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Hello  welcome  in  the  fourth  lecture  of  convective  heat  transfer.  In  this  lecture  we  will  be

discussing about thermal  boundary layer.  Let  me first  give you the outline what we will  be

covering in this lecture. 

(Refer Slide Time: 00:36) 



First we will be starting from energy equation and we will be simplifying this one for low Eckert

number cases. Next we will be presenting the idea of thermal boundary layer over a flat plate,

then we will be examining the order of ration between the thermal and velocity boundary layers

using scale analysis.  And at the end we will  be discussing the case of high and low prandtl

number fluids along with the nusselt number correlations.

So let me start from the previous lecture end points, in the previous lecture we have discussed

about thermal energy equation. 
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So thermal energy equation we have derived two forms will be starting from CP form and we

will try to non-dimensionalize that one using different parameters. So in this equation you can

see in the left hand side we are having conviction, right hand side we are having the complex

ability term and then we are having the conduction and finally the viscous dissipation . So firstϕ

let us see what are the non dimensional parameters we are going to use for density we are using

ρ*=ρ/ρ0, ρ0 is the characteristics density let us say for time we are using t*=t/L/V0 so V0 is the

characteristics velocity and L is characteristics length.

Then dimensional as velocity as I have already told V0 is the characteristics velocity so this is

Ubar/V0.  For  temperature  we are  using θ,  so  θ  is  nothing but  T-T0 which  can  be talked  as

reference temperature and ΔTc is the gradient of the temperature. For spatial derivative, so you



know spatial derivatives are coming over here as ∇, so ∇ can be non-dimensionalized as ∇*, so

∇* will be ∇/L so that means ∇∇X will be 1/L(∇∇X).

For pressure we are using P*=P/ρ0(V02) so with this non-dimensional parameters later let us

reduce this equation.
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So if we substitute all those non-dimensional parameters in equation 1 what I have shown you in

the previous slide, so we get this type of equation. So for the conviction term you see we are

having ρ0(ρ*) after non-dimensionalization T became θ so as there is a ΔTc came over here, we

are having ∇∇T and ∇ over here that gives V0/L over here. And in the right hand side for the

conduction term we are having K ΔTc/L2 for ∇P ∇T term we are having ρ0 V02 over here and for

∇∇T we got V0/L and for viscous dissipation we are having V02/L2 okay, βT came over here

which was earlier in the equation number 1.

Then let us divide the equation throughout by this term ρ0CP ΔTc V0/L if you do so then you

will be finding out the equation is simplifying in this fashion where left hand side is conviction,

right hand side we are having conduction, this is the pressure gradient term, total derivative has

been expanded over here and this is a viscous dissipation term okay. Now let us try to find out

where we are having non-dimensional numbers in this equation, equation number 2.



So first  let  us  see  what  are  the  different  non-dimensional  numbers  we use  in  heat  transfer

analysis. So in case of heat transfers comes the peclet number which is nothing but the ratio

between the advection heat rate and the diffusive heat rates okay. So it can be written as LV0/α, α

is your thermal diffusivity which takes care about their advection and diffusion heat rates okay.

So here you see we have reduced this LV0/α in terms of LV0/ν and ν/α, ν is your kinematic

viscosity.

So here the first part of this equation comes out as Reynolds number, because we know Reynolds

number is LV0/ν and then here it is ν/α which is nothing but your prandtl number okay. So we

can write down peclet number is equals to Reynolds number in prandtl number. Then another

non-dimensional  number will  be introducing over here which is  nothing but  Eckert  number,

Eckert number gives you the inertia to the enthalpy drop ration okay.

So here Eckert number is V02/CPΔTc okay, as we are using CP form Eckert number will be very,

very important okay. So here you see in the equation if you see minutely here we are having

V2/CpΔTc so we can write down Eckert term over here in front of this pressure gradient term

okay. Then if we look at the viscous dissipation coefficients, so viscous dissipation coefficient is

νV0/LCpΔTc so that can be reduced as V2/CpΔTc which is nothing but the Eckert number.

And ν/V0/L which is nothing but 1/Re okay we should have introduced over here LV0/ν=Re. So

this coefficient can be written as Eckert number by Re. So we have seen that different parameters

can be written different coefficients can be written in terms of the non-dimensional numbers. So

if new put all this non-dimensional numbers then we get this equation okay. So here you see we

are having 1/Re here which is nothing bu peclet number.

