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Hello welcome in the 15th lecture of convective heat transfer course in this lecture we will be

discussing  about  thermal  entrance  length  in  our  last  two  lectures  we  have  discussed  about

thermally fully developed region mainly but here we will be discussing at the beginning of the

duct what happens that means when the temperature profile is developing to get a steady state

profile okay.

So this thermal entrance region we have already defined in our 11 th lecture so there we have

shown that at the beginning how temperature profile actually gets developed in to a parabolic

one okay. So here we will be showing that entrance length region and that two in this lecture we

will be considering uniform wall temperature case okay. So that means the pipe is actually being

raped up with some heating coil which is maintain in the wall temperature at constant okay.

If you have the other extant that means the heat flux is constant so what is our heating coils are

supplying to the fluid inside the pipeline that is actually heat flux is constant that case you need

to see in the next lecture okay. So as I have mentioned that we will be discussing about thermal

entrance region over here, thermal entrance region with uniform wall temperature okay.  So let

me at the beginning tell you that what will be the outline what things will be covering in this

lecture we will be introducing the concept of thermal entrance length.
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In hydro dynamically fully developed but thermally developed in flow in pipe. This assumption

we are doing over here that we are considering the flow hydro dynamically has developed that

means it has taken a parabolic velocity profile but temperature has not yet grown in to a steady

state profile okay. So though it is hydro dynamically developed fully developed but thermally

developing flow okay inside a pipe, then we will be deriving the energy equation and sub sequent

boundary condition and we will giving a non dimensional form to this one for uniform wall

temperature case okay.

Uniform wall temperature around a duct okay, we will try to reduce the energy equation in to

simplified form which can be solved okay and that we will be doping for thermally developing

region  with  constant  wall  temperature  boundary  condition  okay.  And finally  we will  try  to

determine  by  this  equation  energy  equation  will  try  to  determine  the  Nusselt  number  for

thermally developing but  hydro dynamically  fully developed force convection around a duct

okay having constant temperature okay.
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So let me start with this schematic so here we will be considering hydro dynamically developed

but thermally developing flow, usually this type of problems are called Greetz flow okay Greetz

problem we can call okay. So here you see this is our pipe line let say here we are having the

center line okay, here we are having the center line and now somehow the velocity boundary

layer has developed and had taken actually a parabolic profile okay.

And then you see over here we are considering that suddenly we are starting to heat over here the

wall is getting a constant temperature T = Tw okay, and here the fluid whatever was coming with

the  parabolic  velocity  profile  have  a  constant  temperature  Ti  okay.  And  this  is  your  axial

detection of the duct and this  is you radial  direction okay. The temperature profile  will  also

become developed after  the certain  length  and what  is  the consequence  in  the further  down

stimulation those things we have discussed in the last two lectures.

Here our major concentration will be over here and the beginning of the heating section this

region  is  called  actually  thermal  entrance  region okay.  You can  see  I  have  shown here  the

boundary layer thermal boundary layer being developed by the way what is thermal boundary

layer this concepts we have already discussed in lecture 11 okay. So this boundary layer will be

developing over here and whenever they will be margin at the center line beyond that we will be

having thermally developed region okay.

So let me try to first see what non dimensional parameter we can use as here you can find out

this thermal entrance region is small in length we can take the scale of that one is r0 which is



nothing but he radius of the to okay. So we are non dimensional zing z bar that axial direction by

r0 which is nothing but the radius of the to, so z = z bar / r0  okay, obviously the radius non

dimensional zed radius can be taken as r bar/ r0  for non dimensional zed of temperature we are

considering θ, so θ is nothing but t – tw / ti – yw where ti is the inflow temperature and tw is the

wall temperature constant wall temperature okay.

And as we has consider  velocity  boundary is  fully  developed that  means taking a  parabolic

velocity profile we consider that w which is non dimensional velocity axial velocity is  nothing

but w bar /w average is nothing but 2(1-r2) a parabolic velocity profile oaky. Now let me show

you that what will be the equations so the convection will be having only one term okay so axial

convection term  because other two u and v those two things will be 0 because it is thermally

hydro dynamically fully developed condition okay.

