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Hello welcome in 19 lecture of convective heat transfer in this lecture we will discussing about

mass transfer, is quite analogous to want ever we have discussed in the last few lectures which is

heat transfer.

(Refer Slide Time: 00:31)

So here we will try to see how convective heat transfer relationships can be used mass transfer

okay, so our topic for this lecture is mass transfer so let me first tell you that what outline we are

going to follow in this lecture in this lecture first we will be introducing what is mass transfer

okay.
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Then we will going for fick’s law derivation so we will deriving the fick’s law and we will state

what fick’s law is having next we will deriving species transport equation and finally give you

mixture movement equation okay so momentum equation for the overall mixture of different

species then we will post the idea of forced and natural convection driven mass transfer so here

we will be showing you similar to forced and natural convection how forced mass transfer and

natural mass transfer can happen and at the end I will be showing you different mass transfer

related non dimensional number and try to establish analogy with the heat transfer okay so let me

go inside.
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To began with first I will be giving you idea of diffusion between two different components let

us say we are having species A over here as water and spices B is some liquid blue dye just when

ever this dye is entering in water you will find out that blue color dye is diffusing in water slowly

okay thought they are none reacting mixture okay there can be reactions also but in this case

though they are none reacting mixture and liquid blue dye those are non reacting mixture still we

can find out diffusion helps in mixing okay.

So  this  type  of  situation  if  you  if  we  start  to  study  then  we  can  immediately  define  the

concentration of individual species for example let us say concentration of species A in this case

is CA let us defined the concentration as C so concentration of species A is actually CA okay so

this CA okay so this concentration is nothing but analogous of at a particular location if you try to

find out the density of species A that will be equivalent to the concentration show we write down

CA is nothing but ρA   and the concentration will be having same unit kg/ m3 as density is having

okay.

Next let us see that if we try to get the mass fraction of a species in the mixture okay so if we try

to get the mass fraction let us defined mass fraction in terms of w so let us say mass transfer

mass fraction of  species A is nothing but WA  so WA  will be nothing but in A mass of A at a

particular location divided by mass A + mass B so whole mass between two component mixture

so if  we do little bit of division in the denominator  and numerator over here by  Δv we can



convert this mass into corresponding ρ densities so density of species A divided by the mixture

density ρ okay.

(Refer Slide Time: 04:13)

So we get mass fraction in the form of density fractions ρA/ ρ so if we consider a binary mixture

then definitely we will be find out that ρA +  ρA = 1 so that means sorry wA + wB = 1 that

means  ρA / ρ + ρB / ρ = 1 okay where ρ is nothing but actually in mA +mB / Δv that means your

ρA+  ρB  okay so ultimately this equation for a binary mixture is very valid and we can say there

mass fraction summation is equivalent to 1 for binary mixture.

If we generalize this one for multi component mixture then we will be getting ρ is nothing but

addition of all the component so ρ1 to ρn okay we can write in the form of summation also and if

we try to defined mass fraction over here as wi so wi will be just ρi / ρ so just generalization of

this side where ever we have discussed about binary mixture of liquid blue dye and water so this

the generalization for multi component fluid so wi will be ρi/ρ  okay and if you processed further

for summation of w then you will be finding out summation of all the spices mass fraction is

equivalent to 1 okay summation of all w’s is equivalent to one okay just following the same

analogy we can write down this one for multi component mixture okay.

Let us see now new thing as we have discussed about diffusion over here so one species will be

diffusing into another one so there will be definitely some diffusely involved in this okay the rate



at which the diffusion happens so we consider that one as it is mass diffusion not a heat diffusion

so let us consider the mass diffusivity of A into B okay so let us write down that diffusivity as D

so D AB means diffusion of A into B okay so if we try to find out what will be this factor so we

call this one as mass diffusivity okay.

The unit of this one will be meter square / s okay so how much area it is diffusing / unit time that

will be the mass diffusivity okay next let see if the land scale of the mixing process is l and the

time scale of the diffusion is t then we can easily write down by matching the dimensions of the

mass diffusivity and this l and t we can easily write down the t will be of the order of l2/ DAB

okay to DAB is nothing but mass diffusivity okay.

