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Dispersed Flow Models 

Hello welcome to the sixth lecture of Two Phase Flow and Heat Transfer. Today we will be 

dealing with dispersed flow models. So, at the end of this lecture you will be knowing the 

applicability of dispersed flow models in gas liquid Two Phase Flow.  
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We will be also understanding force balance across a bubble; we will be calculating the terminal 

velocity of the bubble. We will be finding out velocity based diameter in the slug regime, bubbly 

flow slug regime and finally we will be finding out statistically how bubbly flow can be 

evaluated in terms of the volume and number density ratio. So let us discuss what is dispersed 

flow?  

 

So here dispersed flow means we have not kept our periphery limited into the bubbly flow 

regime. What we can do if we are having dispersion of gas in the liquid that we will be calling us 

bubbly flow and on the other hand if you are having dispersion of liquid droplets in gas we will 

be calling that one as droplet flow. So both the conditions can be tackled using dispersed flow 

model whatever I will be dealing now.  

 



Though I will be stressing only on the terminal velocity of the bubble but in a similar fashion 

terminal velocity of a droplet can be found out and similar type of analysis can be done for 

droplet flow.  
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Here I have shown you that bubbles will be commonly observed in bubble column reactor and 

flow inside a tube where, bubbly flow is very common for droplet. We have seen in case of 

atomization in spray we will be finding out that droplet flow is present. So necessary condition 

for dispersed flow is that obviously void fraction will be very small the terminal void fraction or 

limiting void fraction is less than 0.3.  

 

So if you are having void fraction less than 0.3, we will be calling that one as dispersed flow and 

we can apply dispersed flow model for its analysis. So we will start with derivation of the motion 

of a single bubble.  
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So here we have taken motion of a single bubble in unconstraint domain. Unconstraint domain 

means you have a very big pool and the effect of wall is not coming into picture whenever the 

bubble is moving up. So in that situation we will be finding out that here mass of the bubble we 

have signified as mb, the acceleration of the bubble is du/dt. So, essentially bubble velocity is u 

that we can find out from the force balance across the bubble.  

 

Here we have taken mainly 3 forces, though apart from these other forces will be also coming 

into picture. We have taken first the drag force whenever the bubble is moving in the upward 

side obviously drag will be in the downward side. So we have taken -fDb symbolize bubble we 

are having pressure force over here fbP so if you are having pressure driven flow, so some 

pressure forces will be also applicable on the bubble obviously.  

 

Whenever bubble is moving up, the major cause of upward movement will be buoyancy. So if b 

buoyancy will be over there okay. So let us see all these things individually. So here I have 

shown drag force is negative and pressure force and body or buoyancy force will be actually 

positive. Both the things will be positive. Positive means it will be aligned with same direction of 

u and drag force will be negating that 1 or in the opposite direction.  

 

Now if we talk about steady flow of the bubble let us consider that the bubble is moving up at A, 

at a constant rate. So in that case we can find out there is no acceleration. So you will be finding 



out this side is become 0, left hand side is becoming 0 and we will be finding out drag force is 

equals to pressure force + body force right. Now let us consider further simpler assumptions. So 

let us consider that we are having negligible pressure field as it is unconstrained bubble.  

 

So we are having a big pool where only due to the body force the bubble is moving up and it is 

experiencing the drag force. In that case, we can consider that we are having negligible pressure 

field and we can cancel this first term in the right hand side and we can write down fbD is equals 

to fb body. So that means body force is equivalent to your drag force. So let us see what are the 

expressions for both these body force and drag force?  
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So if you consider about drag force, you see CD ½, CD is the drag coefficient ½ Rho g vt 

square*A. So this vt is nothing but terminal velocity of the bubble and Rho g is the gas density 

right on the other hand side. If you talk about the buoyancy force or body force this will be pi/6 d 

cube where, d is the diameter of the bubble Rho f- Rho g. So, that much amount of body force it 

will be experiencing due to the density difference of the liquid and gas.  

