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Solid Mechanics 

Hi, this is Dr. S. P. Harsha from mechanical and industrial engineering department, IIT 

Roorkee. I am going to present today as lecture four of the topic of this, you know, like 

the strength of materials. In that you see, we are going to discuss about more of, you 

know, like the stress components, that, which we have discussed in the previous cases. 

In the previous lectures we found, that if you want to describe the general state of stress 

in which you see, you know, like if, like, that there are total nine number of components 

were there including you know, like the three normal stress components and the six shear 

stress components. 

So, if we have a regular structure like unit cube or parallel pipe, then it is pretty easy to 

analyze those things because you see, you know, like the three stresses are there, like 

sigma xx, sigma yy, sigma zz. And then, you see, we have six different components, like 

tau xy, tau yz, tau xz and the three remaining components. Mean to say, that you see, you 

know, if you want to describe the stress for an object or a component, then we need at 

least nine components. That is what you see, you know, like we, you know, like found, 

that we need, you know, like the tensile stress to describe the stress for a point. So, you 

see, you know, like this part, which we have discussed. 

So, in this lecture the basic thing is, that if you do not have that kind of, you know, like 

the structure, means if we have, you know, like any radial structure in which even, you 

know, like we discussed, that the Cartesian coordinates were there or the cylindrical 

coordinates are there. 
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But if you are talking about a radial structure in which you see, if you are taking any 

point q or you see, you know, like the points are there in, that if you want to check the 

stress components, then how we can, or if we have an oblique plane means, that if you 

cut the sections not exactly perpendicular to x axis, perpendicular to y axis or 

perpendicular to z axis where you see, we define the stresses, if it is not there, then what 

is the stress. And how we can relate that stress to the main stress, like sigma x or tau yx 

or tau xy or all those components. 

So, this kind of, you know, like the information, which we are going to dig, you know, 

like digging from this chapter. So, first of all we, we are starting from the analysis of 

stresses in which this diagram is shown. 

In this diagram, you see, this we have, you see, you know, like the component, any 

machine component, which you see on our ((Refer Time: 02:46)), these forces are there. 

So, these arrows are showing, that where the force application is there. 

And as we discussed, that the force is always defined by the point of application. So, you 

see here, these are the point of application where the forces are acting and this is the q. q 

is the origin, you see, you know like, or we can say, that this is the point where we just 

want to check it out, that what the stress components are there due to these, you know, 

like the forces. And you see, you know, like the stresses are nothing but the intensity of 

resistive forces. So, how this stress distribution is there all across this domain? 



So, this is our domain, which is neither you know, like parallel or perpendicular to x, y or 

z axis, respectively. So, consider a point q in some sort of the structure, remember this, 

like you know, like as shown in this figure. Assuming, that at a point, you know, like we 

have q in which a plane, you know, like state of stress exist. That means, you see, now 

we are going to consider all those stresses, stress components, which are you know, like 

existing at this particular state. So, the state of stress is described by the parameters 

sigma x, sigma y and tau xy if you are considering the stresses is in x as well as the y 

component. So, this is the one, you know, like the figure, which we want to analyze 

those things. 

So, if you go again back to the concepts, then you will found, that this, if we are talking 

about x-y plane, then what kind of stress distribution are there. So, these three stress 

components, sigma x, sigma y and tau xy are the dominating, dominating stresses and 

these stresses are always, you know, like distributing all across, you know, like the 

structure if you are considering the x-y plane. 
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So, this diagram gives you a clear cut picture, that actually if we have this x-y plane, 

where you see this y and x is there. So, you know, like this diagram shows you. So, in 

this particular, you know, like picture we can easily, you know, like describes that. 

We have sigma x all along this x axis. So, this is sigma x, which is of the nature of the 

tensile stresses and we have the sigma y, which is also of the tensile stresses, tensile 



stresses. And that is why, you see, we are considering, that this is a positive stress and 

remaining part, you see, like tau xy or tau yx we are considering here, that this is the tau 

xy, you see here, which tries to rotate this object in a clockwise direction. 

So, we need, if you want to maintain the equilibrium of this object, then we need the 

complimentary stresses. So, they are coming from this domain. So, this is in this 

direction and these directions, these two, you know, like this direction shows, that the 

stresses are there, the shear stresses are there, tau yx. And they are always exactly equal 

and opposite to this stress component. 

And that is why, you see, we can maintain the equilibrium within these objects. That is 

what you see, you know, like if you want to consider, that you see, the stresses are being 

formed because of the force application. And if under this stress or under the force 

application if this object is well maintained, you know, like the equilibrium position, it is 

only possible when all the summation of forces in x direction, y direction as well as the z 

directions is 0. 

Similarly, if we consider, that if we have an origin point O, let us say here, and if you are 

taking moment about this point O, either by, this is the shear stress or by this shear stress 

or by this shear or by this shear stress, then we can say, that yeah, from all the four 

components of the shear stress, whatever the moments are there about this point O, they 

must be equal to 0. If we consider those things, then we can say, that yeah, this is well 

maintained, well equilibrium structure under the action of these forces, under these three 

stress components. 
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So, this is a common way to, you know, like common way of representing the stresses 

for x-y plane component because you see, if we are considering the three dimensional, 

then we need to consider, as I told you, that we need to consider all nine components, the 

triaxial form of these in which all three axis are mutually perpendicular. But here, only 

we are considering the two axis, x and y, where these three stresses are there because of 

the symmetricity of the object 

We can say, that it is pretty easy to describe all the state of stress by, with the using of 

these stresses it must be realized, that the material is unaware of what we have, called the 

x and y axis. 

So, whatever the material is there, irrespective of whether it is, you know, like this 

stainless steel, high carbon steel, high speed steel or any ductile material, it is 

irrespective of that, that what the stress are there. If you are saying, that it is a ductile 

material or it is a brittle material, like you see the cast iron or any hard material, we can 

say, that these are the stresses, which are always being formed if it is representing of this 

nature. 

