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Drift Flux Model 

Hello, welcome to the course Two Phase Flow and Heat Transfer. Today we are in fourth 

lecture. Today we will be discussing about drift flux model. So let us first see what the outline of 

this course?  
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At the end of this lecture we will understand the applicability of drift flux model in different 

adiabatic and phase change situations. We will be also deriving continuity and momentum 

equation applicable for drift flux model. Important terminologies involving drift flux model will 

be discussed in this lecture. We will also try to see for gas liquid vertical pipe flow, what are the 

different operating points for upward and downward movements of gas and liquid.  

 

And at the end we will be seeing how critical heat flux can be calculated for departure from 

nucleate boiling. Now to give you a brief idea about drift flux model, we will recap our last 

lecture homogeneous model. So in homogeneous model we have seen that both gaseous phase 

and liquid phase are having same velocities but here in drift flux model we consider that there is 

significant drop between the velocities that means there is relative velocity between the gas 

phase and the liquid phase.  



Now as it is having 2 different velocities ideally, we should consider 2 separate sets of equations. 

That means in case of adiabatic flow, 2 continuity equations and 2 momentum equations and 

whenever we are having heat transfer into consideration we will be having 2 energy equations 

also. But in drift flux model we are actually considering not only the individual phases, we are 

actually considering the relative motion.  

 

So here what we consider once again we give mixture kind of assumption over here for both the 

phases. And we are interested in gas relative velocity. So altogether you will be finding out that 

we are having in case of adiabatic situation, 1 mixture continuity, 1 mixture momentum equation 

as well as we will be having gas relative velocity equation. So if you consider both the phases 

separately, you will be having altogether 4 equations, 2 continuity and 2 momentum equations. 

 

But here in drift flux model as we are only considering the relative velocity between the gas and 

liquid. We will be having 3 equations the mixture momentum equation, mixture continuity 

equation and gas relative velocity equation. If heat transfer comes into picture, we will be having 

1 mixture heat transfer equation also. So let us see that drift flux model where it applies.  
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Basically, we will be finding out drift flux model is applicable for bubbly flow, slug flow and 

droplet flow. So, wherever interface is not clearly distinct just like your bubbly flow and droplet 

flow and its immediate transition slug flow. We will be finding out drift flux model is applicable. 



Here already I have told that relative motion between the phases is considered. Now these 3 

equations already we have shown in the first lecture these are very important equations. So you 

can find out jgf, this is the drift velocity.  

 

So you can find out drift velocity is nothing alpha (ug- j). So this already we have shown you the 

definition this is actually how gas velocity is drifting from the overall relative velocity. So you 

can find out jgf=alpha (ug -j). Then we have also shown you the proof of next 2 equations in the 

first lecture. jgf is equals to alpha*jf +(1- alpha) jg. This comes from the first equation once 

again.  

 

Here you are having alpha into ug if you try to write down ug in terms of jg, you will be finding 

out from this equation we are getting this 1. On the other hand if you start from this equation and 

try to reduce this j in terms of the individual phase velocities ug and uf, you will be finding out 

we are coming to this third equation. So those things we have already shown you in the first 

lecture.  

 

Let in this lecture we will be taking the clue from the first lecture and these 3 equations we will 

be using jgf = alpha (ug – j), jgf = -alpha*jf + (1- alpha) jg. By the way this jf and jg these are 

gas and liquid superficial velocities and jgf = alpha (1-alpha)ugf where, ugf is the relative 

velocity between the phases okay. Next let us try to see a schematic of situation where drift flux 

model can be applicable. So you see what I have shown you over here this is the pipeline having 

variable cross sections.  
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We can find out this is smaller cross section compared to this 1. So we are having variable cross 

section and to show the relative velocities between the phases we have considered both phases 

are separate. So you see at the bottom we have given liquid phase and at the top we have given 

the gaseous phase. So liquid phase is signifying f and gaseous gas phase is denoted by g. So you 

can find out that the as the flow is flowing from left to right.  

 

So we are having the mass of the liquid as Rho f uf and Af at the entry and mass for the gas is 

Rho g ug and Ag at the entry right.  On the exit side you can find out Rho f uf and Af at z + delta 

z where, we have considered delta z is actually the length of the pipeline. So this is some sort of 

indefinite decimal length. We have considered for finite length. We have to go for integration of 

this one and on the other hand side for the gas ug Rho g Ag at z + delta z.  