 

So Rho f is density of liquid Rho g is density of gas multiplied by acceleration gravity 

gravitational acceleration. So if we equate this 2 from here, we can find out what is terminal 

velocity. So terminal velocity vt comes out to be root over of 4gd / 3CD (Rho f- Rho g/Rho g) 



right. Now if we think about very, very small velocity of the bubble that means the bubble is 

moving very slowly in the upward direction that can be taken as equivalent to creeping flow.  

 

So in case of creeping flow, we know that CD or drag coefficient can be written as 24/Re this 

comes from the balance of viscous force and your drag force. So if you equate the viscous force 

and drag force, you will be finding out that necessary condition comes out as CD which is 

nothing but 24/Re. So once you put this value of CD over here then we will be finding out that 

the terminal velocity comes out to be gd square /18 Mu (Rho f minus Rho g) right.  

 

So here you see in this condition. We have in this condition or in the previous equation where, 

we have shown the single bubble motion. We have never consider internal dynamics of the 

gaseous mass that means we have considered that the bubble is perfectly spherical gas mass and 

there is no internal dynamics of the gas right. So without considering any internal dynamics we 

have found out that terminal velocity is gd square/18 Mu (Rho f – Rho g) right.  

 

So it is specifically dependent on the gravitational acceleration diameter is the major factor over 

here. And viscosity of the fluid will be opposing this one. So that means if you are having high 

viscous fluid, so terminal velocity will be lessening down okay. Next let us see if we consider 

internal dynamics of the bubble, so what we will be finding out that? Whenever we are 

considering internal dynamics, so inside the bubble whenever it is moving up, you will be 

finding out lots of vortices are generated in the gas.  

 

Now to tackle that one and to find out what is the expression for terminal velocity, probably we 

need to go for computational fluid dynamics or some sort of analytical correlations.  
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Similar correlation has been given by people. So here we will be showing you 1 correlation 

given by Wallis. So you see what he has done with the terminal velocity whatever we have 

obtained in the previous one. So he has obtained over here that we are having a multiplier 3 Mu 

g+ 3 Mu f/ 3 Mu g+2 Mu f right. So this multiplier, he has given just to accommodate the 

internal dynamics of the bubble.  

 

So we have found out what is the terminal velocity u, infinitive or ut whatever you call for a 

bubble spherical bubble in unconstrained domain. Now if let us say in this expression if gaseous 

phase viscosity is far lower than the liquid phase viscosity that means Mu g < Mu f then in that 

condition you will find out that this whole expression turns out to be d square g (Rho f- Rho 

g)/12 Mu f okay.  

 

Now here we have considered that the bubble is actually spherical mass. Now spherical mass of 

a bubble or gaseous bubble will be only staying in the pool or inside the pipeline. Whenever, the 

size is very small so actually this is for a small diameter bubble okay. So terminal velocity for a 

small diameter bubble if you try to plot A, a curve in between the terminal velocity and the 

bubble radius, we will be finding out that this expressions is valid for a very small diameter.  

 

So we can say somewhere over here this expression is valid so that means this expression can be 

written somewhere over here in region A okay. So whenever the bubble grows in size, we will 



find out that spherical nature is not keeping constant. You will be finding out the shape is 

changing okay. The extreme shape we know that it will be a Taylor bubble. So Taylor bubble 

already we have seen in case of the flow regime description.  

 

We have shown that it will be a bullet shaped very long bubble okay. Where the frontal side is 

actually blunt and at the ends at the lower side, you will be finding out the lots of vortices are 

generating satellite bubbles okay. So the extreme end of this single bubble is the Taylor bubble 

and the lowest end is actually is a spherical bubble right. So if you see the velocity of the Taylor 

bubble. So we will be finding out velocity of Taylor bubble is actually dependant on only the 

pipe diameter.  