Means, you see, if you are apply those, you see, you know, like the stresses, like the 

normal stress component or we, we are saying that the shear stress component, then they 

must be there within those objects. They are well settled within this, those objects if 

these forces are their irrespective of what the material is. So, material is unaware of all 



those kind of these axis. The material has to resist the loads irrespective of less of how 

we wish to like give the name or we can say, whether they are horizontal, vertical or 

otherwise, you know, like we can say the material will even fail when the stresses exit 

beyond a permissible value. 

So, material provide the resistance based on how much hardness is there, how much 

stiffness is there. So, it depends on, you see, that what is the limit of the loads are there 

or what is the limit of the stresses are there, the normal stress or the shear stress. So, this 

is the key feature; this is the inherent property of the material. But it is irrespective of 

whether it is a, it is going in x direction and y direction or z direction. 

So, this is a real important phenomena about the stresses, that actually though the 

stresses, whether the normal stress or the shear stress in the any of the direction, they are 

the function of the material. But the axis are not, you see, you know, like absolutely 

depends on that what material is. So, you see here, if you are talking about any ductile 

material, then we have to be very, you know, like careful, that actually what is the stress 

limits are. 

So, once you see, you define the material absolutely, you see the stress levels are 

coming, that ok, you can, we can go like, you see, if we have the normal mild steel, then 

we are always using, you see, 220 mega Pascal. That means, you see, this is the limiting 

value. Under that, you see, if whether we can go for the elastic deformation and if we are 

going beyond that, then we can say, we are going for the plastic deformation and that 

you see, you know, like for those limits we can define by the modulus of elasticity and 

other modulus. 

So, there are, you see, lot many coefficients are there based on, which material you are 

using. But these stresses are absolutely the function of these material. But the material is, 

whatever the, this is a normal stress and shear stresses along these axis, they are not the 

function of the material itself. 
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Thus, you see, the fundamental problem in any of the engineering design, because we are 

using all those kind of material and the different kind of loadings are there in that. So, 

this fundamental problem in the engineering design is to determine the maximum normal 

stress and the maximum shear stress at, at any particular point in a body. That means, 

you see, we, we do not know, that actually you see, if you are applying that load and 

somewhere, you see, the shear stresses are maximum, normal stresses are not maximum, 

whether, and whether this material will sustain or it will fail. 

So, we have to be very careful or we need to design that component, whether this can 

sustain under these, these values of the stresses or under these types of stresses or not. 

So, the first aim in any of the component design is to know, that whether, what is the 

maximum stress and at what point these stresses are exerting or this, you know, like 

executing within those object. 

And there is no reason to believe appropriately with that sigma x or sigma y or tau xy or 

the maximum value, you see. It is not, that actually they are somewhat, you see, they 

have some value because if you are talking about sigma x or sigma y, they are simply, 

you see, the normal stress components. So, irrespective of whether we are pulling or 

compression, they are simply the tensile or compressive forces divided by the effective 

area. 



But if you are talking about the tau xy, even it is, you see, you know like this is nothing 

but the, as per the plane like tau xy is there. So, if you are considering this tau, this x and 

y plane, so these forces are parallel to the axis, but they are not having the maximum 

value. So, you see we need to be, you know, like chosen the maximum value out of 

which. So, rather the maximum stresses may associate themselves with other planes 

located at q. Thus it becomes imperative to determine the values of sigma q as well as 

tau q. 

So, you see, once we know, that ok, now here in this particular object or whatever the 

component, we have a point where the maximum stresses can occur due to the variety of 

loading. 

Then, our main focus is to calculate, that actually which stress is maximum first and 

what is the value or what is limiting value based on that, you see, you know, like we can 

you know, like design the factor of safety. And we can, you know, like we just decide the 

factor of safety and corresponding designs are there of the component. 

So, the conclusion of whole discussion says, that actually, though stress is one point to 

calculate within the structure, but the distribution stresses are very, very important. And 

we must know, that what is the location of the maximum and the minimum stresses are 

there, the normal stresses as well as the shear stresses, so that we can appropriately 

design the engineering component, which are under the influence of various forces. 

So, here, you see, now if you are talking about the shear stress, because you just want to 

know, that actually where the shear stress are there. And if we have a normal plane, then 

whether this plane can sustain under the maximum and minimum shear stresses or not. 
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So, here you see you know like this Plane says that actually the force p if you are talking 

about these. So, these are you see the parallel you know like the planes are there and this 

force p is exerting in this direction and we have a datum over which you see there is a 

force which is going towards the this direction 

So, if you see the nature of force then we found that these forces are the parallel forces 

along this plane 

So, we have there is a plane or we can say the central axis and LM of this object and 

whatever the forces are applying here they are simply parallel to these things 

And that is why we can say that whatever the stresses which are inducing due to the 

application of these forces they are the shear stresses and they, they are very much you 

know like we can say well established things are there within these regions 

So, we must know that actually at which region within this object the Shear stresses are 

maximum so that we can easily design those components by taking the different value of 

the factor of safety. 



(Refer Slide Time: 13:17) 

 

So, if the applied load P consists of the two equal and opposite parallel forces, as we 

discussed in the previous case, not in the same line because if the same line is there, then 

definitely, it is the axial force, we can say. And these are, due to these forces we have the 

normal stresses. But here as we found, that though they are the parallel and opposite 

forces, but they are not exactly on the same axis. So, we have the shear stress. 

Then, there is a, you know, like tendency of, for one part of the body or another part to 

slide over the another and that is why, you see, the shearing is there or shear, shear from 

the other part across any section LM. 

So, obviously, you see, this is the great tendency of the shear stresses, that actually they 

are always making the shear plane and amongst the central line or we can say, the neutral 

axis. And neutral axis is always, you see, the axis where this centroid is existing or we 

can say, where all layers are to be well settled or we have well equilibrium within this 

object. 