 

To make it generalized, we have considered that the pipeline is making angel theta with a 

horizontal direction. Apart from that as we are having gravity in the downward direction, you 

will be finding out that we are having mass over here. Rho g alpha a *delta z for the liquid inside 

that pipeline and sorry, inside the pipeline for gas. And Rho f (1 - alpha a) delta z for the liquid 

in the downward side of the pipeline.  

 

Now as we are considering the relative velocity between the phases, this interfacial force will be 

very important over here in drift flux model. You will be finding out the 2 interfacial forces. We 



have given a phi for the liquid side and –a phi for the gaseous side. Apart from that if there is sort 

of mass transfer that means buoyancy, (()) 7:36 if there is some sort of mass transfer, we have 

also given mass transfer gamma over here which is actually occurring due to this interfacial area.  

 

So this interfacial area is Ai and the delta z is the length. So you can find out that gamma *Ai * 

delta z will be mass transfer. We have also considered in this module the wall friction force. So 

you can find out the gaseous phase is actually finding out wall friction force Fwg, on the other 

hand liquid side is getting Fwf okay.  

 

So with this idea let us now try to see how the continuity and momentum equation, mixture 

continuity and momentum equation can be constituted okay. Next let us try to see the individual 

components first. So here I have written the continuity equation for the liquid side.  

(Refer Slide Time: 08:30) 

 

So you can find out this the unsteady part which we have already seen in our fluid mechanics. So 

this is the unsteady part delt/ delt t [Rho f (1- alpha)] and then we are having the inertia part 1/A 

delt/delt z [A Rho f (1- alpha)uf. So (1 –alpha) is coming into picture as we considering the 

liquid part. Now this - gamma is actually due to the mass transfer. So some liquid is converting 

into vapor due to phase change.  

 



We have considered over here to become generalized. So that is why minus gamma we have 

added as the source term. On the other hand, in the gaseous phase momentum equation it will be 

taking similar form of the liquid. So in place only (1-alpha), we have to consider alpha because 

we know that alpha will be associated with the gaseous phase.  

 

So this is first unsteady part and then we are having inertia part 1 /A delt /delt z [A Rho g alpha 

*ug] and yes, gas has actually acquired mass due to phase change. So we will be finding out 

gamma we have kept over here as positive. So you see this is actually giving the mass balance 

because these 2 will be canceling each other. Now if we try to add these 2 equations okay, if we 

try to add then we will be finding out both these unsteady parts can be added.  

 

So delt/ delt t [Rho f (1 –alpha) + Rho g*alpha which is nothing but we know Rho bar or average 

density. So this also we have derived in case of your homogenous flow equation if you 

remember. So there also we have shown that Rho f (1 – alpha) + Rho g *alpha will be Rho bar, 

this also we have proved over there. So we are considering after adding we are having the 

unsteady part as delt Rho bar/delt t right.  

 

On the other hand side for the inertia part you see, we are having 1/ A delt/delt z of now here if 

we take a common that it will be Rho f(1- alpha) uf + Rho g *alpha *ug. So that is nothing but 

your G okay. So here we can right down the mixture momentum, mixture mass conservation 

equation as delt Rho bar/ delt t + 1/ A delt/ delt z (AG) is = 0 because both the sources terms will 

be canceling from each other okay.  

 

So this is the mixture continuity equation. Already I have shown you over here what is Rho bar 

and G.  
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Next let us try to see the momentum conservation equation. In case of momentum conservation 

equation, you see first I have written for liquid as well as gas. So liquid, let me explain the terms 

once again. So first term is due to the unsteady behavior. So delt/ delt t[Rho f (1– alpha)uf and 

then we are having inertia term 1 /A delt/ delt z [A Rho f (1- alpha) u f squared. So this is 

basically the inertia.  

 

We can also see from the figure that we are having some force over here okay. gamma *Ai 

*delta z. So those components will be coming over here. gamma into ui where, ui is the 

interfacial velocity okay. Then we are having the force due to pressure drop – (1 – alpha) delt p 

/delt z. We are also having the frictional force in the negative direction this is the force including 

the buoyancies.  

 

So Rho f*g (1 –alpha) sin theta because the pipe is making theta degree angle with the horizontal 

and then we have included 2 terms, this is interfacial force Fi and then virtual mass force Fvm 

okay. So this is the liquid momentum equations. Similarly, we can write down the gas 

momentum equation delt/ delt t (Rho g alpha*ug). So this first term is actually your unsteady 

term and then we are having 1/A delt/ delt z[ A Rho g alpha* ug square].  

