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Hi, this is Dr. S. P. Harsha, Assistant Professor, Mechanical and Industrial Engineering 

Department, IIT Roorkee. I am going to deliver my lecture 33, on the course of Strength 

of Materials, and this course is developed under the National Programme on Technology 

Enhanced Learning (NPTEL). Prior to start this lecture I would like to briefly discuss 

about the previous lectures. And, you know like, we discussed about the deflection 

theories of the cantilever beam or simply supported beam. In that, you see, here the first 

theory was discussed as the direct integration methods. That if, you see, the beam is 

loaded by various kind of loads as well as, you see, the combined loads, point loads, and 

you see, the UDL; then, how we can get the slope as well as we get this deflection?  

So, the first method, which is pretty simple method, is the direct integration method in 

which, you see, we need to derive the equation as E I into d2y by dx square which is 

equals to M. So, through that, you see, you know like, first of all we would like to know 

about the shear force diagram and bending moment and based on that - the bending 

moment - we can easily get the dy by dx - that is the slope as well as the y that is the 

deflection. 

And then, the second method which we discussed about the area moment method. In the 

area moment method, simply, you see, we do not have to calculate individual deflection, 

and individual, you know like, the integration points at the boundary conditions. In that 

we discussed about, that if you know the bending moment, because you see, in that all 

these cases we know - we need to know - the bending moment. So, once you have the 

bending moment diagram, only we need to get the area under the bending moment. And 

once you know the area under the bending moment, then you have the slope, and then 

once you again, you see, multiply this area with the distance, then you have the 

deflection.  
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As you can see on your screen that, these two formula in the area moment method. So, 

first of all, you see, the slope, which is nothing but the theta between the two different 

points on the beam as well as, you see, on any of the two conditions, we want to know 

the slope. Then it is pretty easy to calculate, because it has to be multiplied by 1 by EI, 

and EI is the flexural rigidity of the beam, depends on what kind of a beam material is 

there, because E is the Young’s modulus of the elasticity and I is the moment of inertia 

for that. So, 1 by EI into the area of bending moment diagram between those two 

corresponding points where the bending moment diagram is to be drawn. 

Or we can see that, you see, theta is nothing but equals to integration of A to B, because 

you see, these are the two corresponding points where we want to calculate the bending 

moment. So, you see, for that integration A to B M dx by EI and M dx integration of A 

to B M dx is nothing but the area under the bending moment diagram, because you see, 

this bending moment diagram is coming within these two reference points.  

So, this is your slope and once you see, you have the slope, then it is pretty easy to 

calculate the deflection, because it is nothing but equals to, again you need to integrate 

that, you know like, the theta. So, once you integrate the theta within these two points, 

you have the deflection; that is the delta which is equals to 1 by EI; again the same 

flexural rigidity of the beam into the first moment of the area with respect to point B. 

Because you see, you know like, this is - the A - is the reference point and B is the 



second point through which we need to calculate the first moment of area and the then, 

you see, you need to multiply with the distance X bar. 

So, if you see, you know like, the formula delta A which is equals to 1 by EI A into X 

bar; X bar is nothing but the distance of centroid from point A and, you see, A is the area 

of the bending moment diagram and EI is the flexural rigidity. So, these you see, you 

know like, these are the two key formulas to calculate the deflection as well as the slope 

for a beam irrespective of whether the beam is a cantilever beam or beam is a simply 

supported beam; or a cantilever beam is, you know like, subjected by a point load at the 

extreme end - the free end I should say - or we can say the various combined loads are 

there, only we need to get the bending moment at the individual point or we need to get 

the bending moment diagram. And once you have the diagram, at individual points you 

can easily calculate the slope, as I told you, as well as the deflection.  

And, you see, we discussed the various numerical problems also in the previous lectures 

about the cantilever beam, simply supported beam, even, you see, it has a point load 

UDL - the uniformly distributed load - or a triangular load. So, if, you see, the regular or 

irregular kind of loading is there, then also it is pretty easy for us to calculate the 

deflection as well as the slope for that. And that is why, you see, it is preferable to go for, 

you know like, if you have a different kind of loading area moment method. Then, you 

see, we would like to now discuss one more method as I told you that is the Macaulay’s 

method. 
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And this is, you see, always preferable to use this method if the loading condition 

changes, you know like, which is along with the span of beam. That means, you see if 

the load condition is frequently changing, then it is very hard to, you know like, check 

the interaction of these bending moment and it is really hard to draw these things. So, 

that is what, you see, for this kind of loading always it is better to drop some sort of 

function for a kind of deflection. Or we can say the slope, and then, you see, whatever 

the boundary conditions are changing it can be easily incorporated in those kind of 

functions. 

So, that is what, you see, Macaulay says that if you see that the loading condition is 

frequently changing along the span or along the path of the beam then always, you see, 

you need to, you know like, get the corresponding whatever the changes are there in the 

bending equation. So, you see, we need to incorporate those functions in the bending 

moment equations. And this requires that a separate moment equation be written between 

the each change of load point and thus, you see, the flexibility is there in this Macaulay 

method; so, that you can easily incorporate those changes by writing a simple separate 

bending moment function for individual load segments, for each change of the load point 

and the two integration be made for each such bending equation. So, that is what you see, 

you know like, we need to simply write the separate functions for the separate loading 

and then simply incorporate whatever the boundary conditions are there correspondingly. 