So u and v is 0 only w is having getting a parabolic velocity profile like this so only singly term

in our convection will be remaining w ∂t ∂z okay and in the conduction side we will be having

all terms but in this we are only considering that radial and axial terms are remaining and we are

having azimuthal symmetry so θ directional terms will not be considering over here okay. 

So if you expand this equation so you will be getting that if you expand then if you try to put all

this non dimensional parameters and replace the dimensional terms then you will be getting the

convection is becoming w average in to w so this w bar is giving w average in to w and this t is

actually releasing one ti – tw and z is releasing rq and as a result ∂t ∂z is ∂θ ∂z okay.

On the other hand in the right hand side this θ is actually being replaced t is being replaced by θ

and one ti – tw is being released and everywhere we are having second order term that means r2z2,

and here first order but multiplied with r so we can find out one r0
2 can come outside because

both z and r we have consider of the order r0 okay, so ultimately this equation we are getting for

the hydroponically developed but thermally developing flow okay.
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So if you simplified it little bit then you can get that over here α and then r0 x w average will be

giving you peclet number okay, so peclet number by /2 and here we can get the rest terms d x ∂θ

∂z = radial conduction terms and then the axial conduction terms oaky. Now if you put the value

of the w which is nothing but 2x 1-r2 then we will be getting equation of this form okay and

subsequent boundary conditions definitely at r = 1 that means at the wall we are having θ = 0

because t becomes tw okay and at r =0 obviously there will be no gradient of temperature so ∂ θ

∂r =0.

Now at z tens to - ∞ that means for before the pipe entry obviously θ will be one as at t becomes

ti okay and that z tens to ∞ that means if you go for downstream in the pipe line so there we are

not knowing what is the value of θ because that will be depending on the length and so we can

write down that this θ is nothing but actually will be bounded okay. Next as our interest is lying

in this thermal entrance region so let us first do little bit of scale analysis so if you see this

thermal entrance region we will be actually having 1-r okay because this 1-r is nothing but your

thermal  boundary layer thickness okay. So we can write down 1-r is the of the order of the

boundary layer δ okay, so this boundary layer δ is of the order of 1-r. now if you use this one

then you can write down 1-r2  which is a dominant term in the left hand side convection side in

the equation.

So you can give this becomes 1-r x 1+r, 1+r is obviously of the order of 1 so you can get this 1-r2

is of order θ okay and definitely z we have already considered of the z varies of the order of δ so



this z becomes the order of 1 okay. Now let us try to see that what are the orders of all this terms

one by one so first if you see that θ / ∂ are terms so ∂θ / ∂r so as θ is of order one it varies

between 0 and 1 so it can be of order one r will be of order δ, so ∂θ∂ term is the order of 1/δ.

Similarly ∂θ z here θ is of order one and z is of order 1 already we have mentioned so this

becomes also of order one okay, if you go for the second order derivative it will become 1/δ2 as

∂θ ∂r is 1 / δ, and ∂θ ∂2 ∂z2 obviously we will remain same because z is of order one okay. So we

have got all the terms okay order of all the terms now if we try to see what is the convection

order if you see the convection order so ∂θ ∂z was actually of order one but 1-r2 is of the order of

δ.

So we find out multiplication of this one is the of the order of δ okay. Let us see the radial

conduction that means these two terms if you see this two terms obviously we are finding out

that this peclet number can be taken in the radial conduction side in the conduction side rather, so

it is 1/ peclet number and then both the terms we are having 1/ δ2 for the first terms and for the

second term it is nothing but 1/δ x r which is of the order of δ.

So it is actually 1/δ2 term okay, no actually this term is actually becoming 1/ peclet number order

and this terms is becoming 1/peclet number in to 1/ δ2, so this terms will be actually dominating

amongst this two term. So the magnitude or scale of the radial conduction will become 1/ peclet

in to 1/ δ2 okay. Then axial conduction if you see axial conduction that already we have prove

that this is of order one as 1/ peclet number came in this side so it becomes of 1/ peclet numbers.

So, here from you can get that between this two conduction obviously this one is having higher

magnitude so radial conduction dominates so what the axial conduction.
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If you equate this convection and conduction side we get peclet number is actually 1/δ3 or we can

write down δ is of the order of 1/ Pe1/3 this keeps us some idea that what can be our similarity

variable. So let us consider the similarity variable so the similarity variable η we are writing 1-r x

Pe1/3 okay. Now as we are considering 1/r Pe1/3 then definitely this η will become of the order of

one okay so this is the duty of this similarity analysis so by considering that what is the order of

δ  or  the  boundary  layer  thickness  we  construct  one  variable  call  similarity  variable  it  will

becomes of the order of one okay.