 

So this is the gaseous inertia. We are having –(gamma *ui). You see here in liquid we have given 

+(gamma* ui), here it will be –( gamma * ui). So due to mass transfer whatever velocity we 



obtained that is ui, so this is coming as positive over here in liquid term and coming as negative 

in the gaseous term. Right on other hand side we are having the pressure drop okay.  

 

And the wall friction force due to gaseous momentum Fwg, also we are having the buoyancy 

component Rho g g alpha* sin theta and these 2 components the interfacial force and virtual 

mass force but in the opposite sign as we have seen in case of the liquid so - Fi + Fvm. Now once 

again just like here continuity equation we are going to add it over here. So if we add you, will 

be finding out all these terms involving opposite signs in both these equations will be canceling 

out.  

 

Only in the first term you see delt/delt t if we take common then we will be having Rho g alpha 

ug + Rho f (1- alpha) uf this is nothing but your G which we have shown you in the previous 

slide.  
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So G is nothing but Rho f (1 – alpha)* uf + Rho g *alpha *ug okay. So we will be writing down 

this term, unsteady term as delt g/delt t right. Then in the second term we are having 1/ A delt/ 

delt z of here we are getting 1/A delt/delt z[A Rho f( 1- alpha) uf square + A Rho g alpha *ug 

square. Now here we need to do little bit of derivation. So let us see how this term actually 

changes into the mixture momentum equation.  

(Refer Slide Time: 14:07) 



 

So we are having Af Rho f and then (1-alpha) * uf square okay. + Ag Rho g alpha* ug square 

right. So this term, what we can do over here, say Rho f (1-alpha) whole square uf square* Af 

/Rho f (1- alpha) + on the other hand side you can find out we are having Ag Rho g square alpha 

square ug square/Rho g *alpha right. Now you see over here, we can write down this Af (1 – 

alpha) uf. This is nothing but your Gf okay divided by Rho f (1- alpha).  

 

Also we will be finding out okay. 1 probably this Fs will not be there so this is A okay. So A, we 

can take common okay and here we will be having Gg whole square / Rhog *alpha okay. Now 

you see this Gf can be written as G square *(1 –x) whole square / Rho f (1 –alpha) and here this 

one can be written as G square* x square from the definition of quality, mass quality Rho g* 

alpha okay multiplied by A.  

 

So you can find out, we can take Ag square common and we can we can define this (1-x) whole 

square / Rho f (1 – alpha) + x square* Rho g * alpha as a new term. So what we have done over 

here, you see we have called Rho dashed as (1- x) whole square / Rho f (1- alpha) + x square / 

Rho g * alpha to the power whole to the power 1 reciprocal of that as Rho dashed.  So ultimately 

you will be getting Ag square which is this term Ag square which is this term and then divided 

by Rho.  

 

 



 

That means if I consider this 1 as reciprocal of Rho so then you will be finding out Ag square by 

Rho dashed over here in our mixture momentum equation. So these 2 terms actually gives us 1 

/A delt/ delt z(A *G square/ Rho dashed right. Next in the right hand side, let us see in the right 

hand side if you see, you will be finding out here we are having delt p/ delt z (1- alpha).  

 

Here we are having alpha* delt p/ delt z which will be canceling out each other and will be 

finding out – ( delt p /delt t) will be remaining right. Similarly here, what we have done the 

frictional force Fwf for the liquid phase and Fwg for gaseous phase. We have added up and we 

have written Fw overall frictional force in the mixture momentum equation for the buoyancy 

force also.  

 

Same thing will happen as we have seen in case of the pressure force Rho f*Rho g (1-alpha) sin 

theta and here Rho g* g alpha into sin theta if we add then will be finding out Rho bar where, 

Rho bar definition already I have shown in the previous slide Rho bar is Rho f (1 –alpha) + z 

Rho g *alpha. So we will be finding out that these 2 term if we add up, we will be getting Rho 

bar *G * sin theta right.  