Here we are having Eckert number and here we are having Eckert by Reynolds number. For βT

we are doing this type of approximation from θ non-dimensionalization we know θ is nothing but

T-T0/ΔTc, so T-T0/ΔTc can be reduced in this fashion T=T0+ΔTcθ and βT can be written as

βT0(1+ΔTc/T0)θ so if you replace this βT in terms of this, so this coefficient comes over here

right. Next let us see what happens whenever we are having very low Eckert number okay, this is

our object to see that what happens to low Eckert number.

So  low  Eckert  number  means  lowwe  kinetic  energy  and  significant  temperature  drop  okay

Cp(ΔTc) will be coming very big. So in that case we get the equation little bit modified so this



term and this  term can be neglected,  because low Eckert  number we are having.  And if  we

consider that we have chosen ρ0 in such a fashion that density non-dimensionalized density ρ*

becomes 1 then this equation 2 is actually reducing to this form.

So ρ* becomes 0 and these two terms can be neglected compared to the others. So we get this

simplified equation where in the left hand side we are having conviction and in right hand side

we are having conduction. And as non-dimensionalized number we are having Reynolds number

into pandtl number okay. So this is very, very important equation. If we see the corresponding

dimensional form of this equation, so it will becoming left hand side it is nothing but conviction

ρ0xCpxΔTΔT+U.xΔT so this  is the conduction term. And the right hand side we are having

K(Δ2/T) so this part is coming from here, so this is conviction term right. 
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So let us now see from our knowledge of fluid in mechanics because this is the PD quiz of this

course so from fluid mechanics knowledge will know what is hydrodynamic here this figure is

very known to you so we are having a flat it okay so this is the flat and they first time full is



coming over here having velocity you know u∞ let us consider this is our next direction in the

most  direction  and this  is  the  costal  more  direction  y  okay so  you can  find out  that  utility

whenever the flow is coming in contact to the solid surface.

So there the velocity will be coming 0 due to mostly condition so here velocity becomes 0 if you

were okay and far away from the surface will be having one second more instance so this will be

your u∞ velocity okay so there will be velocity gradient and you know from our fluid mechanics

knowledge that is the probably profile okay and if you see that where this velocity is becoming

99% of the fisting velocity that we need and call as hydrodynamic bound here so here I have

showed hydrodynamic boundary layer in this fashion.

So this is already known to you from your few mechanics knowledge now let us see what is our

thermal boundary layer okay which is the part of this course so in case of thermal boundary layer

we will taking the similar type of flat layer okay so this is the flat plate and so characterize of this

flat plate is having temperature Tw okay A first time fluid is coming over the flat layer having

temperature T∞ okay and you see Tw is higher than T∞ for this case we have considered so

whenever the fluid is coming in contact in this hot layer.

So immediately the adjacent clear of this layer will becoming very high in temperature okay so

here we are having very high temperature and away from the surface we are having similar T∞

so there also will be having layer temperature gradient and this temperature slowly will be turn to

this T∞ and at a point where temperature becomes 99% of T∞ okay we can call so this is your

thermal boundary layer thickness okay ΔT so if you continue finding out those points which is

having 99% of the this temperature and boil those like this so that is the look us of those points

which is nothing but your thermal boundary layer.

So just like for velocity boundary layer you can have thermal boundary layer and just like your

velocity boundary layer thickness we can have the thermal boundary layer thickness okay so this

is very important concept so thermal boundary layer we can see over here.
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Next let us see from thermal boundary layer point of view we have earlier derived this equation

Non- dimensionalized energy equation for ∇ at number cases now let us try to see over here what

is the ratio between the left hand side and the right hand side left hand side we had the condition

right hand side we are having conduction so convection to conduction which is nothing but the

Peclet number advection to diffusion which is nothing but Peclet number so it comes as iPr x

∇θ/∇t +∇* x∇θ which is nothing but your convection term and in the conduction your having

∇2θ.

Now we know that Peclet number is nothing but Re x Pr okay so what we can see over here if

convection is of the order of the conduction then we can write down Peclet number is of the

order of Re Pr because this will be of order of this one okay so convection is of the order of

conduction so Peclet number will becoming order of Re x Pr from our velocity boundary layer

knowledge we know that  Reynolds  number inside the boundary layer Re and where inertial

viscous which is our more or less comparable the Reynolds number will be of the order of one

okay so Re is of the order of 1 so but outside the boundary layer but inside the boundary layer is

order of one.