(Refer Slide Time: 06:25) 

 

Evaluation of the constraints or the boundary conditions introduced by each integration 

can be, can become very involved, because you see, you know like, you can simply 

involve all those kinds of changes in those equations. Unfortunately, you see, these 

complications can be avoided by writing single moment equation in such a way that it 

becomes continuous for entire length of the beam in spite of, you see, discontinuity of a 

loading. So, you see, here what we are doing here, simply you know like, after taking the 

different, different segments of those functions, you need to write a simple equation by 

incorporating all those different functions of the loading within that segments, and then 

incorporate the boundary conditions, because you see, if you are simply taking the 

boundary conditions of outer part, some of the functions can be easily ignored. So, this is 

the key feature of this Macaulay method. 
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And now, you see, would like to discuss briefly about that how the Macaulay method is 

functioning. In Macaulay method, you know like, we need to take the help of a unit 

function approximation as I told you or we can say the Laplace transformation which can 

be easily taken in order to illustrate this method. However, both are essential; means, you 

see, we need to take this unit function as this approximation, as well as what the direct 

loading is there; because, whenever the direct loading is there or we can say the initial 

load is there, there is no need to describe this kind of loading by the function.  

As you can see in this diagram you can easily, you know like…These are A and B, C, D; 

these are the four different points at different kind of loadings are there. At point A and 

point D there are two reaction forces Ra and Rd. So, you see, if you want to write, you 

know like, this if you want to incorporate that what the loading is there at point A, then 

there is no need to take the unit function approximation or I should say the Laplace 

transformation. Only straight away you can write the direction loading condition at this 

point. 

And then you see, if let us say if you want to take the impact of load at point B, then 

again you see, we do not have to write the function, but now if you are changing the, you 

know like, the loading condition from segment B to C. Then we need to describe that 

how this, you know like, the loading function will be, you know like, approximated and 

how this unit function will come in this particular way. 



So, you see here, you know like, by taking the point load at B 500 Newton and from C to 

D we have UDL which has the intensity of 450 Newton per meter, then this distances are 

given to us. Now, what we are doing here? We are simply taking the section XX at this 

position, you see, UDL because we just want to incorporate whatever the changes are 

there right from A to X. So, you see, here the X distance is there at this XX section. So, 

just keep this figure in our mind now. 
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We just need to write the general moment equation using the deflection M, which is 

nothing but the combination of all those, you know like, the moment at the different, 

different load conditions. So, you see, here the moment equation M is nothing but equals 

to summation of M for all those loading conditions which means that we consider the 

effect of all the loads lying on the left of the exploratory section; that means, you see, 

now we are starting from point A and then, you see, we are going towards the point D.  

And whatever the load conditions are there, we need to write the moment equation for all 

those segments and we can see that we have the different segments at this or we can say 

different portions are there where the loading conditions are changing. Like, you see, for 

point A to B at point B the point load is there; from point B to C at point B we have point 

load - means the unit load is there; and point C we have the UDL and from point C to D 

we have an effect of UDL of 450 Newton per meter. 



So, with the consideration of all those things, now we can simply write the moment 

equation as M of AB is nothing but equals to 480 Newton meter. Then we have you see, 

you know like, because only the reaction forces are coming at point D. So, it has only the 

impact within this particular segment AB. So, you can straight away write this moment 

as 480 Newton meter. Then, you see, here now we are incorporating the point load at 

point B which is 500 Newton meter, 500 Newton. 

So, you see, here with incorporation of that now, since, you see, we are considering the 

X section at UDL portions. So, now we need to expand our moment equation M of BC is 

nothing but equals to 480 into x minus… Now, you see, we need to incorporate that 

what, you see, because, you see, 480 into the reference point is there. So, we need to 

multiply with the X distance, minus because the load into distance is the moment minus 

500 into, now this is a kind of, you know like, because x minus 2, because now 480 we 

considered already for AB. So, we need to neglect that part and we need to write this 500 

just for this BC section. So, that is 500 into x minus 2 Newton meter. 

And now if you are going for MCD, then you see, it has, you know like, the indirect 

impacts are there from RCD or point load at point B and then, you see, we need to… 

when we need to write, you see, the equation then it has, you know like, all those 

components like, you see, 400 into x, 480 into x because of the reaction force at point D. 

We have 500 which is your acting, you know like, just downward direction; so, minus 

sign is there. So, 500 into x minus 2 and minus your UDL is also going towards the 

downward direction as you see, you know like, this reaction forces are going upward. So, 

it has a positive reference point. 

So, now we have the combination of all these three moments all together, if we calculate 

the moment at CD which is nothing but equals to 480 x minus 500 x minus 2 minus 450 

by 2x minus 3 whole squared Newton meter. So, which incorporates all the, you know 

like, the combined effects of the load. 
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So, it may be observed that the equation for MCD will also be valid for both MAB and 

MBC, because you see, it is just providing all the terms x minus 2 and x minus 3 square 

which are, you know like, neglected for the values of x which is less than 2 meter or 3 

meter respectively. Because, you see, we cannot go for the negative terms. In other 

words, we can say that the terms x minus 2 and x minus 3 square are nonexistent for the 

values of x for which the terms in parentheses are negative. So, it is pretty clear that if 

you are writing the different functions of M then, you see, we need to calculate all those, 

you know like, the parameter with the separate constraints. But if you write the 

combined equation, then you will find that some of the values are just going, you know 

like, in the nonexistent form because of the negative terms. So, this is quite invalid 

certain things. 
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And now, you see, again if you would like to see those things, then we found that its 

again the same diagram is there, with reference to, you know like this, the same loading 

condition that at the point A we have the same - these Ra and Rd - these two reaction 

forces are there which has 480 and 920 Newton. And then 500 Newton of the point load 

is there at 2 meter from point A and, you see, for CD it is 450 Newton per meter is there 

of the UDL. 