 

So these become my mixture momentum equation. So we are talking about drift flux model. So 

here the mixture continuity equation and mixture momentum equation will be coming into 

picture. Now apart from that as I have mention that we will be also considering the third equation 

because the relative velocity comes into picture. Basically, we take in reflex model the gas 

relative velocity.  
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So you see here the gas relative velocity is Ugj dashed okay. So which we call mean transport 

drift velocity okay. Now this mean transport drift velocity is actually given by Ishii as Ugj + C0 -

1* j, this is actually area averaged of the j right. Now this mean transport drift velocity which is 

very essential for the drift flux calculation is dependent on 2 parameters which one is Ugj and c0 

okay.  

 

What are these Ugj? Let us see over here Ugj is actually gas drift velocity or local slip. So how 

much the gaseous phase actually slipping from the overall averaged velocity okay. So that is Ugj 

equals to this symbol using this symbol, whatever I have done that is actually area average 

quantity. So area average quantity of alpha* Ug - j divided by area averaged of alpha. So this is 

the definition of Ugj.  

 

On the other hand c0 which is nothing but 2 phase distribution coefficient. So that definition I 

can write down c0 is equals to area average of alpha * j divided by area average of alpha and 

area average of j right. So once I know this quantities that what is the area averaged alpha* j, 

what is the area averaged of alpha, area averaged of j area average quantity. This one we can find 

out what is C0 and Ugj.  

 

Once we get Ugj and C0, we can put it over here to get the mean transport drift velocity. So this 

mean transport drift velocity will be very important. This will be signifying that what is the 



relative velocity between the phases specifically for the gaseous one. Now there are several 

correlations for finding out this C0 and Ugj. Major correlation has been proposed Ishii. So here 

Ishii has given in 1977 that what is the value of C0.  

 

He has given this empirical correlation 1.2- .2 root over of Rho g / Rho f where, Rho g and Rho f 

are the gaseous phase and liquid phase densities into 1 -e the power -18 of area averaged of alpha 

or void fraction. Now for Ujg, we are having several correlations. Once again now Ishii has 

given the flow regime based correlations. So for bubbly flow he has mentioned Ugj = root 2 

(alpha*g*delta Rho/Rho f square) where, delta Rho is nothing but the Rho f- Rho g to the power 

1 /4 *1 -area averaged alpha to the power 1.75.  

 

Similarly for slug flow, he has given this type of equation right. So using this type of equation 

you can find out C0 and Ugj and you can put it over here to get the mean transport drift velocity 

okay. Now let us try to see that how this drift flux module is helpful. So for finding out the 

configurations inside the pipeline. So here we will take the help of 2 equations which I have 

derived in the first class, first lecture.  
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So you can find out first equation which I will be using jgf = alpha (1 – alpha) ugf okay. Now if 

we talk about bubbly flow situation that means lots of bubbles are there. We will be finding out 

that Ugj is actually a function of velocity of free rising bubble okay. So you can write down that 



Ugf is actually u infinity* (1-alpha) to the power b okay. So you see here alpha is the void 

fraction, u alpha is the free rising bubble velocity and b is actually a constant which values in 

between 1 to 2.  

 

So depending on the fluid parameters and the flow velocities, this b parameter actually varies but 

its range will be in between 1 to 2. So if I put this Ugf in this equation jgf = alpha *(1-alpha) 

Ugf. We will be getting finally jgf = u infinity *alpha (1–alpha) to the power c where, c is 

nothing but b + 1 okay. So that means the range of c may be in between 2 to 3 as b was in 

between 1 to 2. Now this is very important equation.  

 

You see here if I try to find out what is the value of jgf, whenever alpha is 0 and 1 you will be 

getting that at alpha = 0 and 1. jgf goes to 0. So obviously, the nature of the curve if I try to plot 

in between jgf and alpha, this will be something like this getting 0 at 0 getting 0 at 1 right. So 

this is the typical curve between jgf and alpha. If I consider that free rising bubble is there in 

stagnant liquid okay. Now let us see the other extent.  

 

So if we are having jgf = -alpha*jf + (1 –alpha) jg. So this equation we also we have proved in 

the first lecture. So you can find out from this lecture we are getting. At alpha = 0, jgf becomes 

jg and alpha = 1 if you put it over here then we will be getting jgf = - jf. Now if I try to plot it 

over here once again in jgf and alpha plane. Now remember these 2 things are not similar 

because this is for free rising bubble, this is not for rising bubble.  