Now if  you try  to  find out  the  ratio  between the  thermal  boundary layer  thickness  and the

velocity  boundary  layer  thickness  of  hydrodynamic  boundary  layer  thickness  so  it  will  be

depending  on all  the  plandle  number  because  here  we have  found out  Re  is  order  of  1  so

ultimately this plandle number actually defined that what will be the ratio between the velocity



boundary layer and the thermal boundary layer okay so  �T/� is actually a function of pandle

number.

(Refer Slide Time: 12:20)

Now let us see what happens for two different cases where thermal boundary layer dominates

and then we will see where velocity boundary layer dominates so first we will see a thick thermal

boundary layer cases where  �T is very, very higher than  � a schematic representation I have

showed over here so here you see this is our velocity boundary layer okay so at this point the

velocity of the fluids T will becoming almost 99% of the Piston velocity and here this is our

thermal boundary layer okay so this is the look us of all those points where temperature will be

coming almost 99% of the free temperature but here one important thing is here that �T is higher

than the � okay no in this case let us try to see that what happens in this competition so from the

figure we have already shown �T is much larger than �.

And  we can write down that �T/ � is actually � greater than 1 now if you take plate very long so

it is very long plate let us l is very high so �T/L is actually less than 1 and �/L is less than 1 okay



significantly large now let us see for 2-D convection diffusion equation called it about so we

thinking about 2-D problem over here so this will I mean your conduction term and this is your

convection term okay.

(Refer Slide Time: 13:54)

Now let us see the scale of both the cases okay so if you see the scale so in conduction term we

are having α x ∂2T/ ∂x2  and in convection term we are having this one okay so individually if you

try to find out the scale so α remains over here for the first term ∂ for this T will be having ∂Tc

and for this x will be having L2 because L is x of the steam moist reduction okay and for the

second term will be having α ∂Tc and for y which is actually the perpendicular direction our

length scale is α x ∂T which is nothing but your thermal boundary layer thickness.

Okay so if  we compare  between as  L is  much larger  compared to  α x ∂T so this  with the

dominant term okay so our conduction will be of the order of the α x ∂Tc / α x ∂Tc2 similarly if

we do for the convection equation by the way before going to the convection equation let us see

the continuity equation first so if you see the continuity equation you know from fluid mechanics

so ∂u  ∂x + ∂V/ ∂y is equals to 0 so from there we know order of the first term will ∂u  ∂x will

becoming u∞ / L and the second term will be becoming V0 by � okay.

So if we equate and try to find out what is the order of this V0 so we will be finding out V0 not

comes out s u∞  �/L but here for a y direction we have taken a two velocity boundary layer



thickness � so once you find out V0 and we can now get the order of the convections terms so

here the first term becomes  u∞ ΔTc/L and second term become for V we are taking V0 so Vo into

the  ΔTc/ ΔT remember for here we have taken ΔT for the perpendicular direction now it is V0

and we have already found out in terms of in out let us try to reduce this so replace of V0 we have

to u∞ �/L from here okay.

And if we find out this actually becomes u0 ΔTc/ L which is this term multiplied by Δ/ ΔT now

we have  consider initially that Δ/ΔT is actually very small quantity thermodynamic boundary

layer actually bound here so what the velocity boundary layer, so in this case we will be finding

out that this term is actually becoming the dominant term for the convection, okay. so this is

lesser this is greater than this one okay, so this term becomes sorry this term become the greater

term compared to this one, okay.

So our convection becomes of the order you mean u∞ΔTc/L okay conduction already we have

told α.αTc/δT
2. So from the equation if we see the scale analysis from both the sides we can have

a comparison between the scales of conduction and convection and if we do so then we are

finding out this was my convection.

(Refer Slide Time: 16:50)

And this was my conduction okay, so from here we can get that δT
2  after reducing from here it

cancelling  out  ΔTc  from both  the  sides,  we  get  δT
2=αL/u∞  okay,  so  we  know that  α/u∞L is

becoming 1/Pe number so what we have done we have divided this whole equation by L 2 so we



get (δT/L)2=1/Pe number, right. Now we can write down δT/L is of the order of 1 root over prandtl

number or √RePr. From velocity boundary layer we have already knowing that δ/L which is

hydrodynamic boundary layer by the stream voice lens scale is actually Re-1/2 okay, now if we

mark this two equation then we can get the ratio between δT/δ so if you do so.

So you get δT/δ is of the order of Pr-1/2 earlier also we have told you we have shown you that this

ratio between the thermodynamic boundary layer and velocity boundary layer will be becoming

function of prandtl number here also we are saying so but the order is something like this Pr -1/2.