So, as we discussed about the shear stresses, they are always set up in the object, in the 

parallel planes. So, because of these, you know, like the loads we found, that the shear 

stresses are there and they have a tendency to make the shear across this section and that 

section we are telling in this particular figure is LM section. 



If the cross-section at this section LM, you know, like major parallel to the load, which is 

A, then we can say, that average value of shear stress is the load application, which is 

you see, the inducing shear stresses divided by A or we can say, P is nothing but the 

shear force or shear load. The shear stress, you know, like, is tangential to the area or 

which it acts. So, this is the great, you know, like the meaning of the shear stresses 

because as we have seen, that actually as far the normal stress component is concerned, 

they are, you see, always at parallel to the this surface, the area matter concerned. 

But here, you see, whatever the area, which we are concerning or which these stresses 

are being set up or this loads are there, these are always, you see, the tangential to the 

whatever the these stresses are coming. They are always tangential to the area of 

concern. 

So, which we need to very careful, that actually, once we, we are, just if we want to find 

out, that where is the maximum stresses, what is the minimum stress are there, then we, 

we have to very careful, that actually what is the area under which these tangential, you 

know, like forces are the stress, are coming within those object. 
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So, if the shear stress varies from point to point, as you see, you know, like we discussed 

in the previous lectures, that actually if we have irregular geometry where the forces are 

acting, but the forces are not uniformly distributed, because the different, different forces 

are there. 



Like, if you have structure at some point, you see, some 10, 20, 30 Newton are there, at 

some point it is 50 Newton is there and it is of different nature. Some, some forces are of 

tensile nature and some forces are having the compressive nature. If this kind of, you 

know, like the structure is there and if you want to find it out the shear stresses of, you 

know, like within this structure, then as, as I told you, actually we need to discretize the 

domain into the different segments of the forces. 

And then, once we know, that now these are the, you know, like for, if you have some 7, 

10 segments what we need to do here? We need to calculate the shear stresses for 

individual segments, like segment one to segment ten and then, corresponding we need 

to integrate those things. 

So, if, we have well defined regions, then there is no problem, you see, because the 

uniform, you know, like the structure is there and then the uniformly distributed forces 

are there. But if we do not have that kind of structure, then what we need to do? We need 

to define, that actually where is this area, of the area, the area is less or area is more or 

where is the stress concentration is there. If you see more stress concentration, then we 

need to take care of the, you know, like by taking more factor of safety and we need to 

design accordingly 

So, if you are defining the shear stresses for those kind of regions where regularities are 

there, how we can define? We just define limit for individual regions and we are defining 

the delta P by delta F for that particular regions and then sum up to get the final value of 

the shear stress. 
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So, this is one meaning. But you see, you know, like if you are discussing about the 

general shear stresses, then we found, that always there is a tendency of the shear stress 

to move the object in one of the direction. 

But if we want to maintain, as we discussed in the previous section, only that, actually if 

you want to maintain the equilibrium of an object, then we always need an equal and 

opposite stresses and those stresses are known as the complementary stresses. 

So, if you see this figure, then we have the figure, you see, on you know, like the plane 

AB or CD, there is a stress component on this and this stress components if we are 

denoting by sigma or this tau, then these things are there. And these, you know, like the 

dash is showing, that the shear plane is, this is my shear plane on which this stresses are 

occurring. 

So, if I am saying, that if I have ABCD, which is a rectangular element, which has the, 

you know, like the side of X, Y, Z, all these three mutually perpendicular sides to the 

plane of, you know, like the paper, then we can say, that the shear is, you know, like 

shear stresses are existing at this AB as well as the CD plane. 

So, now you see, if we, if we exactly, you know, like figure out this particular problem, 

then we found, that this shear stresses always tries to tend this object towards the 

clockwise direction. You see, here you know, like this shear stress always influencing 



this segment of element just go towards this direction while this one is also, just tries to, 

you know, like tending this elements towards this direction, this CD portion. 

So, that means, you see, you know, like if we combine both the effect, then we, you 

know, like we observed, that there is a tendency of this element under the influence of 

this shear stress, which is moving towards the clockwise directions. So, but if we want to 

maintain the equilibrium side, then we need the equal and opposite at these two phases, 

like at AD and CB, which is exactly equal and opposite to the applied stresses, applied 

shear stress sigma. 
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So, here you see, it is obvious, that these stresses will form a couple, as I told you that 

and the couple magnitude is this tau into xz, that is, the force into y. So, that is the 

couple. So, tau into xz will be the force exerting at exact plane into the y distance, which 

will give you the couple, always try to tend towards the clockwise direction, which can 

only be balanced by tangential forces on the plane, as I told you in the AD and BC, these 

two parallel force, these two parallel sides, and these are known as the complementary 

stresses. 

Or we can say, the existence of shear stresses on the sides of AB and CD of the element 

implies, that the shear must be also, if shear stresses are there, there must be counter 

balance shear stresses. And those counter balance shear stresses are known as the 



complementary shear stresses, on the, on the other side of the element to maintain the 

equilibrium. So, this is, you see, the one form of shear stresses. 

So, if you are, if I am saying, that the sigma is the shear stress, then sigma dash is the 

complementary shear stresses and if the sigma dash be the complimentary shear stresses 

inducing on the plane AD and BC, then we can easily maintain the equilibrium by taking 

moment, by you see, if we have on the one side of this sigma into xz. 
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So, if xz is the plane and if we multiply, so sigma into xz is the force. If I multiply by y, 

then we have the total moment, which is exactly equal and opposite to the couple, which 

is coming due to the complimentary shear stress. So, it is sigma dash, which is 

complementary shear stress into y z. So, that is know as the total force in the yz plane 

into distance into x. 

So, now you see, if you compare both the things, then we will find, that sigma equals to 

sigma dash. Thus, every shear stress is accompanied by equal complementary shear 

stresses. So, you see, we, we, we need a balanced part opposite which is equal and 

opposite to the shear stresses if we want to maintain the equilibrium of any component. 