So, with the consideration of the same thing, now what we are doing here? Straight 

away, we need to take the reference point of y, as you can see in this diagram, exactly at 

the reference point - this point A. So, now, you see, instead of taking x at this, you know 

like, those you see, sometimes as we can see that if we wrote the MCD which has you 

see, you know like, inclusion of all those components at point ABCD, but certain values 

when you are going for x less than 2 or less than 3, then certain, you know like, the 

components are simply neglected, because of their nonexistent form of the negative 

values.  

But now, if you are, you know like, chasing the… if you want to include those things and 

if you are chasing those values, then we need to consider those, you know like, the 

reference point at A like you see here, this is point A where the reference section is y. So, 

that now if you want to calculate all those things now it can be easily incorporated here. 
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So, as an clear indication of these restrictions one may use, you know like, a 

nomenclature in which the usual forms of parentheses is replaced by the pointed 

brackets. And these are namely, you see, this pointed brackets are there. With this 

change in the nomenclature, now we need, we have you see, you know like, single 

moment equation which Macaulay methods, you know like, simply gave is M in the 

simple parentheses 480 x, because of the initial this reaction force moment, 500 into x 

minus 2 because of this point load moment at point B, and minus 450 by 2 x minus 3 

whole square. So, this is the combination of these, now in the parentheses, which is valid 

for the entire beam if we postulate that the terms between the pointed brackets do not 

exist for the negative values. Otherwise the term is to be treated like an ordinary 

expression because, you see, if it is a common expression is there, then we cannot, you 

know like, go for the negative and the positive values for these kind of expressions. So, 

as an under example consider now the beam as, you know like, I would, shown in this 

particular figure. 
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You can see here now, in this figure, we have simply shifted the loading condition in 

spite of the extreme end to middle one. So, if we can see this figure, initially now at point 

A and point E, the two, you know like, the reaction forces are there as Ra and R 1 and R 

2. So, R1 is nothing but equals to 500 Newton and R 2 is nothing but equals to 1300 

Newton. 

And now, this UDL is in between point B and point C and point B is just 1 meter apart 

from point A. And, you see, if this UDL having the length of 3 meter and it has the 

intensity is 400 Newton per meter. So, now, you see here, what we have? We have the 

two things: one is the point load and one point load, which is exactly at point E of the 

capacity of 600 Newton, and we have the UDL which has the intensity of 400 Newton 

per meter which is spreading in the span of 3 meter. 

Now, you know like, what we need to do here? We need to ignore those negative values 

and for that we simply put the idealistic condition of the UDL on both of this free parts. 

So, what we done here? We simply put the UDL of the same capacity on the top of part 

and now, you see, to balance this condition, we simply put again the similar condition 

there in the lower part, as you can see in the another figure, this is 400 Newton per meter. 

And now, you see, this is dotted part is the UDL of this kind and to balance this UDL 

now we have the same intensity of this UDL on the bottom of the part and other factors 

have remained same. So, by viewing this thing now, this is the another, you know like, 



the example to just view that how we can incorporate those expression in that. So, here 

the distribution load extend only over the segment BC as you can see the Right hand part 

was there and we can create the continuity. 
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However, you see, by assuming that the distribution of this particular loads extend 

beyond the C and adding an equal and upward distributed load to be cancel with the, you 

know like, just by adding the lower portion as, you know like, you have seen in the 

previous diagram, the general moment equation written for the last segment DE in 

which, you see, the upper and the lower portion are to be added which has, you see, the 

new nomenclature.  
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In that, you see, now we can see this M is nothing but equals to 500 x that is due to this 

reaction support, and then we have 400 by 2 x minus 1 square is there, because of now 

the UDL is coming, and then if you go beyond, you see, this is the point where the B 

point is there at which this 400 by 2 x minus 1 whole square is the moment part. And 

now, if you go another point, means at the C point 3 meter apart from that, now we need 

to include that the impact of the UDL. 

So, we have the intensity of UDL which is 400. So, 400 by 2 into x minus 4 whole 

square because the total distance from point A is now the force, that is what you see, we 

need to include those function, you know like, with the distance of x minus 4 whole 

square. Now, if you move to point C to D we have, you see, one more, you know like, 

the reaction force is there right from upward direction; so obviously, we have the 

positive sign. So, 1300. 1300 into x minus 6, because the total, the length of beam is 6 

meter. So, we need to include that part. So, it is x minus 6 Newton meter. 

But, you see, it may be noted that in this equation the effect of 600 Newton load won’t 

appear, since it is just at the last end of the beam that is point E. So, if we assume that the 

exploratory, you know like, section at exactly at this particular point, then we need to 

include, you know like, that point otherwise, you see, it can be easily ignored, because at 

the application of 600 Newton, we have been there, the distance of x equals to zero at 

this point or else we will have to take the x cross section of this particular, you know 



like, the beam beyond the point of E which is means, you see, beyond the length of 6 

meter ,and then, you see, we can simply include the 600 Newton of the load impact 

So, you see, here the 600 Newton load in this method is simply invalid because of our 

beam is ending at this point and, you see, our reference point is also at this particular 

section. So, now, you know like, with that particular reference point, we are starting from 

point A and then, you see, we are moving from point A to B, B to C, C to D, and then, 

you see, at point E where the junction is there, or we can say the reference point is there 

whatever the load conditions are there it is simply ignored. And that is why, you see, the 

600 Newton is simply ignored at this particular point. 

So, now, you see, we have the total moment equations in which, you see, all those 

functions are to be evaluated or included in the condition that we have whatever you see, 

400 Newton, the intensity of this UDL is there at point B, which is the starting point or at 

point C which is the ending point, you see, it has been, you see, simply carried out with 

the x minus 1 square at point B and point C x minus 4 square. And then, you see, it has 

been, you know, simply incorporate at the point load at point A as well as, you see, the 

reaction forces at point A and last point. 
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So, you see, here the simple procedure to solve these kind of problems we have the two 

main points under this category - the first point is there: After writing down the moment 

moment equation because, you see, for individual sections only we need to consider that 



what are the, you know like, the loading conditions are there. Because, you see, we are 

saying that the point loads are there and with the combination of that, if you have the 

UDL, so what are the interactive effects are there on that particular beam accordingly, 

you see, we need to write the moment equations.  