So here from we get the diffusion actually comes due to gradient of concentration if you are not

having concentration gradient somewhere so let us say the liquid blue dye is having very high

concentration but here it is low concentration that is why diffusion will be happening and helping

in mixing, so you do not have any gradient of concentration then diffusion will not happen it is

just similar to the heat transfer if you are not having the temperature difference heat transfer will

not happen same case mass diffusion will not happen if gradient of concentration is no longer

there okay.

So after this let us see a new law which we will be defining as fixed law and this is defined for

binary mixture but before going there let me show you a small example over here let us say we

are having silica.

(Refer Slide Time: 07:44)



Over here in between 2 walls okay so this is a silica compact you can say okay having height H

let us say now at the beginning let us say both the sides of this silica are having contact with air

okay so it is having air so let us say at the beginning means whenever we have not started the

time t less than 0 okay then let us say certainly you keep one side of this silica in contact with

helium okay another side as this well remains in contact with air so in of in this silica one side

you are having air another side you are having helium certainly your are keeping one side in

contact with helium now silica will be observing helium  chemically okay.

So you can find out that slowly but steadily helium concentration we try to increase inside silica

okay so after some time a little bit of time a small t you will find out the wall which is attached

with the helium there we are having concentration of helium let us say the concentration of

helium is actually wA so the high concentration of helium is over here okay and slowly you can

find out it is diffusing so there is a gradient of concentration or there is a change of concentration

towards the high towards the upper wall.

Where upper wall is in contact with air definitely no helium can be reached okay so if you wait

for longer time then you can find out that it will be achieving some steady state and you will be

find out a gradient of concentration of helium can be observed in this fashion where once again

the bottom wall which is in contact with helium is having higher concentration and which is

attached with the air side there we are having lower concentration okay now from here we can at



least sat that this mass transfer rate inside this silica of helium will be actually very with respect

to obviously z if z is more then you will be finding out or if z or H both are same over here.

Okay this is z direction and this I the magnitude of z for this present case which is H so you will

finding out this mass transfer rate will be actually inversely proportional to this z direction or H

spacing between the spices okay so if they are very close to each other then mass transfer rate

will be enhancing and revising will happen when ever there away from each other okay at the

same time if you see over here we are having some fixed helium  concentration at the beginning

and here helium concentration was 0.

So this helium concentration wA0 if it increase then more and more helium can enter okay so

that is form common sense that if the concentration is higher than obviously it will be giving

more push for the helium to enter inside so as result we can say this m. or mass transfer for the

helium is actually proportional to this w okay Wa0 right so and definitely this mass transfer rate

will be increasing as the area of contact between the silica and helium increases is not because

the contact area increases with more and more area is available for entry of helium.

So with this 3 things fix as proposed that m.A is actually propositional to wA0 whuich is the

concentration of helium at the beginning m.A is inversely propositional to H okay which I have

already  said  over  here  if  the  silica  layer  is  becoming  tine  then  mass  transfer  rate  will  be

increasing as well as m.A is propositional to Ap which is nothing but the area through which the

helium and silica escaping contact.

So if you add all this 3 terms of this equation then you will be getting m.A/ Ap is propositional to

WA0 / h okay here as I have motioned Ap is plate area if we proceed further then we can defined

this m.A/ Ap which is nothing but m.A is mass flux m.A mass transfer divide area which will

become actually mass flux so this mass flux of A in z direction this becoming proportional to

wA0 / H let us call that term mass flux as J so J is the mass flux let us say so JA in the direction

of z is actually becoming proportional to WA0 / H okay.

Now as we have found out that this mass flux can be also retain in terms of the concentration so

we can write down this mass flux is nothing but dwa/ dz okay dw/ dz is coming from here you

see AwA0 is actually the subtraction WA0 – o so that is the gradient of the concentration which has

actually caused this mass transfer, so we can write down this WA0  as dwA  so rate of change of



concentration  in-between the  layers  and  this  each  can  be  written  as  dz  okay.  So change  in

location in the z-direction.