So, you see, shear stresses and complementary shear stresses are you see, the two forms 

of a coin, which always there to maintain the equilibrium of an object. 



Then, you see, you know, like till now whatever we have discussed, we were discussing 

about you know, like the regular geometry at the end, you see, we have the force 

application. Because of the force application we have the stresses, shear stress, normal 

stress component. Even in the shear stresses different, different shear stress are there. 

The different outer surface of those things by taking the oblique planes, by taking the 

normal planes and all. 

But if we want to calculate, that you see inside those things, that means, if the, if you 

want to check, that what exactly is happening within, you know, like at different points 

in the object by under the application of forces, then you see, we need to check it out the 

stresses on the oblique plane. That means, you see, we need to cut the plane at an, a theta 

angle, which is not essential, that it has to pass through from the centre of the origin or 

we can say, the centre of mass of this object. It can pass from the initial part or the lower 

part or any part of that. 

And if we cut that plane and if we want to check it out, that what the stresses are there, 

the normal stress component, shear stress component, that all the kind of information, 

which we are going to discuss under the heading of stresses on the oblique plane. 
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So, till now, you see, we have, you know, like deal with either the pure, pure normal, 

direct stress or pure shear stress in many of the instance. However, both direct and shear 



stresses acts and the resultant stresses across any section will be neither normal, nor 

tangential to any plane. 

That means, this is the realistic situation, that actually if you want to check it out, that 

where is the maximum shear stress is there, where is the maximum normal stress is there, 

where is the maximum, the minimum, say normal stress or minimum shear stress, then 

whatever the analysis, which we have done in the previous cases, that is not sufficient or 

that is not, you see, the perfect to get the, all you know, like answers. 

So, what we need to do here? We need, if we want to do the realistic analysis, then 

always we need to check it out it actually, what is the, what the stress levels are there 

under the oblique plane? 
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So, you see, here a plane of stress, a plane state of stress in any two-dimensional, you 

know, like the state of stress in a sense, that the stress component in one direction, you 

know, like all the stress components are there. They are all equal, equals to 2. 

That means, you see, you know, like till now you see, if we discussed, if you just focused 

on that we discussed, that we have, that stress tensors in which the nine components are 

there. But and, but all, all, all nine components or we can say three by three matrix is 

valid if we have all, you know, like the triaxial state, the state of stress is there or we 

have all three mutually perpendicular axis. 



But if we are taking about the two-dimensional state of stress, that means, you see, the 

one direction is gone. So, if you are saying, that if I am considering only x and y, this x 

direction and the y direction, that means, there is no stress. Means, I am assuming, that 

there is no stress component is there in this vertical direction or I should say, the z 

direction. 

So, what has happened, you see, this kind of, you know, like the plane stress or I should 

say, that actually the two-dimensional plane stress is always calculating for these two 

directions and that is why, it is known as the plane stress. That means, for xy plane, yz 

plane or xz plane. 

That means, you see, one direction is, just we are assuming, that there is a, this other 

direction is not existing. So, here you see, if it, if we consider this case, then we found, 

that actually, that this is you know, like the plane stress is there, which is only there in 

the xy, xy direction. 

So, you see the sigma z or tau yz or tau zx means, either the normal stress component, z 

direction or the serious stress component in the z direction, which is coming due to the 

force in the z direction, like you see here tau yz means, the y is the domain and z is force 

or tau zx means, the z is the domain and this x is the force. That means, you see these 

stresses are not exerting, not existing in the plane stress. 
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So, this is the plane stress, which is always there in the ((Refer Time: 25:15)) plane. So, 

now, you see, in under the two-dimensional state of stress or plane stress, consider a 

general case in which we have a bar, which is under the influence of the force in that y 

direction only. 

So, if you see this figure, then you see here we have a two-dimensional object. This is a 

rectangular bar and the force is the tensile pulling is there in the y direction only. So, 

now if you see this thing, then we found, that actually these, due to these you know, like 

the force component, the y direction we have a tensile pulling, the tensile forces are 

there. Thus, and due to this tensile forces we have the tensile stress in the y direction 

only. 

So, we have the sigma y. So, sigma y is nothing but equals to, if you, if, if you consider 

this BA is section, then we found that the sigma y is nothing but is equal to applied force 

divided by the area. 

But if we want to check it out, the oblique stress is, of the stresses at the oblique plane, 

then we need to cut the plane at this BC. So, this, you see, now BA is a normal plane, 

which we have discussed in the previous cases. BC is an oblique plane. If you cut this 

plane by this section at an, at an angle theta, this. 

So, now, we want to calculate, that actually what the stresses are there of the oblique 

plane. So, we can say this stresses at the oblique plane are sigma theta, that is, the normal 

stress component tau theta, that is the shear stress component and they are, you see, 

exerting or on these oblique plane by these. We can simply denote it by this sigma theta 

and tau theta. 

So, you see, now if we cut this portion. So, now we have this oblique plane and we can 

simply denote, we can show by, you know, like if you have a unit cube, simply cut that 

unit cube and now we have, you know, like these all three directions. So, what we have? 

This is my ABC, you see, this is AB where this part was there or which we have the 

sigma y and we have this BC, over is the plane is cutting. So, this is my oblique plane 

and this is, you see, the straight line where you see, you know, like we are considering 

the sigma y or in the y direction. 



So, thickness of this element in the z direction is always thin because we are considering, 

that there is no element is, you know, like observing under that and it is taken as the 

unity. So, because you see, you know, like this is the unit cube, so we can, we need, we 

have to consider, not we need to, we have to consider, that there is, there is a unit 

thickness is there all across these, all across this particular this structure. So, we have 

unit, unity means unit depth is there of these kind of things. 

So, if you consider these, you know, like the plane, that if you are, you know, like if you 

are focusing on the main plane, then we have the sigma y, but if you are considering the 

oblique plane, then we have the sigma theta tau theta and if we dissolve these stresses, 

then we have the theta over this particular part. 