So, after writing down the moment equations for the beam with the loading condition, 

which is simply valid for all the values of x, because you see, we need to consider the x 

cross section where, you see, means where it is a line that is the, you know like, it 

containing all those pointed brackets. We can say that what are the these particular 

brackets are there, or what are the point loads are there with that, and what are the 

impacts are there of these brackets, as well as point loads in that equations, then integrate 

the moment equations like an ordinary equations. 

So, you see here, this is the first thing that… first you need to write the moment equation 

and then, you see, in this equations it has to be, you know like, incorporated all those 

brackets as well as the individual points, then we need to those, integrate those simple, 

you know like, the moment equations just like an ordinary equation. While applying the 

boundary conditions, now this is the important thing here - keeping mind that the 

necessary changes to be made regarding the pointed brackets. So, you see, whatever the 

necessary changes are coming, it has to become within this, you know like, the pointed 

brackets. So, these two, with these two points, you see, it is pretty simple procedure to 

evaluate the deflection as well as the slope. So, now, you see, you have some of the 

numerical problems to simply visualize those things.  
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The first example is we have a simple, you know like, the UDL and in the UDL you see, 

you know like, the concentrated load is there - 300 Newton - which is to be applied at 

simply supported beam, as you can see that, and we need to, you know like, determine 

the equations of the elastic curve between the each change of load point and, you see, the 

maximum deflection in the beam. So, you see here, we need to calculate. 

So, if you see the figure, you will find that we have these two A… these three points are 

there A, B, C. At A and C we have the two reaction forces which are coming on the top 

of that. So, we have, you see, R 1 which is the reaction force at point A is equals to 100 

Newton and the reaction force at point C which is equals to 200 Newton. We can simply 

evaluated those things just with those force balance and moment balance condition. 

Then, you see, we have the point load as it is given 300 Newton at point B. 

So, you see, we have the distance of 2 meter from point A and 1 meter from point C. So, 

the total length of beam is the 3 meter. So, what we need to here in this, first we need to 

take the XX section. So,, you see, here this is the XX cross section from, you see, the 

point A, it has a distance A. And now, if you look at this particular the deflection curve, 

which is the idealistic curve is there, we can see that it is simply because of the point 

load of this, we have this dotted portion of the deflection curve.  
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So, now, you see, here first would like to write, as I told you that in the procedure, first 

of all the beam equation, which is important here. So, first of all, write the general 

moment equation for the last portion BC of the loaded beam. 

So, now what we have? We have EI into d 2 y by dx square is equals to moment which is 

pretty common equation - the basic equation for moment - is equals to 100 into x, you 

see, for that reaction force minus 300 which is the point load is acting at 2 meter apart 

from point A. So, we have 300 into x minus 2 Newton meter. So, this is the first equation 

for the portion BC because of the, you know like the, loaded beam is there, we have EI 

into d 2 y by dx square is equals to 100 x minus 300 into x minus 2 Newton meter. 

So, now you see, we need to integrate twice to get the deflection. So, first, you see, we 

need to, you know like, integrate first, so we have the slope equation which is equals to 

EI into dy by dx is equals to simply integrate. So, you know like, 100 x is nothing but 

equals to 50 x square minus, you see, we have 300 into x minus 2. So, we have 150 x 

minus 2 whole square and this parenthesis is, you see, of a special shape because of it is 

simply showing the unit function approximation for, you know like, the Macaulay’s 

method. So, 150 x minus 2 whole square plus, you see, the integrating, you know like, 

the constant is there C 1 Newton meter square. 

And then, again if we integrate, then we have the deflection part EI into y EI. As I told 

you it is a flexural rigidity is there, just depends on what kind of material, which we have 



taken and what kind of the shape of the beam is there. So, I is there. So, EI into y is 

nothing but equals to 50 by 3 x cube which is pretty simple, you see, as x square. So, x 

cube by 3. So, 50 by 3 x cube minus, you see, you know like, x minus 2 whole cube by 3. 

So, 150 by 3 is evaluated. So, it it has minus 50 into x minus 2 whole cube plus C 1 x 

plus C 2. 

And these are, you see, the two constants, two integrating constants are there because of 

the integration of these main moment equations. So, we have now the deflection 

equation, we have the slope equations, and we have, you see, all those boundary 

conditions along with us. So, now the to evaluate the two, you know like, the constants C 

1 x and C 1 and C 2 of the integration. 
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Now, we need to apply the boundary conditions which is valid for the, you know like, 

those equations, those figure which we have seen in that, you know like, those point 

loads are… point load is there at exactly, you know like, 2 meter apart from point A and 

we have the reaction forces at point A and C, you know like.  