Now at  the  beginning  we have  considered  that  the  thermodynamic  boundary  layer  actually

dominates so δT is higher than δ, okay.

So this ratio actually is greater than 1 so that means what we have found out Pr -1/2 is actually

greater than 1, this is the case where prandtl number is very small okay, so for satisfying this one

prandtl number needs to be very small. So prandtl number very low then only we will getting the

thermodynamic boundary layer has actually dominated the velocity  boundary layer,  okay. So

therefore for low prandtl number fluid thermodynamic boundary layer thickness is higher than

the hydrodynamic boundary layer.
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So if we try to see the heat flux so in this case so let us say the heat flux is wall hit flex is qw so if

we try to find out that what is happening in case of the heat flux so qw heat flux is nothing but

from the  conduction  we  can  write  down -k∂T/∂y  at  y=0  because  here  nearer  the  plate  the

conduction dominates and immediately adjutant to this plate we are having fluid layer which is

having the convection so from convection we can write down h(Tw-T∞).

So from here we can get h heat transfer coefficient is nothing but qw/Tw-T∞ okay, so qw from here

we can see is of the order of k ∂T and y ∂y will be coming as ∂T okay, so ΔTc/δT so this is the

order of the qw right. So if we put in this side from this two equation of this order the heat transfer

coefficient find out if the order of k/δT  okay. And if we try to see what is the Nusselt number,

Nusselt number is a one dimensional number which gives rise the convection to conduction resist

answers.

So Nusselt number is hL/k so from this equation we can find out what is hL/k and from the order

analysis whatever we have found out over here h is the order of k/δT we get Nusselt number is of

the order of √RePr, okay. So in case of low prandtl number fluid we have got Nusselt number is

of the order of RePr, okay.
(Refer Slide Time: 20:26)



Now let  us  see  the  other  horizon  that  means  thin  boundary  layer  thickness  that  means  the

velocity  boundary  layer  will  be  actually  higher  okay,  δ  is  higher  compared  to  the  thermal

boundary layer thickness over here so this is the thermal boundary layer over here and here this

dotted  lines  shows the  velocity  boundary  layer,  okay corresponding  temperature  profile  and

velocity profiles I have shown over here, right.

Now let us see this horizon so as we have considered δ is higher than δT so δ is higher than δT so

I can write down δT/δ is actually lesser than 1, okay. So if L is significantly large than we can

take δT/δ is smaller than 1 and δ/L is smaller than 1 and in this case we will be going for Taylor

series expansion so if we do the Taylor series expansion for u we can write down in this way

okay, so u is nothing but u+y∂u/∂y+1/2y2+∂2u/∂y2+ so on the higher order terms, okay. 

Now here at the wall we know for no slip boundary condition it will be u at wall y=0 it is 0 so

this term can be cancelled, okay so we get u is actually of the order of y∂u/∂y if you neglect the

higher order terms, okay.
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Now let us take this ∂u/∂y=a0 okay, so from fluid mechanics we know this ∂u/∂y is nothing but

τw/μ where τw is the walls he has stress, okay. so we can write down u=a0.i and finally if we try to

find out the order of u which is nothing but u∞δT/δ and here δT/δ comes as ratio between the

thermal boundary layer thickness and the velocity boundary layer thickness, okay.

Then  if  we  try  to  use  continuity  equation  so  from  continuity  equation  we  have  written

∂v/∂y=∂u/∂y this will be going in hand side so that is the continuity equation so ∂u/∂x I have, I

can write down as u=a0y so ∂u/∂x will be becoming d/dx a0 and y will be becoming as free, okay.

now if we try to use the Taylor series expansion for V just like the u as I have shown in the

previous slide, so here you can find out V.y (∂V/∂y)+1/2.y2∂2V/∂y2 and so on okay, now if we use

no penetration so once again you can find out that this terms will be 0 at the wall okay because

no penetration will be there if it is for as then other cases whether cases will happen but as it is

no penetration so this term will go to 0.

So we find out these becoming y x ∂v ∂ y okay if we neglect the higher order term And already

we have shown ∂v ∂y is nothing but – of ddx (a0) x y, so we can write down -ddx(a0) x y x y y2

right, so if we try to see the order of the v now so it becomes for a 0 the order will be something

like u/l so u/ δ okay and here this x is coming as l and y as we are talking about thermal amount

of thickness so y comes as δt2.