 

This can be for any other configurations. So here we get you see if alpha is 0 then we are getting 

jgf = jg. So in the positive let us this is the jg okay and whenever alpha = 1, jgf will come 

negative of the velocity magnitude for the liquid phase. So negative side we have come and then 

you see this is –jf. We have notified over here so if you try to join this 2 then we will be getting 

this straight line for jgf and alpha equations.  

 

Now these 2 curves are very, very helpful for finding out the operating point in case of the 

pipeline when we are having bubbly flow or slug flow into consideration okay. So let us try to 

see what happen.  



So first I have shown you adiabatic vertical pipe. If you see in case of adiabatic vertical pipe, I 

have here plotted jgf verses alpha already this curve.  
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You know we have shown you in the previous slide. So it gets 0 over here. At alpha = 0 and 

alpha = 1 right. Now let us take several cases. So first one we will be taking case A, which is 

both the phases are having downward flow. So you if both the phases are having downward flow 

that means both jg and jf they are negative. So if they are negative then will be finding out at 

alpha = 0. Negative sides we need to go for jgf = jg so that will be becoming minus jg1 right.  

 

So this is the operating point whenever alpha = 0. On the other hand whenever we are going for 

alpha = 1 that is – (jf) and jf is already negative so it will be coming positive side. So you will 

get the operating point somewhat in the positive side let us say this 1. So if you join this line 

between these 2 points, so this will be might lying whenever I have plotted between jgf and 

alpha.  

 

Now the operating point will be the intersection between the curve and the line whatever we 

have found out so this is my operating point OA. So in this operating point at this alpha the 

adiabatic vertical pipeline can stay. So we can find out operating point is OA. Continuing like 

this, let us take the second case we are having gas downward and liquid upward. So if gas is 

downward once again, at alpha= 0 the jgf will become –jg.  



 

So we have taken the same point for example okay. So this is my alpha = 0 point and alpha = 1 

that becomes – jf. Now jf liquid velocity is upward. So it will become positive okay. So positive 

multiplied by minus. So it will become negative. So we will be having operating point at alpha = 

1. Somewhat in the downwards side let us say this point okay. So if we join between this point 

and this point this is my operating line.  

 

Now interestingly you see the curve has never intersected this dotted line. So that means in this 

case you will find out there is no operating point. So you will get this type of flow gas downward 

movement and liquid upward movement is never possible okay. Next let us see Case C. So in 

case C both the phases we have taken upward. So if both the phases are upward so that means jg 

and jf both the phases upward so if jg is upward then I will be finding out at alpha = 0 we have to 

movie in the upwards side.  

 

So let us take that point as this one jg2 okay. In the upward side at alpha = 0 and as liquid is in 

the downward side let us take the points somewhere over here okay. With a negative liquid 

velocity because negative into positive it becomes negative. So this is the operating points for 

case C right. So if we join between these 2 points then you will be getting operating point is over 

here. So this is the operating point for both the phases upward motion okay.  

 

Now continuing like this, if we will go for gas upward and liquid downward, so gas upward 

liquid downward means obviously the gaseous points will be lies over here and liquid downward 

point will becoming somewhere over here okay because liquid downward means negative 

velocity. Negative it becomes positive. So it is comes somewhere over here. So you can find out 

if you join these 2, we are getting 2 points as operating point OD1 and OD2.  

 

So these 2 are actually called conjugate states or kinematic shock. So it will be changing the 

position from 1 place to another place in this cases right. Next Case E, gas upward and liquid 

downward but at special case let us say the gas the liquid velocity is taking such a fashion that 

this line between joining between jg2 and jfe2. We are getting such a fashion that this line is 

getting tangent of this curve. So this point we can call that starting from kinematic shocks.  



 

It is converting into a single operating point this is actually called a flooding limit. So beyond 

this we will be having always flooding by some liquid phase okay. Next Case F, high upward gas 

and downward liquid both the velocities are very high. So you can find out gas velocity lies 

somewhere over here and liquid velocity is further up. You will be finding out there is no 

operating point between this curve and the line okay.  

 

So you will be finding out in this case we are having no operating point and this actually is a 

typical example of flooding. Now you see here in the Case E is a typical point where this line is 

actually the tangent of this curve. Now if we take different gaseous velocities and liquid 

velocities and try to draw this operating point OE okay, then we will be finding out that this 

curve whatever we have drawn from this jgf = u alpha* alpha (1- alpha) to the power c, is 

actually the low cause of all the flooding limits okay.  
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You have to do the experiments for different liquid velocity and gas velocities that means jgf = 

jf, jg at alpha = 0 and equals to -jf at alpha = 1. And we can find out this type of flooding limit 

points and if we find out the low cause of this flooding limit that will be the curve right. Next let 

us try to see another important case which is called pool boiling crisis.  