 

So we can write down u infinity is equals to root over of grd okay. So this has been given by 

Wallis. So we will be finding out that this is only dependant on the pipe diameter not on the 

bubble diameter right. So here this Taylor bubble is regime is somewhere over here which is the 

largest size of the bubble and here this is a smallest size for which we have found out the 

terminal velocity in this fashion u infinity = d square g (Rho f – Rho g /12mut okay. 

  

Now we will be having multiple things in between. For example, here you see in between A and 

E we are having few more regimes okay. If we try to plot the velocity with respect to the radius 

of the bubble, we are having few more regimes like B, C and D. Now I will show you that what 

will be the configuration or velocity for those bubbles. Here you see I have given a Taylor 

bubble shape where, Rc is the critical radius of the no shape over here over the Taylor bubble 

and this can be some time used as critical diameter for the Taylor bubble.  

 

And predict velocity can be predicted based on that also okay. Now for the rest domains that 

means B, C and D these are the transition spherical bubble to your Taylor bubble. So velocity 

finding is once again empirical in this case.  
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So Peebles and Garber they have given in 1953 some correlations for finding out the velocity in 

this domains okay. So for first 1 let us say this B. So this B region is actually more near to the 

spherical region. Though it is not spherical, you can say that is Toroidal bubble. So in this 

domain you will be finding out velocity u infinity is equals to 0.33 g to the power 0.76 Rho f by 

Mu f to the power 0.52 into Rb to the power 1.28 right.  

 

Now this Reb is the Reynolds number this is only valid whenever it is in between 2 and 4.02 into 

g1 to the power -0.214 right. What is this g? g is nothing but once again calculated from the 

liquid viscosity and the surface tension g Mu f to the power 4/ Rho f into sigma which is the 

surface tension between the gas and liquid to the power q right. So if this condition for the 

bubble Reynolds number is applicable then only we will be finding out the terminal velocity 

using this one.  

 

In a similar fashion for the regime C which is further elongated bubble not a Taylor bubble but 

highly deviated from a spherical one. You will be finding out the terminal velocity is 1.35*sigma 

by Rho f*Rb to the power 0.5 where, Rb is the bubble radius. So for this also we have the zone 

of applicability. So you can find out g2 should be in between 16.32 *g1 to the power 0.144 and it 

will be less than obviously 5.75.  

 



Now what is this g2 once again it is dependent on the surface tension and physical properties. So 

g2 is gRb to the power of 4 u infinity to the power 4 Rho f cube/sigma cube right. And for the 

last 1 which is very near to the Taylor bubble domain okay. So they here I will be finding out 

that u infinity is 1.18 g sigma/Rho f to the power 0.25 okay. Important thing here you see in this 

domain also the velocity is not dependant on the bubble diameter right.  

 

So the applicability for domain, this domain is this 1. So Reb, Reynolds number for the bubble 

should be actually greater than 3.1*g1 to the power -25. Where g1, I have already defined in this 

place okay. Now let us see when what happen if you are having bubbly flow inside a tube.  
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So already we have seen that in case of a bubbly flow jgf which is the drift flux will be alpha (1-

alpha) to the power of n into u infinity. Now this u infinity is once again freely raising terminal 

velocity and alpha (1 – alpha) that comes as actually pre-factor. Already we have seen gfg = 

alpha (1- alpha) ufg. Here this ufg is nothing but u infinity*(1-alpha) to the power n-1. So if you 

club this 2, you will be finding out this expression. So this has been proposed by Wallis okay.  

 

He was also proposed further for air water flow with large bubbles which is actually the region D 

over here. This 1 is very large bubble. So you will be finding out jgf = 1.53 alpha (1-alpha) 

square Rho f to the power -1/2 *sigma * g Rho f – Rho g to the power 1 /4 okay. Now this is for 

air, water, gas, liquid if we go for liquid, liquid only the factor 1.53 will be changing to 1.18 



right. Okay now as we have talking about bubbly flow we will be having a cluster of bubbles. So 

not only the velocity and reflux will be important.  