So  we  have  written  this  z  JAZ  which  is  nothing  but  m.A/  Ap  from  here  is  equals  to  is

proportional to dwA is coming from here and Dz  is coming from H, okay. So once we have this

type of equation we can give one constant in the equation also let us give that constant as - ρDAB

okay, so this is the proportionality constant and this we call as fixed first law okay. So mass flux

is actually equals to density x mass diffusivity x dw/dz, okay. This is the concentration gradient,

okay.
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Next if we proceed future then this mass flux this mass flux can be written as ρWA – W okay so if

you take this component so here we can write down JA is nothing but ρA x ρA – V okay is equals to

ρ x DAB x ∇WA okay, so ρ x DAB x ∇WA okay, so here this is nothing but your diffusion velocity okay

this is nothing but your diffusion velocity at A okay. So once you have this one then we can

easily go for conservation of mass.

This is mistake conversation of Mass observation of mass for its species or its constituents okay

so that if we try to derive now let us consider that the species A is having velocity VA and species

B is having velocity VB  okay. And with this if you try to get the mixture velocity so mixture

velocity you definitely can be written as V =  ρA VA + ρB VB / ρ mixture density ρ okay.



So this equation we get from the mixture wall velocity V, if you proceed further and try to have a

balance if mass transfer then let us see if mass of species A inside region R if you try to find out

then what we need to do we need to integrate for the whole region, region R so volume of the

region is V and we are actually finding out ρA DV because we know ρV is actually your mass.

So that we are doing for this arbitrary region R having volume V okay. So this is the mass of the

species A inside region R, similarly if we try to find out net efflux, okay. Net efflux of species A

from region R because there will be lots of surfaces so from there if we try to find out the net

efflux whatever it is coming in or going out, then we can write down that is equals to integration

of ρA V A. n^.

This n^ is nothing but surface normal of the region R, okay. So ρA VA . n^ x DA okay. So this we

have got as net inflow or outflow summation of net inflow or outflow or net efflux then let us say

there is some sort of volumetric generation of species A also insider region R this may happen

whenever you are having chemical reaction, okay. So this can be positive as well as negative but

here let us consider that volumetric generation we are having.

If we are having volumetric absorption then in that case it will be negative okay. So this is γA 
‘’’

we are taking as volumetric generation okay. Then if we try to balance then we can write down

this term that means this mass of the species is change of the mass of the species okay which will

be nothing but DMA dt okay, so if you try to do DMA dt is equals to whatever flux we are getting

okay plus you whatever generation you are having over the whole volume , okay.

So this conservation of the species we can write down easily by taking arbitrary region R okay.
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Next once we have this arbitrary region R then you can put this value of MA as we have derived

in the lass slide so d/dt(MA) become if we take the differentiation inside so it will be ∂/∂t (ρ A) dv

and that is having integration over the whole volume, okay. And in the right hand side we are

having a flux and generation term respectively, okay. Then if you take all this term in one side

and try to take derivative  of the all  terms then you get  this  fashion integration of V is  into

integration of over the whole domain over whole volume.

And then ∂/∂t (ρ A) + ∇.ρA VA - γA 
‘’’ and that is integrated over the whole volume V okay. And

now you see we have taken a arbitrary region R having volume V so this holds for any arbitrary

region so we can say basically not this integration the term whatever we are having inside that is

equals to 0 so let us take this term is equal to 0 and here we have written the term for species A

as well as species say very much generalized we can take the similar equation for species V also,

okay.

So we are having two species let us say species A and species B, the conservation equation goes

like this,  okay. Then let  us take a two things over  here first  one is  let  us say it  is  only bi-

component mixtures so whatever generation is there for species A and species B their summation

will be equals to 0, why? Because in a overall system mass cannot be generated, so if this system

is generating mass A is generating mass.

Then definitely V will be destroying mass, okay. So γA 
‘’’ + γB 

‘’’  will be obviously equals to 0 and

on the other hand just now we have shown that density ρ can be summation of ρ difference



species ρ so ρ = ρA + ρB let us consider at okay so with this if we add this two equations then we

can get the first term becomes ∂/ ∂ t (ρA + ρB) which can be written as ∂/ ∂ t (ρ), second two terms

summation becomes ∇( ρA VA + ρB VB) okay.