And already we have shown that z is already of order one so we will get η and z coordinate now

okay in place of z and r coordinate. Next let us see further that what will be the value of r from

this one as we have defined detail in this fashion so little bit of side change we can have r = 1 –

Pe-1/3 x η and subsequently 1-r2 which is nothing but 1+rn to 1-r will be giving me Pe-1/3 x η x 2-

that means 1+1- Pe-1/3 x η and multiplication of this two terms will be giving me this one okay. 2

Pe-1/3 η - Pe-2/3 x η2 okay.

Let us proceed further for the derivative of the θ terms okay so first ∂θ ∂r so if you do that θ is

the function of η, so ∂θ/ ∂η x ∂η / ∂r so ∂η / ∂r can be found out easily by making derivative of

this one, so this becomes nothing but –Pe1/3 if you make the derivative of η with respect to R, so

it becomes –Pe1/3 x ∂θ/ ∂η okay, and second derivative subsequently will be giving you Pe2/3

∂2θ/∂η2 okay, so once again you do the derivative with respect to this, once again chain rule will

be giving you Pe2/3 okay. Proceeding further if you put this derivatives as well as the value of 1-r2



in your equation that means in your equation means over here rather than you will finding out

this turns out to be like this.
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This is nothing but your 2x1-r2 okay, ∂θ/∂z 2/Pe this is nothing but your ∂2θ/∂r2 and here you are

having 1/r so this is 1/r term, 1/1-Pe1/3η and this one is nothing but your ∂θ/∂r okay, and the axial

conduction term remains like this 2/Pe ∂2θ/∂z2 little bit of simplification and side change will be

giving you like this (4η-Pe1/3η2) ∂θ/∂z is equals to on the right hand side we are having 2∂2θ/∂η2 –

2Pe-2/3∂θ/∂η/1-Pe-1/3 this is nothing but coming due to r, +2/Pe2/3 ∂2θ/∂z2 okay.

So you can see for large Pe what we can do this term, this term, this term and this term can be

cancelled because all are carrying actually Peclet number to the power minus power, so you can

find out only remaining term is nothing but 4η ∂θ/∂z=[2∂2θ/∂η2] that means it is nothing but

2η∂θ/∂z=∂2θ/∂η2  okay. Let us see the boundary conditions also, so we find out whenever η tends

η=0 now η=0 means r=1 okay, so η=0 means r=1.

Because we have consider η=1/r Pe1/3 okay, so we find out that at η=0, θ=0 because T=Tw okay.

Then similarly,  as we have considered η=1-rPe1/3 though our boundary condition was at  r=0

∂θ/∂η, ∂θ/∂r will be equals to 0 so from there we are getting that for large Pe, so Pe tends to ∞

means η tends to ∞ because η is nothing but 1-rPe1/3 so Pe becomes very big means η will be also

very big.



There we are finding out η tends to 1 okay, so and in case of the inlet we are having at z=0, θ=1

okay,  this  is  nothing but  Ti-Tw/Ti-Tw okay.  So we got  the equation  as  well  as  the boundary

conditions  two  boundary  conditions  for  η  and  one  boundary  conditions  for  z  okay,  so  this

equation and sets of boundary conditions are actually called Leveque equation and the solution

of this one has been proposed by Leveque.

So let us see how it can be solved at the beginning what we will be doing, we will trying to find

out the stretching variables for that let us take η*=eα1η we do not know what is the value of α1

we need to find out. Similarly, Z*=e α2Z and θ*= α3 θ, so by using this we will be trying to find out

what are the values are α2, α1 and α3 respectively, okay. So let us put all these values in this

equation and the boundary conditions. 
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So first in the equation if you see there was η,θ and Z so subsequently we are having eα2- α1- α3

okay, and in the right hand side for the conduction side we are having ∂2θ/∂η2 so from there we

are getting e2α1-  α3  and all the θ and η is turning out to be θ* and η*, okay and if you see the



corresponding boundary conditions B.C. boundary conditions, so η tends to 0 means obviously

η* tends to 0.