 

We need to also find out that what is the number distribution or volume distribution of the 

bubbles inside the domain right. So, to know the number distribution inside the bubbly flow for 

different size bubbles, what we have to do. We have to go for size distribution in the cross 

section of the tube okay.  
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Now to tackle the size distribution in a proper way, we have to see the bubble dynamics. So what 

is bubble are doing bubbles can collide among themselves and break into further smaller sizes. 

And during collision what it can do it can merge with some other bubble and form a bigger 

bubble due to collisions. It can also nucleate from a surface during phase change basically. It can 

also growth or shrinkage if you have heat transfer inside this okay.  

 

So all this phenomenon it can do breakage collisions nucleation growth shrinkage due to this we 

will be finding out number density is being changed okay. Size distribution and number 

distribution we have to take care of, so let us see first how size distribution varies. So if you try 

to see in a typical bubble population based on the diameter, how number distribution varies. We 

have to go, we have to take some distribution and typically we take normal distribution.  

 



So if you see the curve of the number distribution, you will be finding out the curve is like this.  
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So for the intermediate domain you will be finding out a large number of bubbles that means 

intermediate size will be getting more in number right. So we can we can replicate this 1 as 

normal distribution. So normal distribution one can write as dn/dd. So this d is a diameter, this n 

is a number is equals to 1 /root over of 2 pi Sn. Where Sn is the standard deviation from 

arithmetic mean e to the power -1 /2 Sn square (d -d10) whole square.  

 

Now this d10 is the arithmetic mean of the bubble diameter right. Now in this same figure I have 

shown you the volume distribution also. So obviously we know as number distribution is giving 

you only the number count volume distribution will be actually shifting towards right okay. So 

here this is the number distribution. So, if you because volume is actually to the power cube.  

 

So length square length to the power cube so you will be finding out the curve will be shifting 

this side. So we get this curve of dv/dd with respect to d. So let us see if we are having some 

other options for the number density distribution. So already you have shown the normal 

distribution. Here I am going to show you the log normal distribution. This is also being applied 

for multiple cases.  
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So you can find out dn/dd is = 1 /root over of 2 pi Sgm. So Sgm is a standard deviation from the 

geometric mean. In the previous case that was from the arithmetic mean this is from the 

geometric mean*d *e to the power -1/2 * Sgm square into ln d- of ln d ng. Now this dng is 

nothing but geometric mean diameter.  

 

Earlier in case of normal we have taken d10 which was the arithmetic mean right. So this also we 

can use log normal distribution. I have already told about volumetric distribution. So dv/dd = 1 

/root over of 2 pi sgm d *the power -1 /2 is sgm square (lnd -lnd vg square). Now this dvg is 

nothing but geometric volume mean diameter. So earlier I have shown you dng, this is geometric 

mean diameter based on the number account. Here it is geometric volume mean diameter.  

 

So if you just playing with this parameters sgm, dvg and dng, you can show this expression ln, 

dvg= ln dng+3 * sgm whole square this is coming from mathematics okay. Now for bubble mass 

it is very important to know what is the mean diameter. So what we do there are several ways for 

you defining mean diameter.  
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If you generalize that we can write down that mean diameter dqp = dmin to dmax, this dmin is 

the minimum size of the bubble available in the population and dmax is the maximum 1. So this 

integration will be doing from dmin to dmax and the integration will be d to the power q n (d). 

So n(d) is the number count of dx size of the bubble into dd. So the second d is for diameter and 

first d for the derivative and then dmin to dmax once again integration d to the power p n (d) dd 

okay.  