So, now, you see we just want to set up the relationship between the sigma theta and tau 

theta, that means, the stresses, stress components at the oblique plane and the stress 

components at the outer surfaces. That means, we see the sigma y. 
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So, you see, the stress acting at a point, is represented by the stress acting on the faces of 

the element enclosing to the point. That means, see whatever the, you know, like the 

faces are there, we, we have to concern about all those stress components, which are 

there, which are existing all around these plane. So, the stresses changes, the stresses 

change with the inclination of the planes passing thought that point, that is, the stress on 

a face of the element vary as the angular position of the element changes. 



So, obviously you see, you know, like because as we change the angular position, 

definitely there is a change in the magnitude in the, there, of the stresses. Because if you 

relate those things, then we found, that actually there are two resolution is there of the 

forces, in the x direction and y direction and it is always being focused by the cos or the 

sine theta. So, how, what exact relation is there and based on those relations we can 

easily found, that actually if you chase the angle there is, you know, like the difference is 

there in the magnitude of those stresses. 

In the, in this figure, you see, you know, like we have seen, that the object is the under 

the influence of the tensile forces in the y direction. That means, you see, the tensile load 

is there under, you know, like the influence of this stresses. That means, we have the 

tensile stresses in the y direction. 

And we just want to see, that if we cut the plane under the influence of this force, then 

what the exact relation is there of the, you know, like the sigma theta or tau theta, which 

is, which are nothing but the stress components at the oblique plane with only sigma y. 

That means, we are only considering there is no stress component is there, only we have 

this shear component. 
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So, now if, if you are simply, you know, like carefully watching about those things, then 

we found, that there is a unit depth is there under the triangular portion of ABC. So, if we 

resolve the forces perpendicular to BC in the previous case, then we found, that we have, 



you know, like just in the perpendicular part sigma theta into BC, that is, the plane into 

unit depth because we are considering the depth is, unit is exactly equal to the sigma y 

into sine theta. Because now you see, only the normal force is there. 

So, normal stress component is there in the y direction. So, sigma theta BC into 1 exactly 

matching by sigma y into sine theta of AB because AB is the plane where sigma y is sine 

theta is acting towards that into y. So, if you resolve those things, then we found, that 

actually AB by BC is nothing but equal to sine theta or we can replace this AB, which is 

you see, the plane of the y perpendicular to the y axis is nothing but equals to BC sine 

theta. 

So, from resolving these equations we found, that we have sigma theta BC into 1 is 

equals to, you know, like if you put those things, that we have sigma y sine theta into BC 

sine theta into 1 or we have the stress at the normal stress component at the oblique plane 

is equals to sigma theta is equal to sigma y sine square sine 2 theta. Because if you 

resolve those things, then obviously, you see, the sine square theta is there. So, you can 

simply, you know, like resolve that part and it is equal to that or you see, you know, like 

BC BC will cancel out. 

Meaning is pretty simple, that actually we can easily relate the stress component at the 

oblique plane, you know, like by whatever the force influencing is there of the object. 

So, again you see, this is the normal stress component. 

Then, what is the shear stress component? We can again easily calculate by that tau theta 

into BC in the different domains or tau theta into BC, which is the cutting plane into 1 is 

equals to sigma y cos theta into AB sine theta into 1. 
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So, you see, you know, like as we have discussed in the previous case, that is, AB by BC 

is cos theta. So, we can simply replace AB equals to this BC cos theta or tau, this tau 

theta BC into 1 will give you sigma Y cos theta into BC sine theta into 1. Or we can say, 

that it is nothing but tau theta is equals to half of sigma y, sine, sine of 2 theta. 
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So, now, you see, this either the sigma theta, in the previous case, you see, which is this 

tau y sin of 2 theta the sine square theta. Or we can say, this tau theta, which is half of 

sigma y sine of 2 theta. They are only coming because of the influence of the pure 



normal stress. There is no shear component is there, but because of the pure, this normal 

forces, we have both the component at the oblique plane. Means, we have the normal 

stress component, we have the shear stress component and what the values are there we 

can easily get. 

So, this is the beautiful, you know, like the meaning of these things are there, that we can 

get all those values though the shear stress. We are not, there is no shear forces are there, 

there is no parallel forces are exerting on the different layers of structure, but if only the 

normal stress is there. That means, if only pure, you know, like tensile or the 

compressive forces are there at any of the axis, we have both the component within the 

structure, like the normal stress component and the shear stress component. Then values 

are these. 
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So, you see here, again we can resolve this cases by putting the plane at different angles, 

like if theta is at 90 degree, then whatever the BC, which is the cutting plane was there 

will exactly parallel to the AB plane or which the sigma y was exerting. So, this we can 

say, that this tau theta, whatever you see, if you put the theta 90, then this is tau theta, 

which is exactly equals to 0. That means, there is, there will be no direct stress or the 

normal stress is there. 

Or by examining the equations 1 or 2, whatever you see, for the sigma theta and tau 

theta, we can simply conclude, that the value of direct stress sigma theta is maximum and 



it is equal to the sigma y when the theta is exactly at the 90. Means, you see, if you cut 

the plane, the theta exactly parallel to the BC, exactly parallel to the AB, then we have 

the exact value, what are the values are exerting the top of the surface, if, if you want to 

compute this normal stresses at the different layers of the structure. 

And the second case is there, if the shear stress tau theta has a maximum value, which is 

equal to half of the sigma y at 45. That means, you see, if you cut the plane at exactly the 

45 degree, then whatever the value of the shear stresses are there, these are half of the, 

half of the applied this normal stress. 

And the third part, if the shear stress sigma theta and or tau theta and not simply, you 

know, like resolution of sigma y. That means, you see, you know, like if only these other 

two stresses, stress components are not exerting, then we cannot relate the sigma theta or 

tau theta with the sigma y. 