In that case you find out θ was replaced to 0 now we are getting e–α3  θ*=0 okay, which gives

nothing  but  for  a  finite  value  of  α3 this  θ*=0 okay,  and for  the  axis  η*  tends  to  ∞ means

obviously  η* tends  to  ∞ we are  getting  e-α3 θ* tends  to  1 okay,  and for  the inlet  boundary

condition z*=0 we get e-α3 θ*=1, okay. Now from this two equations definitely we can understand

that we need to make α3=0 okay.

Because it will simplified version if α3 gets the value of 0 then θ* becomes 1 and θ* becomes 1

over here okay, in the inlet as well as in the axis okay. So let us now equate the co-efficient from

the equations okay, from the convections, conduction equation so we get α2-2α1-α3=2α1-α3 and

substitute the value of α3= so subsequently we get α2-α1=2α1 okay. So from here we can get that

α2=3α1 okay.
So ultimately we can then write down η is nothing but eα1η, η*=e α1η, z*=e3α1z and finally θ*=θ as

because α3=0 okay. So if you get so then it is very easy to find out what can be my similarity

variable so we can take η*/z*1/3=η/z1/3 okay. So this correlation, this relation can be found out

from this two equations easily by eliminating eα1 okay, so if  you do so then we can get the

similarity variable like this. Let us say similarity variable is ξ.
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So we can write down ξ is nothing but η/z1/3 and let us take a constant in front of that which is A

okay, so we need to evaluate the value of A and as we are having over here you see θ*=θ so from

here we can take θ is nothing but a function of ξ okay. So let us use this one and try to first get

what are the derivatives of ξ with respect to η and ξ, η and z, okay because η is function of η and

ξ is function of η and z, okay.

So here ∂ξ/∂η=A/z1/3  because here we are having Aη/z1/3  okay, derivative with respect to z of ξ

becomes actually this form so Aη, η comes as constant and if we do the derivative of z1/3 then we

get (-1/3)z-4/3  so it will be ultimately giving you –ξ/3z okay. So both the derivatives we have

obtained of ξ then let  us try to get the values of the derivatives of the non-dimensionalized

temperature θ.
So first let us see the value of ∂θ/∂η so ∂θ/∂η will be obviously as θ is a function of ξ now, so

∂θ/∂ξ. ∂ξ/∂η okay, so here you see we are writing ∂θ/∂ξ as θ  and ∂ξ/∂η is nothing but A/zʹ 1/3  so

we have got the value of ∂θ/∂η okay, it was there in the convection side, okay. Then double

derivative  if  you see  it  was  there  in  radiations,  in  the  conduction  side  sorry,  it  was  that  in

conduction side.

In same way if we do the double derivative because in our conduction side single derivative term

we have neglected for higher Peclet number so we are only having ∂2 double derivative of θ with

respect to ξ that means ∂2θ/∂η2 we are having, okay. So double derivative of this one okay, that

means once again if you the derivative with respect to η it gets θ (Aʹʹ 2/z2/3) okay. On the other

hand if you do the value of, if you find out the value of ∂θ/∂z you will be getting it is nothing but

θ ∂ξ/∂z, okay.ʹ

So θ  ∂ξ/∂z is nothing but –ξ/3z so that we can plug in over here, so we have got both ∂ʹ 2θ/∂η2 and

∂θ/∂z so let us try to put that in the equation okay, so in the governing equation if you remember

earlier it was something like this 2η∂θ/∂z=∂2θ/∂η2 so here I have got both the derivative values so

let us try to put that over here quickly. So we can get 2η then this is the value of ∂θ/∂z and in the

right hand side we are having actually ∂2θ/∂η2, okay little bit of side change and modification it

gives me A2θ = -2/3 η/zʹʹ 1/3 ξθ  here η/zʹ 1/3 is nothing but ξ/A okay, ξ/A. 
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So we can ultimately get that θ = -2/3 ξʹʹ 2/A3 θ  okay, and simplified form of this one will beʹ