So this once again can be written as ρv for the mixture as we have shown over here, ρv = ρA VA +

ρB VB okay which is the mixture wall velocity. So here this term this two terms will be giving me

∇(ρ.V) and the third two terms by virtue of this γA 
‘’’ + γB 

‘’’  goes to 0, so for the mixture we get

simple continuity equation in this  fashion, okay. So considering mixture as homogenous this

equation we get, okay.

(Refer Slide Time: 20:39)

Next let us go to Fick’s law this already we have shown that this is the derivation of Fick’s law

we have obtained this was actually the mass flux J in the left hand side and here we are having



diffusivity and then the gradient of the concentration, okay. So if we use this Fick’s law part and

try to have modification of this component ∇( ρA VA) so let me show you how that is changing.

∇( ρA VA|) let us try to write down as ∇( ρA V) + ∇( ρA VA - V)  so  here  you  see  this  ρA  V is

cancelling so this term we have added and subtracted in this. So if we do so here in this side we

can actually replace it by Fick’s law so you see this ρA VA – V over here it is coming so we can

write down this is nothing but actually ρ DAV x ∇A okay so that we have written over here - ρ

DAV x ∇wA, okay.

So if you do so then this second term of the species momentum equation we can write down in

this fashion ∇ ρ AV – ∇. ρ DAB x ∇WA Okay. Proceed further if we proceed further then you see

the second term which was here this term if we replace by this two terms then this term can be

taken in the right hand side so we get the mass conservation equation for species  A in this

fashion, okay. So this is the mass conservation equation for species A.

Now let us consider we know that ρ A is nothing but ρ wA this already in the first slide I have

shown so if you try to use that and make derivative with respect to  T then you get  ∂ρ A/∂t =

ρ∂WA/∂t + wA you can keep fixed and then ∂/∂t (ρ) so this is actually chain rule we are using over

here for derivative. So this we will be replacing over here in the mass conservation equation,

okay.

So and for the second term you see for the second term we are having ρA x V so ρA X v that once

again can be written easily as, as we know ρA is nothing but ρ x WA species concentration so this

we can write as ρA X v = ρWA x V okay and if we go for spatial derivative like this for the left

hand side then we are getting WA  x  ∇. Ρv + ρv x ∇. WA okay once again chain rule we have

used, now let us put both this one and this ∂/∂t(ρA) over here in the mass conservation of species

A.

And then in the left hand side atleast both the terms whenever we put then we can see we are

getting  WA  (∂ρ/∂t)  +∇.  V okay.  So this  for  mixture  momentum equation  just  now we have

showed this is equals to 0 okay. So this already we have showed over here this is equals to 0, so

we can reduce that part of the equation this goes to 0, so in the left hand side we have only this

term okay, which is nothing but this can be written as ρ x total derivative of w this is nothing but



total derivative of w, okay. So once we incorporate this term over here in the mass conservation

of species A.

Then finally we get ρ x total derivative of w = ∇. ρDAB x ∇. A+ γA 
‘’’okay which is the generation,

okay. So this is the species conservation equation for FSA.
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Next let me show you some special case if the constant density mixture we are having then what

we can do, we can consider ρ as constant so in this equation if we keep the ρ constant so this can

come out and DAB is always a constant so you can get the equations simplifies to ρ and DAB came

out, so this simplifies to this form, okay. And if you try to write down this total derivative in the

form of ∂/∂t + V. ∇.

Then the equation goes like this, okay. The equation goes like this and you divide by ρ then the

equation goes like this, okay. Proceeding further this WA is nothing but CA/C okay concentration

of A by the overall concentration okay, so many a times this overall concentration will be equals



to 1, okay for by component mixture atleast, okay. So here you will be finding out if we put this

WA = CA/ C over here in this equation.

So this whole equation is being converted top this form okay so ∂/∂t (CA) + V. ∇CA = DAB ∇2 CA +

γA 
‘’’ which is the generation part okay. So we have observed constant mixture density special case

and then let us try to see during this type of diffusion how heat transfer is coming into picture so

first I will be giving you one example where it is more or less similar to forced conviction. So let

us say you are having a plate over this okay where the concentration of certain species is c okay,

and here we are having some influent just similar to our flow over flat plate we are having some

mean flow having concentration C∞, so we are having a concentration gradient over here, so just

similar to your temperature profile if you try to plot over here the concentration profile so you

will be getting at had with the wall of the plate you will be having high concentration whereas in

the first team it is actually tending towards the C∞ the first team concentration, okay.