 



This is having heat transfer into consideration. So let us try to find out the situation over here. So 

in case of nucleate boiling already we have leaned heat transfer. So we know that there will be a 

surface through which will be applying the heat flux.  
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So as we are having the heat flux so we can find out the lots of bubbles will be generated over 

here. Bubbles will be moving up and liquid will be coming down for replenishment right. So we 

are having 2 different situations over here bubble velocity up and liquid velocity down. So we 

have taken jf, jv and jl into consideration. Now this jv is signifying the vapor gaseous phase. We 

have written here as jg and liquid phase jl we have written here as gf.  

 

Now we know that jg can be written as q`/ ifg which is nothing but latent heat into Rho g. 

Similarly, jf can be written as - q dot ifg * Rho a because these 2 are not having similar 

magnitude on as well as direction okay. Now we know already this equation. So what we can do, 

we can put the value of jf and jg over here. We get equation like this jfg = q dot ifg *Rho g (1 –

alpha)* alpha* Rho g / Rho f.  

 

Now if the density ratios are very high so Rho f is very, very higher compare to Rho g. Then I 

can neglect this term. So I will be getting jgf = qdot / ifg *qg (1- alpha) right. Already I know 

that for this type of bubble free rising bubble jgf =u alpha *alpha (1-alpha) to the power c 

whereas c is nothing but in between 2 to 3. So what we can do? We can equate this jgf and this 



jgf and will be finding this equation. Now to get the pool boiling crisis what we need to do? We 

need to maximize the heat flux for a given alpha.  

 

So delt q `/ delt alpha = 0. Once you do delt q` /delt alpha of this equation, you will be getting 

optimum point alpha will be actually 1/ c from here. And using this we can have q dot c / ifg * 

Rho g = u infinity* 1/ c (1-1) / c to the power of c-1 which is equals to k*u infinity whereas this 

term is actually a constant we can take this 1 as k right.  Now if we try to find out the values of k, 

will be finding out that for c = 2 because c, the c limit is between 2 to 3. For c = 2, k = 1 /4 and 

for c = 3, k = 4 /27. So k will be varying in between 4 / 4 /27. 
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Then to obtain the final value of the critical heat flux let us balance the drag force and buoyancy. 

So if you balance the drag force and buoyancy so you will be getting this is the drag force cd *pi 

/ pi r square * Rho f *alpha square/ 2. And this is the buoyancy 4/ 3 pi rq with the volume 

multiplied by density ratio into g. So you will be getting the terminal velocity u alpha in this 

fashion where r is also there.  

 

Now to obtain the r at which the bubble has released from the surface, we will be balancing 

surface tension and buoyancy. So this is the surface tension force 2 pi r*sigma and buoyancy 

force, already we have discussed in the last one. So here from you will be getting the departure 



radius of the bubble. Once you put these departure radius of the bubble over here, we will be 

getting u alpha and if we put the value of u alpha over here.  

 

In this critical heat flux term we will be getting the final expression for the critical heat flux for 

departure from the nucleate boiling. So here we have seen that using the drift flux model how we 

can predict the critical heat flux for drift flux model okay. To summarize what we have done, we 

have drive the continuity and momentum equation applicable for drift flux model. Defined 2 

phase distribution coefficients and local slip for different flow regimes.  
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We have also analyzed different operating point for gas liquid Two Phase Flow and finally we 

have shown you the critical heat flux for departure from nucleate boiling. Let us have some 

practice. So we are having 3 questions over here.  
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So drift flux model considers local slip between the phases. So you answer in between true and 

false obviously the correct answer will be true always. Next at alpha equal to 0 drift flux will be 

jgf will be 4 options were having – jg, jg, jf, - jf the answer is jg. Then for gas upward and liquid 

downward flow in a pipe we are having 4 options, no operating point exist, 2 operating point 

exist, 1 operating point exist and flooding can happen.  

 

So which is the correct option? So both these things can happen 2 operating point can exist for a 

particular velocity and flooding can happen at higher liquid velocities. So with this I will be 

ending this lecture. Thank you. 