That means, you see, you know, like we, we have to be very careful, that actually there 

are maximum or minimum values of normal stress and shear stresses are exerting even if 

the shear stresses are not been exerted on the outside of the surface. So, now you see 

here, we have a material, which is subjected under the pure shear stress. That means, in 

the previous case we are discussed about when the normal stress component is there and 

you know, like the material is subjected by that normal forces. 
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But here, you see, we are considering one element as you can see here in this figure, that 

this element is under the influence of the shear forces and the shear forces are being 

applied at these two, you know, like the sides, which is AB side, this tau XY is there and 

DC side, which is tau XY is there. 

So, here, because of this tau XY, now the, see the stress distribution is there in this 

particular, you know, like portion. And we have another, you know, like as I told you, 

that actually the complimentary shear stresses are there, the tau XY, the tau YX, which is 

exactly equal and opposite to the these shear stresses, which are being applied. 

That means, you see, here there is no normal stress component in this structure, only the 

purely shear stresses are there, complimentary shear stresses are there just to balance 

those things. And because of that, now we just want to check it out, that actually, that 

what the stress components means, the normal as well as shear stress components are 

there at the oblique plane. 

So, you see, here we simply cut the plane at you see, the PC, this is the cutting plane, the 

oblique plane, I should say, and at the PC, you see. Now, we just want to check it out, 

that what the stress components are. So, we have the sigma theta and the tau theta at 

these PC plane, which is you see, the sigma theta in this direction and tau theta in this 

direction. 
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So, now you see, the complementary shear stresses, which I was talking about, is exactly 

equal and opposite, you know, like a fact is there against, that the applied shear stresses 

is on the two different sides of AD and BC in order to, you know, like the, prevent the 

rotation of the element. 

Or we can see, we, just if we want to maintain the equilibrium of the element we have to, 

you know, like put the complementary shear stresses since the applied and shear stress, 

stresses are equal and opposite. Then, you see, you know, like of, of the value of xy 

planes. Then, you see, we can say, this object is under the equilibrium part. 

Therefore, you see, you know, like both are being represented by the tau xy because the 

tau xy and tau yx, they are equal and opposite. So, it has the same physical meaning if 

you want to apply those things. 
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So, now come to, you know, like the equilibrium position of the PBC where PB is, you 

know, like the applied part is there, and PC is that part where the cutting or we can say 

the oblique part is there. 

So, if you look at closely, then you find, that you see, we have the sigma theta, which is 

exactly at this point, you see, you know, which is coming out from this PBC plane and 

we have the tau theta, which is exactly, you see, the perpendicular to this thing. That 



means, the shear stress is there of this, the normal stress is there and if you want to check 

it out, the outer surface, that actually, what exactly shear stresses are being set up. 

So, you can find, that you see, you know, like this, this component, that the tau xy cos 

theta and the tau xy sine theta are the resolved, you know, like the forces are there if you 

resolved at the theta angle. Because we have the tau xy, which is this one, you see, you 

know, like the tau xy is there, which is well set up on this plane or on this plane, you see, 

you can see this, this is tau xy, this is tau xy. 

So, now, if you resolve this, if you resolve in this way, we have the tau xy perpendicular 

this y axis. So, if you resolve at the theta, you find, that this is the tau xy cos theta, this is 

tau xy sine theta in this direction. So, we have both components, tau xy cos theta, tau xy 

sin theta just to balance, just to counter balance the normal stress as well as the shear 

stress due to the oblique plane. 

(Refer Slide Time: 38:13) 

 

So, now, you see if you resolve those things, then you find, that assuming the unit depth 

and again, you see, we are assuming, that whatever the structure, which we have, it has 

the unit depth and if you want to resolve the, you know, like those forces, then we need 

to see, that actually what exactly the forces are there just perpendicular to this oblique 

plane PC. 



So, you see, here we have the direction sigma theta, which is exactly normal to the plane 

PC. So, we consider the PC where the sigma, this is PC, you see, this is PC and sigma 

theta is exactly normal to this plane. So, if we resolve this plane, then you find, that 

sigma theta into PC into 1 because of the unit depth exactly equals to the tau xy into PB 

cos theta, which is exactly, you see, you know, like equating that part plus tau xy into BC 

sine theta. It is composition of these. 

Or if you divide it, these things, then at the end, you see, what we have, you see, you 

know, like if you just remove those things we have particular sigma theta PC equal to tau 

xy PB cos theta plus tau xy BC sin theta. Means, that here we have only the application 

of tau xy. Means, only pure shear is there, but because of that, you see, we have the 

normal stress component at the oblique plane and we have the shear stress component at 

the oblique plane. 
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So, now, you see, you know, like if we dissolving these things, as I told you, that PB by 

PC equals to sine theta or BC by PC equals to cos theta. So, if you put those PB and PC 

value with the previous equation, then you found, that sigma theta PC into 1, at the 1, at 

the left hand side is equals to tau xy cos theta into sine theta into PC, which is equals to 

PB and plus tau xy cos theta into, in place of BC you can put sine theta PC. 

So, now you see, PC PC will cancel out because it is exerting on both the side. So, we 

have, what, this, this sigma theta into 1 is equal to tau xy sine theta cos theta plus tau xy 



cos theta sine theta. So, if you sum up, then you found, that we have sigma theta equals 

to tau xy 2 times sine theta cos theta. 

So, at the end we have the sigma theta, which is occurs, you know, like which is 

occurring in these element due to the purely shear stress tou xy is equals to sigma theta 

equals to tau xy sine of 2 theta. So, this is, you see, the normal stress component, you 

know, like because of the tau xy. 
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And again, you see, if you resolve the forces in this perpendicular plane, you know, like, 

then you find out the normal stress component is there. But if you found, that if shear 

stress component is there, like the PC plane is there, if the parallel forces are there and 

due to the parallel forces we have the shear stress component. 

So, if you want to resolve the shear stresses, which is, you know, like at the oblique 

plane. And if you want to compare both the things with the oblique plane to the main 

plane, then you found, that actually we have this tau xy PC into 1 is equals to tau xy PB 

sine theta or we can, you see, minus tau xy BC cos theta. 

