 equal to 4.2. So, zeta

we can get 4.2 upon 12 and. So, we can get 0.3 pi over 5. So, we can see that damping is

0.35 and therefore; it is zeta less than 1. So, this is an under damped system and the

natural frequency of the system is 6, omega n is 6. Now, let us take some more examples.
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So, we have these three systems ; one is 12 by S square plus 8 S plus 12, 16 by S square

plus 8 S plus 16, and 20 by S square plus 8 S plus 20.

Now, we have to find the damping and natural frequency of this system. So, here, either

we  compare  with  this  or  we  can  compare  also  with  this, and  we  can  relate  these

parameters a and b with the omega n and zeta, because we know that omega n equal to

root b, because we defined omega n equal to root b and we defined a equal to 2 zeta root

b 2 root b here, a upon 2 root b. So, here in case 1, we have omega n equal to root b. So,

root 12 and we can find damping equal to a by root 2, root b a is 8 upon 2 root b.

So, b is 12 and this we can get damping 1.15 for the second case also we can get omega

n equal to root 16 and damping equal to 8 by 2 root 16 equal to 1 and for the third case;

we will have omega n equal to root 20 and damping equal to 8 by 2 root 20, that is 0.894.

So, we see that here damping it greater than 1. So, this is over damped system here, this

is damping equal to .

So, this is critically damped system and here damping is less than 1. So, this is under

damped system. So, in this lecture we saw. So, these examples were taken from the book

of Norman S Nise, control system engineering. So, we saw in this, how we can define a

second order system and the second order systems are expressed more in terms of natural

frequency and damping ratio and how can we find these parameters from the transfer

function of a system and we can locate the poles, different poles of this system and we



can characterize the response of the system ah, for the second order. So, here ah, I stop

and let us continue this second order system in the next lecture.

Thank you.