So, at point A, where x equals to zero, because this is the starting point, we have the 

deflection zero, obviously there is no deflection at the point A because at the simply 

supported beam is there; so, hinge joints are there; so, y equals to zero. And now, if you 

substitute x equals to zero corresponds to y equals to zero in the deflection equation EI 

into y. So, now what we have? We found that C 2 equals to zero. So, one of the constant 



is gone out, keep in the mind that x minus 2 whole cube is to be neglected for the 

negative values. So, you see, if you are keeping x equals to zero, obviously it has minus 

2 whole cube. So, it has the minus value. So, if this parentheses is just giving you the 

negative values, we are simply ignore that part; so obviously, we need to neglect that 

part. 

On the other hand, you see, we have the, you know like, just the point load is there, the 

reaction forces are there at point C, exactly at the x equals to 3 meter. So obviously, 

since again this is a hinge joint, the point joint is there; so, there is no deflection part is 

there because of the simply supported beam. So, again the deflection is zero. So now, we 

have the two main condition at x equals to zero, y equals to zero; at x equals to 3 meter, 

y equals to zero. So, obviously again, we need to put those things and now we have the 

different conditions of C 1 also. 
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So, after having you see, you know like, y equals to zero, 50 by 3, now we need to keep 

the x equals to 3. So, 3 cube minus 50 into 3 minus 2. So, x minus 2 whole cube. So, 3 

minus 2 whole cube plus 3 1, you see, this x into 3. So, 3 into C 1 plus C 2 has already 

gone zero. So, we have C 1 which is nothing but equals to minus 133 Newton meter 

square. So, after keeping the value C 1, we have the total EI into y is nothing but equals 

to 50 by 3 x cube minus 50 into x minus 2 whole cube plus this minus 133 this is. So, 

this is now the moment equation which is valid for the applied condition of the beam.  



And the, you know like, with those constant of integration C 1 and C 2, now we can 

simply write the differential equations or we can say the moment equation for the 

different segment. So, if you are writing this moment equation for segment AB. So, AB 

is just valid for the x is in between zero to 2 meter. So, for that, you see, we have the 

reaction force A at point A, you see, on just going upward direction and we have, you 

see, the load condition which is 300 Newton which is going downward direction. So, for 

that, you see, we can simply write the moment equation EI into dy by dx which is 

nothing but equals to 50 into x square minus 133 Newton per meter square. So, because 

of that, you see, only we are going up to 2 meters. So you see, here the beyond 2 we are 

just going to neglect. 

So, now, you see, the slope equation is this and if we integrate those things, then we have 

the deflection equation EI into y is nothing but equals to 50 by 3 x cube minus 133 x 

Newton meter cube. So, you see, here you have the deflection, you have the slope for the 

AB segment; similarly we can find for the BC segment the same deflection as well as the 

slope and it is valid just for x equals to 2 meter to x equals to 3 meter. So, you see, here 

now x which is greater than equals to 2 meter and less than equals to 3 meter, we have 

the equation is EI into dy by dx is nothing but equals to 50 x square minus 150 x minus 2 

whole square minus 133x. 

This is the whole equation as you see, previously derived the equation for BC segment. 

And again, if we can calculate, you see, you know like, by integrating that - that 

particular equation - we have the deflection equation EI into y is nothing by equals to 50 

by 3 x cube minus 50 into x minus 2 whole cube minus 133 x Newton meter cube. 

So, you see, here for the different segments, you have slope equation, you have the 

deflection equations, and from that by keeping the boundary conditions we simply got to 

know that where is the maximum slope and where is the maximum deflection is there. 

So, you see here, just continuing the solution we simply assume that the maximum 

deflection will now starting that assumption because now you have the two different 

segments, so simply by putting the boundary conditions and with the assumption that 

now for in the first segment, you see, you have the maximum deflection. So, just keep 

those boundary conditions. 



So with that assumption, the maximum deflection will occur in the segment AB, its 

location may be found by differentiating, you see, the equation 5 as I have shown in the 

previous case, in the first segment AB EI into dy by dx. So, for that with the respect to x 

and the setting the derivative to be equal to zero, because, you see, we are calculating the 

maximum deflection. So, for that, you see, we need to differentiate those things. 
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Or we can say what amount the same you see, you know like, the same thing will coming 

in the deflection part, setting the slope equation means, you see, the EI into dy by dx 4 is 

equals to zero solving for those things, we have, you see, 50 into x square minus 33 

equals to zero or we can say that when the x is equals to 1.63 meter . So, means you see, 

you know like, what we are taking, we have a reference point A and, you see, x is just 

going towards the right hand direction. So, where you see the x equals to 1 point and 

total length is, you see, the 2 meter. So, within that at 1.63 meter we have the maximum 

deflection is there. 

So, we it may be, you know like, keep in mind that if the solution of the equation does 

not yield, you see, the value of less than 2 meter, then we have to try for the another 

equation of that side; that means, for the segment BC. But fortunately, you see, we got 

that the solution is, you know like, the positive sign is there 1.63 which is less than 2, 

you know like, the 2 meter; that means, the maximum deflection is coming in the 

segment of AB exactly, you know like from the point A 1.63 meter we have the 



maximum, you know like, the deflection x is there, and for that you see, we can simply 

get the value also by just keeping x equals to 1.63. 
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Since the value of the x is valid for the segment AB, as I told you or whatever the 

assumption which we have made, you know like, for the maximum deflection occurs in 

this region is exactly correct. And hence you see, you know like, we can simply 

determine the maximum deflection just by keeping as I told you x equals to 1.63 in the 

main equation, where EI into y is equals to the same equation was there and by keeping 

those things, we have EI into y maximum is minus 145 per Newton meter cube; minus 

sign is there because deflection is coming just on the lower portion; so obviously, it has 

the minus sign. 

So, you see, here this is the real procedure to evaluate, you see, you know like, the 

deflection at the different, different segments and the slope at the different segments and 

also, you see, by keeping the boundary conditions, we can simply get those values also. 