The negative sign is coming because you see, you know, like the stress because you 

know, like we want to apply the complementary shear stresses, so that actually, whatever 

the rotation is there we can prevent that rotation, you know, because of the 



complimentary shear stress. So, always the negative sign is coming in resolving the shear 

stresses. 

So, again converting those various quantities into, you know, like terms of PC, we found, 

that we have the tau theta, means the shear stress at the theta is equals to minus tau xy 

cos of 2 theta. So, the meaning is, that we have normal stress component, we have shear 

stress component, which is coming due to the influence of the shear stress tau xy and 

which has the different values of, like sigma theta is there. 

Then, we have tau xy sine 2 theta, if the shear stress is there, sigma, sigma tau theta, 

which is equals to minus of tau xy cos of 2 theta. 
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The negative sign means, that you know, like as I told you, sense, sense of the tau theta 

opposite to the assumed one. So, obviously, you see, you know, like always it comes, 

that actually if you are not concerning about the complementary shear stresses or the 

negative shear stresses, then you cannot say, that whatever the element, which have 

chosen, it is under the equilibrium position because of the applied stress. 

So, always we need to assume that the applied stresses are there along the parallel, you 

know, axis. But we have, you see, the other side of these, you know, of the 

complementary shear stress, which can balance these stresses. 



So, we can say from the other equations we have sigma theta, which is tau xy sine of 2 

theta. The equation 1, this one represents, that the maximum value of sigma theta is tau 

xy. Obviously, this when the theta is at 45 degree. Means, you see, if you cut plane at 45 

degree you have, you see, you will find, that the maximum normal stress, which is 

exactly equal to the shear stress, applied shear stress when you cut the plane at the 45 

degree. 

And if you, you know, like just introducing by considering equation of this, by taking, 

you see, tau theta is equals to minus tau x cos of 2 theta. If you put that particular thing, 

then you found, that actually this tau theta is exactly equal to 0. 
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It indicates the maximum value of tau theta is tau xy when theta is exactly 0 or 90 

degree. That means, you see, if whatever the PC plane, which we have chosen, if it is at 

just perpendicular, 90 degree, or if it is, that means, if it is exactly at the PB or if it is 

perpendicular to AB, that means, just you know, like these parallel part is there, then we 

have the maximum value of shear stress, that is equal to the applied shear stress, tau xy. 

But if it is, you see, if you are cutting those planes at 45 degree, then only normal stress 

component is exerting, that is, at sigma theta there is no shear stress portion is there at 

the 45 degree of angle. From the equations all you see, either sigma theta in the one 

equation or tau theta, equation 2, you can easily calculate the maximum or minimum 

values of the normal as well as the shear stress component. 



So, from equation 1 it may be noted, that the normal components sigma theta has 

maximum or minimum value of plus tau xy if the tension is there, you see, the tensile 

forces are there. Now, the minus tau xy if the compressive force are there on a plane 

where, you see, plus minus 45 degree of angle of rotation is there. 

That means, you see, if you cut the plane at 45 degree of angle, whatever the planes are 

there, of these two planes if I say, that at this plane the normal stress are always 

maximum, the sigma theta, which is equal to the applied Shear stresses, applied. And 

these planes are tangential, you know, like if, if, if, if you want to check it out, you know, 

like shear stresses at the tangential plane. 

That means, you see 0, or and then you will find, that the shear stress component has the 

maximum value and if you want to check it out, you know, like at this plane where these 

sigma theta is maximum, is the 45 degree, the tangential plane where the shear stress 

component is 0. 

So, you see, you can, you know, like vary all those things. You can check minimum 

value as well as the maximum values of sigma theta or tau theta corresponding to the 

different planes. 
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Hence, the system of pure stress, which we discussed recently, you see here, produce and 

equivalent, you know, like direct stress is termed system one, set of the compressive and 



the one set of the tensile each located at the 45 degrees of the original, you know, like 

this directions as depicted in the figure. So, if you see this figure, you see, we have, you 

know, like this component, which is influencing by only shear stresses, you see, these 

shear stresses are there. 

Now, if I rotate at 45 degree. So, you see, now this is the rotated plane, which is exactly 

at the 45 degree. So, what we have? We have, all you see, at the 45 degree of angle, only 

these stresses are absolutely converted into the normal stresses. That means, you see 

here, stress are being applied, the shear stresses, counter shear stresses are there. But at 

the end, you see, if you rotate this element, simply by rotating this element, all the shear 

stresses are being exactly converted to the normal stresses. 

Or we can say, we come down to these things, you see, we have this element, which is 

under the influence of the shear stresses. And if you compute those things, when you 

find, that you see at these planes where the 45 degree planes are there, this one sigma is, 

you know, like sigma theta, I should say, is tau xy or sigma, which is sigma theta also is 

minus tau xy. 

So, we have both the, you know, like this stresses are there. But, but the shear stress, 

pure shear stress will give you only the normal stress component at the 45 degree of 

angle. 
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Now, you see here, this third case. The previous two cases, which we discussed, when 

the material is under the influence of pure stress and when the material is under the 

influence of pure shear stress. 

Now, when material is subjected by two mutually perpendicular direct stresses, means, 

you see, we have direct stresses, direct stresses, but both are mutually perpendicular, like 

the x direction or the y direction, and they are acting in the tangential direction. 

So, now you see, consider the rectangular element, which, which is being shown here in 

the diagram of unit depth, again you see, we are considering the unit depth subjected to a 

system of two direct stresses, both are tensile, as I told you, on the right angles of each 

other, means, both are mutually perpendicular. 

So, if you see, that then you will find at this sigma x, sigma x is on this two, you know, 

like sides of the rectangular element sigma y sigma y. Again, you see, we have, you 

know, like these two, that this tensile stresses are in the y direction. So, now, you see, if 

you want to check it out because of the influence of these two mutually perpendicular 

stresses x and y, what is the, you know, like stresses at the oblique plane. 