θ +2/3Aʹʹ 3 ξ2θ =0 with the corresponding boundary conditions this boundary conditions alreadyʹ

we have seen θ=0 means at the wall it is actually equals to 0 and θ tends to ∞ that means θ(∞)=1

it is at the axis, okay. Then let us see how this derivative, how this equation can be integrated so

for that we are writing 1/θ  and θ  we are writing as ∂/∂ξ θ  okay.ʹ ʹʹ ʹ

On the right hand side we are having a constant term not a constant term it is the function of ξ-

2/3A3ξ2 okay. Now this can be integrated easily so this I am writing as d/dξ(log θ ) and the rightʹ

hand side we are having -2/3A3ξ2, okay. So if you integrate now one step then you will getting

(log θ )=-2/9ξʹ 3/A3+ a constant,  okay to  evaluate  the constant  we will  be using the boundary

condition.
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So before that let us consider here you are having 2/9A3 so this let us make a unified constant so

for that we are considering nothing but A=(2/9)1/3 so if you make A=(2/9)1/3 then A3 will becomes

2/9 as the result you will be finding out that this will become a constant, okay this will become a

constant  1.  So we get  if  we choose A=(2/9)1/3  so this  co-efficient  of  ξ3  becomes 1 okay,  so

ultimately we will get that ∂θ/∂ξ which is nothing but θ  okay, is equal to this constant we areʹ

considering actually log B okay, so if we consider log B then we are getting ultimately θ =Beʹ -ξ3,

here A and subsequently (2/9)1/3 has actually given rise to 1, okay.

Then once we get this 1 one step further integration if we do from 0 to ξ we will be getting this is

nothing but θ(ξ)-θ0 put in the upper and lower limits and the right hand side it is nothing but 0 to

ξ it will be for –ξ3dξ with a B prefixed over there, okay. So if we put the boundary condition that

θ0=0 at the wall so here you find out that θ(ξ)=B into 0 to ξ e-ξ3dξ, okay. So as we have obtained

the profile temperature profile in terms of ξ but only unknown is B.

So let us try to plug in the other boundary condition that means what happens at ξ=∞ so at θ(∞) it

is 1 which we have seen as boundary condition is actually equals to B into 0 to ∞ ξ will turn out

to ∞ now, okay e-ξ3dξ okay. So here I get what is the value of B which is nothing but 1/0 to ∞ 
e-ξ3dξ, so once I plug in this value over here θ becomes 0 to ξ e -ξ3dξ divided by 0 to ∞ e-ξ3dξ okay,

so this we have obtained the profile for θ, preceding further if we have evaluate this integration



let us consider ξ3 = t okay. So once you see ξ 3 = t let us take what is d ξ turns out to be 1/3 t -2/3

dt okay. So if you take this value of d ξ over here.
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We obtain this 0 to ∞ into and in place of d ξ we can write down 1/3 t -2/3 dt okay. Now here if

you see this 1/3 if we take out, this is actually the expression of γ function o to ∞ x t -2/3 dt. This

is actually a γ function for 1/3.

So we write down γ 1/3 , so this is coming from mathematics once again and the function is well

knowing in mathematics okay, so we get over the value of this integration of 0 to ∞ it will be

called e-ξ3 d ξ is actually 1/3 γ of 1/3. now using the rule of the γ function this 1/3 γ of can be

written has γ of 4/3 okay, and the value of γ 4/3rd if you see the γ tables in mathematics you will

be finding out nothing but 0.893 okay. 

So we obtain θ ξ which was earlier was like this okay, now this value is nothing but γ of 4/3 or

0.893. So we can easily write down, it is nothing but 1/ γ 4/3 0 to ξ e- ξ3 d ξ. So we have obtained

the temperature profile in this fashion okay. Next let us try to see the heat flux as the subsequent

heat transfer coefficient and nusselt number q the heat flux can be replaced into ∂ T/∂ r and r = 0

and if you convert r bar into r it  becomes k/p to  θ , it becomes r0 (Ti – Tw) x ∂  θ / ∂ r and r = 1.

So in this further if you evaluate what is value of heat transfer coefficient h which is nothing but

q/ Tw – Tb okay, so this h if you try to put then the other assumption we can get as r is very small



the volume integral of Tb will be Ti. So in thermal terms whose length is very small, so if you do

bulk in that small length you will be finding out very small amount of heat as been added. So

actually the bulk temperature will not be changing much, bulk temperature will be considered to

near Ti.