And to find out the maximum deflection, again we need to assume that in which section, 

by simply our visualization, we can simply assume that in this section it may happened 

to be there as a maximum deflection. So, with that assumption we can again incorporate 

that part, and by keeping that assumption we have the value of the maximum deflection 

by just keeping the value of x that where is the maximum deflection is there, what is the 

point of location. 



So, this is, you see, the first example, for that and as I told you the negative value, you 

know like, which we obtained here, it just shows that because the deflection is going in 

the downward direction as the x is quite usual, you see. 
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Only the magnitude is just, you know like, in the lower direction with regard of the sign 

is as usually, you know like, the desired part; this is denoted by d and the use of, you 

know like, the y may be reserved to indicate the direction of this deflection towards the 

downward direction. 

And now, you see, if we take, you know like, as I told the E and I are the nothing but the 

property of materials. So, if we are taking the beam material which has the Young’s 

modulus of elasticity as 300 giga Pascal and the cross section of the b this, you know 

like, based on that, we have the moment of inertia I is nothing but equals to 1.9 into 10 to 

the power 6 millimeter 4. Or we can say that 1.9 into 10 to the power of 6 meter 4; 

whatever, you know like, the arrangement is there we can simply keep these values in the 

EI into, you know like, minus whatever the figure was there, by keeping those values 

now we have the maximum deflection at the 1.63 meters from A is equals to minus 2.54 

millimeter. So this is the correct value of the deflection. And we can get, you see, that 

what is the location is there, and what is the value of this maximum deflection is there. 



So, this is, you see, the simple procedure to calculate the maximum deflection, as well as 

the deflection and the slope value at different segments of the beam, where the loading 

conditions are abruptly changing. 
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Example two, now we have going to take. Now, you see, in this particular example, 

again the similar kind of, you know like, the simply supported beam is there, but the 

support is there within the beam structure; means, you see, we have the free, you know 

like, the span is there in which there is no load condition is there within that part, there is 

no support is there from the bottom side. So, it is required to determine the value of EI 

into y; that means, you see, the deflection part at the position midway between the 

support and at the overhanging end; that means, you see, you know like, we have a 

portion in which there is no bottom support is there, the overhanging part is there of the 

beam as shown in this particular figure. 

So, in this figure, you see here what we have? We have A and D. So, in this figure, you 

see, we have the two main reaction supports are there at point A and point D. And, you 

know like, simply by a force balance, we can simply calculate this reaction forces at R 1 

as it is, you see, the 500 Newton and R 2 which is 1300 Newton. And what we have in 

this figure is just the UDL, which has the intensity just say the same thing, you see, 

which we have taken that 400 Newton per meter. And the span of this 3 meter for the 



total, you know like, the UDL spreading. And, you see, the UDL is starting from same - 

1 meter apart from the point A and it has a 2 meter from point D.  

But the key feature is that, whatever the point load is there, which was in the previous 

case exactly matching with this reaction force; now it is hanging; it is just going beyond 

the point D and it is overhanging portion is there, which is just, you see, the 2 meter apart 

from this reaction force, this D and it has the 600 Newton at point D. So, that means you 

see, whatever the slope or, you see, the deflection will come, it will come you see, you 

know like, in this way, as you can on your screen the diagram, just this is the slopey 

equation for the A to D portion. Then, you see, we have the deflection portion at this 

because of this point load is there at the free end. 
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So, we need to evaluate those things. So, first exactly, you know like, the same 

procedure is there. We need to write the moment equation for, you know like, the entire 

span of the beam which is just valid, you see, right from point A to D to E and then what 

we need to do here, we need to simply apply that, you know like, the different boundary 

conditions with those things incorporating, you know like, all those what the kind of the 

elastic curve is coming and what you see, you know like, the kind of the brackets or the 

parenthesis is coming in the way. 

So, starting from the first thing, a simple EI into d2y by dx square is nothing but equals 

to the bending moment which is equals to, you know like, from point A starting, you 



know keep this thing that, you see, at point A… point A is nothing but the reaction forces 

is there. we just going upward direction, so we have 500 into x minus 400 by 2 into x 

minus 1 whole square because UDL is starting from point 1 apart from, you know like, 

this point A. So, we have, you see, starting point of UDL which has the intensity of 400 

Newton per meter. So, 400 by 2 x minus 1 whole square plus now, you see, this UDL has 

a total span of 3 meter. So, the total distance from point A is 4 meter. So, we have and 

the same intensity of the UDL is there - 400 Newton - 400 Newton per meter. 

So, 400 by 2 x minus 4 whole square plus now at point D, the reaction force is just going 

above the, you know like, the top up portion. So, we have 1300 into x minus 6 Newton 

meter. And you see, you know like, just by integrating that, we have first the deflection 

part, first the slope part EI into dy by dx, which is nothing but equals to, you know like, 

just by integrating that part we have 250 x square minus 200 by 3 x minus 1 whole cube 

plus 200 by 3 x minus 4 whole cube plus 650 x minus 6 whole square plus C 1, that is 

the first integration constant, and then again, you see, by integrating that, we have the 

deflection part. So, EI into y which is the deflection point is there is nothing but equals to 

250 by 3 x cube minus 50 by 3 x minus 1 to the power whole 4 plus 50 by 3 x minus 4 to 

the power whole 4 plus 650 by 3 x minus 6 whole cube plus C 1 x plus C 2. So, now, you 

see, by keeping the boundary conditions of the loading conditions at different, different, 

you know like, the segments, we need to put those values and we need to get the 

integration constant C 1 and C 2. 
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So, to determine those, you know like, the C 2 value again you see, you know like, we 

know that at the starting point - at point A - it is a hinge joint; so, there is no deflection 

point is there. So, at x equals to zero, we have this y equals to zero or we can say that E 

into I y is equals to zero. So obviously, we have the C 2 equals to zero for the same thing 

as we have, you know like, justified the previous case; note that the negative terms in the 

pointed brackets to be ignored or to be neglected. 