Again, cut the plane here by this AC and we just want to check it out, that actually what, 

what is the value of the sigma theta and tau theta is there at that. So, cut the plane and we 

have, now you see, the two different, you know, like reasons. At one reason, now we just 

want to check it out at AC, the sigma theta and tau theta is there. But other two plane, 

this is one we have sigma, you know sigma x. 

So, how this, how you can resolve this things like sigma x cos theta, sigma xy sigma x 

sine theta or here, sigma y cos theta, which will come here, means, sigma y sine theta 

and sigma x cos theta in the other direction. So, now you see, we just want to resolve this 

stress components as per the value of these sigma theta and tau theta with the sigma x 

and sigma y. 

So, only shear stress is there. There is no, only pure, this normal stress is there, there is 

no shear stress component. 
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So, now, you see, within, within the equilibrium portion of the triangular part ABC, if 

you, if you want to resolve these forces, then we have first sigma theta is into AC. So, 

AC is, you see, the inclined part. So, sigma theta into AC into unit depth, that is, one is 

equals to sigma y sine theta into AB where this AB is acting into 1 plus sigma x, which 

is, you see, cos theta into BC into 1. 

Now, you see, converting this A, this AB and BC in terms of AC, so that AC cancel out 

from this side. So, we can simply, you know, like resolve this forces. We have sigma 

theta is equal to sigma y sine square theta because AB by AC sine theta, BC by AC is 

cos theta. So, plus sigma x cos square theta or further we can say, that the cos square 

theta minus sine square theta is cos 2 theta, or we can say it is 1 minus cos of 2 theta by 2 

is nothing but equals to sine square theta. 

So, if you, you know, like do this kind manipulation, then we found, that at the end, that 

we have sigma theta is equal to 1 by 2, you know, sigma y cos of 2 theta plus 1 by 2 

sigma x cos of 2. Or by rearranging those things we have the sigma theta because of the 

two mutually perpendicular stresses, sigma x and sigma y. We have the final stress at the 

oblique plane in the normal direction. Sigma theta is equal to sigma x plus sigma y by 2, 

which is not influenced by any theta. See, this, this is a constant quantity. So, here, so 

this is one constant quantity and one is influenced by the theta. So, once sigma x plus 

sigma y by 2 plus sigma x minus sigma y by 2 into cos of 2 theta. 



So, we can, you know, like resolve these things, that actually what is the value of the 

maximum or minimum sigma theta is there if we have different angle, like if, means, if 

we are cutting the plane at theta equals to 0, 90, 45 or what, like that. So, you can get that 

values. 
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So, now, you see, resolving these parallel to AC, then we have sigma theta AC into 1 is 

equal to minus tau of that because now, you see, you know, like we just want to check it 

out the other component, which is parallel to AC. That means, the shear component is 

there. So, minus tau xy cos of q into AB into 1, which is, you know, like due to that tau 

xy in vertical direction AB, or we can say, tau xy BC into sine of theta into 1. The 

negative sign appears always, you see, because of the complementary shear stresses, so 

to balance those component. 

So, again you see, converting those all variety of the components we found, that actually 

what exactly the value of tau theta is. So, if we resolve those things by equating the 

segment into the x as well as the y direction we have tau theta into AC into 1 is equals to 

this tau x. In this particular figure we can found out the tau x into cos of theta into sign 

theta minus sigma y sin theta cos theta multiplied by AC. 

So, we can find it out, that tau, the tau theta is nothing but equal to sigma x minus sigma 

y into sine theta cos theta or you can convert into two theta parts. So, we have sigma x 



minus sigma y sine of 2 theta. So, we have the final value of tau theta, which is equals to 

sigma x minus sigma y into sine of 2 theta. 

So, now you see, by you know, by applying the two different forces at mutually 

perpendicular axis, we can also get the sigma theta or tau theta at the oblique plane by 

amazing those values. By sigma x plus sigma y by 2 plus sigma x minus sigma y by 2 

into cos theta, which will give you the sigma theta. Sigma x minus sigma y by 2 into sine 

2 theta will give you the tau theta value. 
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The conclusion of this whole discussion says, that the following, you know, like this 

conclusion, which we can draw, drawn that the maximum direct stress can come, you 

know, like because of, by applying theta equals to 0 or 90 degree, which is equals to 

exactly the sigma x plus sigma y by 2. That means, you see, if the mutually 

perpendicular stresses are there, the maximum direct stress will be of sigma x plus sigma 

y by 2, which is equal to, which is, which is coming when the theta is equals to 0 or 90 

degree. 

Maximum Shear stress is coming on the plane wave. The plane is applied, you see, at the 

45 degree, means, you see, here now the things are changing. Two mutually 

perpendicular axis are there, stress are there, under the influence of these stresses we 

have the maximum value of shear stress at an angle of 45 degree, which is equals to 

sigma x minus sigma y by 2. 



So, we have, you know, like the maximum value of direct stress as well as maximum 

value of shear stress at oblique plane if we apply these things. So, now, in this all 

discussion we discussed, that actually, you see, you know, like if the pure shear stress, 

pure normal stress is there, pure shear stress is there or two mutually perpendicular pure 

normal stress is there, then how we can get the stresses at the oblique plane irrespective 

of whether it is a sigma theta or tau theta. 

So, in this lecture, you see, you know, like you found, that actually, we, we have to be 

very careful, that what is the value of the maximum and minimum stresses are there, 

normal as well as the shear stress. 

So, in the next lecture we are going to discuss, that actually what, what is happened if the 

two mutually perpendicular axis are there and it has been influenced by, not only the 

normal stress, but the combination of the shear stress. Means, you see, now we have the 

combined forces perpendicular as well as the parallel forces, then how we can resolve the 

normal stress and the shear stress component to the both, you see, at the oblique plane as 

well as the reference plane. 

Thank you. 