 

So this p and q is a power over here. So as a result this is dqp right. So several possible values 

can be there for q and p. So for example 0 and 1 if we take that will be over here, p0, q is 1 that 

will be linear average. If 0 and 2 that is surface average, if you take 0 and 3 that is volume 

average, if you take 1 and 2 that is surface area length average. So that means if I take 1 over 

here so n (d) dd and d square n (d) dd that is surface area length average.  

 

If you go for 1 and 3 that means dq n (d) dd and d n (d) dd. So that is actually volume length 

average and finally the most important is Sauter diameter which is nothing but p = 2 and d = 

3.So I have shown over here what is Sauter diameter this basically we used for our bubbly flow 

calculations. So Sauter diameter can be written as dmin to dmax dq n (d) dd and dmin to dmax d 

square into n (d) dd right.  

(Refer Slide Time: 22:29) 



 

Let us practice a sum, so what we will be considering that we are having population 10 spherical 

particles of diameter 2, 1.5, 1.5, 2, 2.5, 3, 2, 1.5 and 1.5. So 10 diameters are there and it is 

mentioned that the particle size distribution follows log normal distribution. So the expression 

for log normal distribution is this 1 where, sigma 0 square is can be found out in this way log 

(d1-d0) whole square and then we can put a summation for all the particle diameters divided by 

m number of particles.  

 

And d0 can be found as log d1 summation of log d1/m okay. So we have to find out the 

probability of getting 2 millimeter diameter particle in the random selection and we have to also 

find out what will be the change in probability value if it changes from norm changes into 

normal distribution from this log normal distribution. Normal distribution is also given over here.  

 

Let us see how this sum can be solved. So first this d0, so you can find out using this expression.  

I will be calculating the d0 value so if I put all the particles diameter over here d0 comes out as 

0.47872 in a similar fashion. Let me calculate sigma 0 square using this expression so that would 

be finally coming out to be sigma 0 square is 0.07809 now once.  
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I put this d0 and sigma 0 square in fz okay. So fz is nothing but this expression if I put over here 

so I will be getting it as 0.532, here important thing is that this d, I will be putting whatever 

diameter I want to get which is 2 mm right. So this is coming out from the log normal 

distribution. Same calculation I will be repeating for normal distribution. Here I will be finding 

out d bar which is the arithmetic mean. So it will be coming out to be 1.95.  
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I will be calculating the sigma square for the arithmetic mean ways. So that is actually deviation 

from d bar and whole Square of that 1. So that will be coming out as 0.4717. So if I use the 

normal distribution then I will be getting this fz comes out to be 0.8348. So from log normal 



0.532 it is transforming into normal .8348 for getting 2 millimeter diameter particle. Now to 

summarize in this lecture, what we have done.  
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We have evaluated the terminal velocity of a bubble and modified that based on internal 

circulation of the gas. We have mentioned correlations for bubble diameter prediction starting 

from small spherical bubble to larger Taylor bubble regime. We have also proposed statistical 

way to track the number density and volumetric density and at the end we have practiced a sum 

right.  
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So at the end of this lecture let us test your understanding we are having 3 questions over here. 

The first question goes like this, if a student claims that in his experiment an air bubble of 10 cm 

cube volume moves faster in 20 mm diameter tube than 10 mm diameter. You have to assess 

whether he is claiming correct or not. We are having 3 answers over here true, false and no 

conclusion.  

 

Without information of fluid property here you see the correct answer obviously will be true 

because you see, you will be finding out here that volume is over here. The tube diameter is 20 

millimeter and here tube diameter is 10 millimeter. So obviously, his claim will be true. In the 

next question we are having terminal velocity of bubble is obtained by balance of lift force and 

body force lift force and drag force drag force and body force and finally pressure and lift force.  

 

So the correct answer you know will be drag force and body force. In expression of mean 

diameter dqp values of p and q for Sauter diameters are 4 options we are having 2 and 3, 3 and 2, 

3 and 1 and finally 1 and 3 the correct answer is 2 and 3 okay. Hope you have enjoyed this 

lecture. Thank you. 

 