So, again, you see, this is the basic phenomena is there in the Macaulay method that 

whatever the negative values are coming in the parenthesis you need to ignore, and then, 

you see, again whatever the positive values are there, we need to consider and then 

evaluated the total impact of this moment. 

Now, next you see, let us use the condition of E into y equals to zero at the right portion; 

that means, at x equals to 6 meter, because here, you see, the reaction force is coming 

from the bottom part we have a hinge joint; so, there is no deflection point is there. So, 

EI into y at equals to 6 is zero. 

So, by keeping that value what we have? We have zero is equals to this 250 by 36 cube 

minus 50 by 4. Now 6 minus 1 was there or x minus 1 was there. So, 6 minus 1 that is 5 

to power 4 plus 50 by 3 2 to the power 4 plus 6 C 1, because you see, C 1 x was there. 

So, now we have the value of C 1 is minus 1308 Newton meter square. So, you see, by 

keeping the value of C in this main equation what we have? We have the total, you know 

like, the phenomena is there that, at what the kind of, you know like, the loading 

conditions are coming and what the moment is there by incorporating C 1, this minus 

130 8 and C 2 zero we have total equation for that. 
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Finally, you see, our main intention to obtain the mid span deflection. So, for that let us, 

you know like, substitute the value of x equals to 3 meter in the deflection equation for, 

you know like, the segment BC because in the segment BC this x equals to 3 meter 

existing because, you see, this UDL starting from point this x equals to 1 meter, x equals 

to 4 meter. So, the total, you see, x equals to 3 will come in the segment BC. 

So, you see here, just to update by ignoring the negative values of the bracket in terms of 

x minus 6, obviously you see, you know like, or x minus 6, whatever the things are 

coming in terms of minus 4 or minus cube we have the negative values. So, this 

bracketed are to be neglected. So, now what we have? We have the EI into y for 

calculating the maximum deflection at x equals to 3, because if we keep x equals to 3 in 

x minus 4 we have the negative value; if you x equals to 3 in x minus 6 we have the 

negative values; so, these two parenthesis has to be ignored.  

So, what we have? We have EI into y which is equals to 250 by 3 into 3 to the power 

cube minus 50 by 3 2 to the power 4 minus 13; this is C 1 value 1308 into 3. So, we have 

the total deflection value EI into y is nothing but equals to minus 1941 Newton meter 

cube. So, this is the deflection at x equals to 3 meter. 

So far you see, overhanging portion because, you see, still what we have done? We have 

simply calculated in between x equals to, you know like, at x equals at A point D point. 

So, now you see, but we have again one loading condition which has an impact on the 



deflection portion and, you see, for that we just want to check that because of that 

whether the deflection is more than this point or what? So, for that, you see, what we 

need to do? We need put the x equals to 8 meter, where this 600 Newton point load is 

acting. 

So, for that now we have this equation - deflection equation - EI into y is nothing but 

equals to 250 by 3 8 cube minus 50 by 3 7 to the 2 power plus 50 by 3 4 to the power 4 

and, you see, we have see, you know like, just by keeping x equals to 8, all those 

parenthesis is positive. So obviously, you see, we have to consider all those bracket 

values for the segment of the loads. So, 650 by 3 2 to the power cube minus 1308 into 8 

because x equals to 8. So, what we have? We have EI into y is nothing but equals to 

minus 1814 Newton meter cube. 

So, meaning is pretty simple, that if you check it out both the things we have the 

maximum deflection exactly in between the point A and D, and we have the another 

deflection at point the E where, you see, the 600 Newton is there, but the maximum 

deflection is coming in between the segment BC. 

So, this was the example, you see, only if we have the overhanging condition then how 

to calculate the deflection for different different segments? So, obviously, we need to 

consider the moment, you know like, the equation for the overhanging conditions is 

separately and then we need to calculate the deflection as well as slope for that particular 

segment. 
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Come to the last example. We have again the same simply supported beam, which 

carries a triangular distributed load. So, you see here now, the load itself is you know 

triangular; that means, you see, it is in the triangular shape. So, at the two extreme 

corners we have the minimum load, but exactly at the centre portion we have the 

maximum which has the intensity of w zero Newton per meter; just we need to calculate, 

you see, the maximum deflection equation and the value of maximum deflection for that. 

So, you see here, what we have? We have in the equation, in this particular figure, at 

point A to C this deflection curve is there, on the bottom of that you can see here and for 

that, you see, we have the reaction at point A and point D is the same, that is w zero L by 

4, w zero L by 4. So, if we cut the portion, just take this particular portion out, and if, 

you see, if you analyze those things what we have, we have simply the loading condition 

and we know that the centroid is exactly acting at the one-third of, you know like, this 

from left hand portion or two-third of the right hand portion. 

So, from that, simply taking the total distance, as you see, L is there. So, L by 2, L by 2 

for this L by 2 portion we have this, you know like, we have you see, the kind of you 

know like, the loading condition w zero x square by L for that and it is simply carried out 

from this x by 3 distance at this way. So, we have this load, at this particular way, this is 

w zero L by 4, this is, you know like, the reaction force is there on the top of that and on 

the bottom of side, you see, we need to consider the regularity of that and, you see, since 



it is a varying load, so obviously, we need to take, you know like the what the kind of 

variation is there and incorporating that variation zx by 2 equals to w 0 x square by L 

which is to be acted at this one-third distance of this.  
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So, you see, here with those configuration, we can simply calculate, you see, what will 

be the maximum or what will be the deflection is there at different, different segments. 