And similar to our thermal boundary layer we can also consider a concentration boundary layer

which is nothing but where the concentration is reaching 99% of the first team concentration C∞

okay. So this type of concentration boundary layer can also be plotted analogous to your thermal

boundary layer. Now let me show you how concentration equation can be plotted so you see if

we consider that we are have informed this equation let us say consider we are having steady

case.

So the first term drops down the second term is actually giving you for two dimensional situation

u∂C/∂x+v∂V/∂y okay, and if we consider that there is no reactions so this term will be going to 0

in the right  hand side we are having DAB and then if  we neglect  just  following our thermal

boundary layer if we neglect ∂2C/Vx2 okay, so this is x direction this is y direction so if we

neglect that term then in the approximation of boundary layer this becomes my concentration

equation along with the boundary conditions definitely at y=0, C=C0

And at y/δ0 tends to ∞ that means whenever we are going away from the plate C becomes C∞ or

the  first  team  concentration.  So  this  becomes  my  concentration  equation  and  these  are  the

boundary condition, okay this is similar to your forced convection situation.    
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If you proceed further and try to find out the mass transfer coefficient just like or heat transfer

coefficient, so h in the heat transfer coefficient it was  the temperature difference here it will beqq

mass flux Jy and at wall definitely okay, because we are interested in heat transfer, mass transfer

coefficient at wall and this is nothing but concentration gradients C0-C∞ okay. So if you use our

fix law then this J can be written in this fashion and finally this, you see this ω can be converted

to C as we have shown in the previous few slides the relationship between ω and C.

So ultimately the mass transfer coefficient comes out as this term okay, so minus diffusivity into

∂z/∂y at y=0 that means at wall divided by C0-C∞ the concentration gradient, okay concentration

difference okay. Next let us try to define local schedule number this is analogous to your Nusselt

number so if you try to define Nusselt number that becomes hx/k here it is nothing but h mass

transfer this is actually mistake so this is h mass transfer into x/DAB okay.

So if you do that then from if you put this equation over here then this schedule number becomes

∂C/∂y  at  y=0/x/C0-C∞ okay.  If  we  try  to  find  out  heat  transfer  similarity  in  heat  transfer

convective heat transfer we have shown Nusselt number will be nothing but R1/2 and Pen  so the

value of n depends on the limits of Pe, low Pe limit and high Pe limit. 



Here also we find out schedule number is nothing but AR1/2 and new number which is analogous

to Pe comes over here as Smith number, okay this is Smith number later on I will be telling you

what is Smith number we can write down this local schedule number in the function of Renolds

number and Smith number, okay. So if you go for Renolds analysis then this Smith number can

be written equals to 0 this is once again mistake this is Se Smith number okay, concentration and

temperature profile then we will be looking analogous are same in case of Smith number equals

to 1 okay. 
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 Then let  us see the another dimension which is nothing but natural convection driven mass

transfer,  so let  us  have  lead  vertical  like  this  now, we are having gravity  acting  this  in  the

downward direction and here attached to the plate we are having high concentration C0 and away

from the plate we are having some you know ∞ symbol concentration C∞ okay, so if you see like

this just like the temperature profile so here it is Tw here it is T∞  so temperature profile will be

like this our concentration profile will be also like this.

And along with the temperature  thermal  boundary layer  we can also have the concentration

boundary layer, so this is your thermal boundary layer and here we are having the concentration

boundary layer. The concept remains same 99% of the full steam concentration, okay. So if you

do like that then we have to also see that how momentum equation is going to change especially

the buoyancy term because this is natural convection, so buoyancy term earlier what we have



done using buoyancy approximation we have written ρ equals to this first term only where ∂ρ/∂T

came into picture, but here in this case we have to also see the ∂ρ/∂C term because concentration

is also, concentration gradient is also coming into picture, okay. So this term we need to add

okay, once we add this and let us write down earlier we know that β is nothing but -1/ ρ ∂ρ/∂T at

constant pressure and concentration.