So here we are considering r is very small Tb is equivalent to Ti okay, so this comes from the

very small thermal inter consideration okay, so if you do so then here you see this Tb can be

replaced by Ti, so it is nothing but h = Tb = Ti. But in some case where thermal indene is finite it

is very big one, in some case it might happen there it is along side is not possible to find out the

value of Tb in that case.

But this alongside we are taking that Tb is more or less near to Ti for reducing our equation into

a simplify form the assumption over here is very small r is very small zone in the term of length

okay. With this we can write down that q/ Tw – Ti is actually h then you can write down h which

is nothing but – k/ r0 into this derivative ∂ θ / ∂ r where r = 1 okay. 
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So let us try to find out the nusselt number further. So nusselt number you know which is nothing

but hD/k or D is the diameter h2r0/ k, so ultimately nusselt number becomes – 2 ∂  θ / ∂ r and r =

1 okay. So ∂  θ / ∂ r4 now if you try to convert this r to  θ, which we have used for similarity

variable then we will be getting 2Pe1/3 x ∂  θ / ∂ η and η = 0 going in this case okay, η was 1 –r

okay.

So if you do further then you see this value ∂ θ / ∂ η we need to find out this is nothing ∂  θ   / ∂ʹ

ξ that is ∂ ξ / ∂ η okay. This we have already seen while deriving the equation okay, subsequently

∂  θ / ∂ η where η = 0, it is becoming where the value of A we have put here and that we will

consider a is nothing but 2/9 1/3 that should be attached 0/z 1/3 okay, so this value if you put over

here for finding out the nusselt number.

The nusselt number becomes 2Pe 1/3 x 2/9 1/3, we can get θ /21/3. So we have already seen that this

can little bit modify and we know the value of θ  = 0. So what we can do little bit of change andʹ

simplify over here nusselt number = 2 x 2/91/3, θ  /z/Peʹ 1/3, here we are having z1/3 this is coming

up over here as z/Pe1/3  okay. Now these factors and along with this 1.357 along with θ0 as we

know value of θ  = 0 and θ  will be giving me actually 1/ γ 4/3. ʹ ʹ
So γ of 4/3 is known to me that I have plug in here the whole constant is 1.357 so I get nusselt

number in that thermal is nothing but 1.357/ z/ Pe 1/3, thermal intendance z will be function.
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So let us summarize in this lecture we understood governing equation of thermally developing

but  hydroynamically  fully  developed  forced  convection  over  flat  plate  having  constant

temperature okay this is not correct convection inside the duck having constant temperature and

there we have found out this is the equation 2 η ∂ θ /∂ z = ∂ 2 θ/ ∂ η 2 for large number cases okay

and the boundary conditions we have seen.

Two boundary conditions for η this is at the axis, this is at the wall and this is at the z boundary

condition we required. This solution we have called has Leveque solution, and we have proceed

further to find out what is nusselt number for thermally developing but hydroynamically fully

developed forced convection over flat plate having constant temperature. So this becomes nusselt

number = 1.357/z/Pe1/3 okay. So this we have seen in the previous slide okay.

So just like your others lecture let us also test how you have understood, so we are having 3

questions over here. 1st one in thermally developing but hydroynamically fully developed region.
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 Radial conduction is of the order we are having 4 options 1/Pe, 1/Pe 1/ ξ 2, 1/Pe 1/ ξ, Pe okay so

obviously  we  have  discussed  over  here  the  correct  answer  is  1/Pe  1/  ξ2.  2nd question  is  in

thermally developing region with constant wall temperature nusselt number we have 4 options

which statement is correct a is constant, depends on z, depends on Pe, both b and c are true, so

this we have already seen the expression of nusselt number depends on both b and c are true.

So answer b is the correct  one, last  question is velocity  profile  in thermally developing and

hydroynamically fully developed region is 4 option we are having parabolic, flat head, liner a,

non conclusion can be made. So the correct answer is parabolic so this is also simple question

okay, so with this we end this lecture. 

In our next lecture we will be discussing the same thing thermal entrance region but we will be

taking the conditions as constant or uniform heat flaks okay. So if you are having any query

regarding this lecture or any other general query about convection heat transfer please keep on

posting on our discussion forum thank you.
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