So remember whenever we have considered this y, so this replace by δ and whenever we have

consider this y it is replaced by δ t2 okay. So v becomes of the order of δ t / δ x u ∝ multiplied by



δ t / l okay. Now if you see the convection terms for this case where hydraulic boundary are

dominates so in this case the convection terms take the order of this one δ t/ δ x u ∝ x δ uc/l for

the first term u is the order of this one and here we have shown and it is becoming δ tc/ l.

Second term v is becoming the order of this one so this we have put over here and δ tc/ y become

δ tc/ δ t okay so this is the order of the second terms this is the order of the first term so both are

same so convection terms will be taking this order okay..
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For conduction term here you see this is the order of first term α x δ tc /l2 because x we are

having so this is l and for this y we can take δ t2 now we know δ t is smaller compare to l so this

will be the dominant term okay. And once again this is the dominant term this is the order of the

conduction term, so once again you can equate conduction and convection so you get this type of

scale analysis.

So from here we can obtain δ t q is actually alpha δ l / l ∝ okay of the order of, so from here if

you do little bit multiplication and modification so you can get δ tq / l 2 δ is of the order of

1/Repr okay just from this one it will be coming okay. Now you see already we know that what

the ratio between δ is / l okay if you just little bit re arrange this one so this can be δ /l3 and δ / l

so this δ /l already we know from our velocity boundary earlier concept okay which is the order

of 1/ re √re okay.



So using this two we can get δ t/l 3 comes of the order of Re -3/2 rundle number to the power

-1okay, so δ t/l comes out as re -1/2 and rundle number to the power -1 okay. Now if we compare

between this two then we can get δ t / l becomes pr-1/3 okay so in this case where velocity

boundary actually dominates for this case we have obtained this one now we already know that δ

t / δ is actually smaller terms than one.

So this equation need to be satisfied Pr-1/3 < 1 needs to be satisfied so this can happen only

whenever you can having large pr number fluid okay, so for large pr number fluid we are having

δ > δ t.
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So once again if we can try to do the same analysis of heat flux so we can get heat flux is equals

to conduction and convection equation just like the previous case so h becomes qw/tw – t ∝ if we

go for the order this is qw comes out as k δ tc/ δ t and for the convection term it becomes k / δ t



okay if you it mate the if you find out the Nusselt number, so Nusselt number becomes in terms

of Reynolds number to the power half and Prandtl number to the power one third. So remember

Nusselt number is comes out for a large Prandtl number right okay.
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So let me summarize that what we have learnt in this so we have actually derive the energy

equation for low Eckert number cases so this equation we have derive for low Eckert number

cases by neglecting two terms over here okay for pressure Gradient and the discus dissipation

and we have express the thermal boundary layer thickness using scale analysis okay so for low

Pr number fluid we have found out it is the order of pr number to the power – ½ and for large pr

number if we do have found out or this is the order of Pr number -1/3 oaky.

And  we  have  obtain  the  Nusselt  number  function  Nusselt  number  co  relation  in  terms  of

Reynolds  number  and Prandtl  number  for  thick  thermal  boundary  layer  we have  found out



Nusselt number of the order of √RePr and for the thin thermal boundary layer compare to the

velocity boundary always Nusselt number becomes the order of √Re x Prandtl number 1/3 okay.

So these things we have actually understood in this lecture. Now let me test how far we have

understood this topic so we are having three questions over here.
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So first question goes like this in case of thick thermal boundary layer express the order of the

convection term so the order of the convection term already I have discussed in the lecture four

options we are having so if you go back to the discussion in this lecture earlier so you can find

out the correct term is this one U ∝ δ tc / del okay. Second question thermal boundary layer is

thicker for fluids having four options we are having high Prandtl number low Prandtl number

high Eckert number and low Eckert number and low Prandtl number fluid okay.

So already we have seen that first assumption you need to take is low Eckert number and second

assumption obviously for this thermal boundary layer thicker required is Prandtl number okay.

So both the cases need to satisfied so this is the answer okay. For the third one for thin thermal

boundary layer  which expression is  correct,  so I  have given four expression for the Nusselt

number and last one is obviously of the above.



So if you see my nuclear correct answer is this one for this thermal boundary layer okay so

Nusselt number is the order of RE1/2 and Prandtl number to the power 1/3 okay. So thank you at

the end of this lecture please visit our next lecture which we will be discussing about low Prandtl

number  over  a  flat  plat  okay  and  if  you  are  having  any  question  please  keep  post  in  our

discussion forum than you.
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