Now let us define βC okay, so βC  is for the concentration is equals to -1/ρ ∂ρ/∂C at constant

temperature and pressure, if you do so then this terms we can replace by β ∂T so let us do that, so

ρ- ρ=ρ∞- of ρ∞ βC over here okay, ρ∞ into βC, C – C0  okay , so this pressure ∂ ρ/ ∂P we are

neglecting, so if you do so your buoyancy term will be having one extra term already we had

only this is  ρ∞ into g and we had this term which actually given raise to rally number now we

are having another extra term duct to the concentration decency - C∞.
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Okay and if  you proceed further  to  the momentum equation  you see earlier  the momentum

equation was up to this where buoyancy term ahs taken this form okay, along with this one here

the third term will be also present okay, and if you proceed further then you will be finding out

this term will be prevail like this and subsequently here also in the boundary layer approximation

along with this gβ ΔT and we will be having gβ C ΔC also okay. So these are the boundary layer

equations where mass term for an heat transfer present simultaneously okay and continuity and

momentum equation.
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nd the corresponding obviously here energy equation will be remaining same convection and

conduction to be an subsequently we have to also I have the transfer equation of spaces which I

can write down like this earlier also I have shown this equations for forced convection case okay,

so it  will  remain  same and if  you see the boundary condition this  momentum equation and

energy equation boundary condition already we have discussed so for the concentration will be

having C equal to Cw at wall okay and C tends to C∞, away from the wall okay.

So once you do this thing then you can easily solve Nusselt convection thing, now let me show

you what non - dimensional numbers are important for mass transfer already we know Pr which

is nothing but v / α okay similarly to that we will be also having Sc number which is nothing but

μ/ ρDAB where this Dab is nothing but the mass diffusivity which I have introduced in this

lecture okay, then we will be having lease number lease number is nothing but α/ D AB α you

know thermal diffusivity.

DAB is the mass diffusivity okay, so lease number give you the relationship between the thermal

and the mass transfer effects okay, now if you try to manipulate this with number then you will

be getting smith number is equals to nothing but Pr number into lowest number so smith number

equals to Pr into Le okay on the other hand if you try to see the heat transfer extreme so rally

number was actually gβ ΔTx3 / α, so here we are having mass transfer rally number Ram okay so

that will be gβC so remember we have introduced βC and here in place of ∂T will be having.



∂C and this α will be changing into your diffusivity thermal diffusivity will be changing into

mass diffusivity okay, so this new numbers will be handling and also we have see that the how

Nu term analog oscillation Sh we have got for schedule number, so here Nu relationship was for

Nu convection into was in terms of rally number here it will be mass terms for an rally Ram and

Pr will be transforming to smith number, this is also Ac this is not AC okay, so all this analog

stings we have seen in this lecture.

Let us summarize now so first what we have done in this lecture we have scattered the fix law, so

we have seen fix law consult in this fashion.
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The we have showed you the transport equation for individual spaces and we have shown that

transport equation of individual species goes like this where diffusivity is over here generation is

over here, and this is the inertia term for the individual spaces okay, then we have discussed

about natural convection and forced convection driven mass transfers, so this is two separating

cases we have shown, we have also defined non-dimensional numbers related to mass transfer

and finally established analogy between the mass transfer and convective heat transfer okay, so

with this I will be ending my lecture.



But before leading let me test your understanding what we have understood in this lecture, where

having three questions.
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So first question is mass diffusivity has in it as so we are having m/s, m/s2 and m3/s, so it is very

simple in the first slide I have told you so easily correct terms that is m2/ s, second question

Nusselt number of heat transfer is analog us to smith number in mass transfer Lewis number in

mass transfer grass number or Sherwood number, so obviously we have understood we have

discuss some time is Nusselt number is actually analog us to Sherwood number, so this is the

correct answer last which relationship is correct okay , so Sc = pr into Sh Sherwood number

smith number is equals to Pr into Le.

Le = Pr into Sh and smith number is = Pr / Le so obviously this also we have said that smith

number is equals to Pr into Le this is the correct answer okay so with this I will be ending this

lectures in our last lecture we will be discussing about some problems on convection inside a

duct and as well as we will be discussing about mass transfer okay, so if you having any query

please do not forget to keep posting in our discussion forum thank you. 
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