So, due to the symmetricity again, you see, this is pretty important thing here that we 

have the symmetricity in this loading; means it is just, you see, at the extreme maximum 

at this particular joint section and we just, you see, going downward, you see, and going 

to be the minimum at the extreme to hinge joint. So, the reactions at is one-half of the 

total load; so, obviously, you see, it is 1 by 2 w zero into L as, you see, R 1 and R 2 

which we have already seen that, w zero L by 4 is there. And due to the advantage of the 

symmetricity, the deflection from A to B is a mirror image of obviously, C to B.  

So, simply we can cut these two portion and if one portion showing the same deflection 

as well as the slope obviously, the another triangular is showing the similar kind of thing, 

because it has the mirror image of that and the condition for zero deflection at the point - 

at point A, obviously you see, the zero slope is there at point B; do not require to use the 

general moment equation for entire span of the beam, because one part is valid to the 

another part; equal segments are exactly symmetric. So, only the moment equation for 

the segment AB is just required as I told you because of the symmetricity and this may, 



you know like, just make our analysis is simple. And you need to write only for, you 

know like, as I shown in the previous figure, all we need to show the just one figure of 

half of the portion, and then whatever the analysis there, which is pretty, you know like, 

similar to the another thing. So, taking in to the account of the differential equation of the 

elastic for segment AB, now integrating twice just, you know like, for the entire beam. 
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So, what we have? We have EI into d 2 y by dx square which is the moment equation for 

AB is equals to w zero, you know like, L by 4 because of, you know like, the point this 

reaction forces are there on the top of that. 

So, this R into A you can say, or w zero L by 4 into x minus w zero x square by L, which 

you see, you know like, the combined load is there, which is acted x equals to, you know 

like, at one-third distance x by 3 or we can say by integrating that we have the slope as 

well as the deflection. So, slope is EI into dy by dx is nothing but equals to w zero L x 

square by 8 minus w zero x 4 by 12 L 12 into L plus C 1, or we can say EI into… EI is 

nothing but equals to the deflection equation is w zero L x cube by 24 minus w zero x 

times 4 divided by 60 L plus C 1 x C 2. So, C 1 x C 2 are nothing but you see, you know 

like, this integrating constants are there. 
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So, again by keeping those boundary conditions we can simply get the C 1 and C 2 

value. So, again the similar kind of things are there, because this is the simply supported 

beams. So, both ends A and C are nothing but, you see, has the zero deflection. So, at x 

equals to zero the starting point A, we have the deflection y equals to zero; so obviously, 

C 2 equals to zero and then, you see, because of the symmetricity dy by dx; that means, 

the slope at mid of the span; that means, at x equals to L by 2 is zero always. So, keeping 

those conditions what we have dy by dx… EI into dy by dx just keep zero we have w 

zero L divided by 8 and x square was there; since x equals to L by 2. So, L by 2 square 

minus w zero divided by 12 L L by 4 to the power 4 plus C 1 into C, you know like, 

whatever you know these conditions are there. So, we have L by 2. So, C 1 is nothing but 

equals to minus 5 times w zero L cube by 192. So, keeping this C 1 value in the main 

equation we have the entire, you see, the coefficients with those boundary conditions. 



(Refer Slide Time: 49:27) 

 

So, you see here the deflection equations from A to B, also from C to B, because it is a 

symmetricity is there, we have EI into y is nothing but equals to w zero L x cube divided 

by 24 minus w zero. Because it is the intensity of that triangular load x 5 to power 60 L 

minus 5 w zero L cube x by divided by 192. So, this is the total equation of the entire 

beam of there, and now, you see, we can simply reduce this equation by taking all those 

w zero L x cube and just taking out. 

So, we have EI into y is nothing but equals to minus w zero x by 960 L, if you taken then 

we have 25 L 4 minus 40 L square x square plus 16, 16 into x 4. So, you see here what 

we have? We have an algebraic in terms of L and x. So, we can simply calculate, you 

see, the maximum deflection because we know that at exactly mid span at x equals to L 

by 2 we have the maximum deflection is there. So, we have EI into y the maximum is 

nothing but equals to minus w zero L 4 divided by 120 for a triangular load, and you see, 

the simply supported beam is to be supported.  

So, you know like, and by keeping, you see, the value of E and I it is pretty simple to 

calculate what will be the total value of the deflection is there for these terms. So, in 

these you see, you know like, the lecture we mainly discussed about the Macaulay 

method and Macaulay method is very much suitable for, you know like, when the 

changing of the load is there and if you want to calculate the moment for a different, 

different segments. 



So, you can pretty easily you see, you know like, describe those segment by a unit 

function - approximate function - or we can say, you see, the Lagrangian’s function and 

then only by keeping the thing in your mind that if the negative values are there of the 

parenthesis you need to ignore that part. Only you need to consider the positive value 

and by integrating all those things, we can simply calculate moment, deflection, as well 

as the slope of those conditions. 

And then, you see, if you keep those, you know like, the boundary conditions you have 

all those coefficients - integrating coefficients - and you can evaluate also where the 

maximum this slope or this deflection is there and what is the value of this maximum 

deflection is. 

So, in this, you see, only we discussed about when we have a point load and we have the 

UDL, but if we have a combined load altogether, that means, you see, if they are 

combinedly acted on a beam and if the beam is having itself, you see, a different cross 

section then, you see, how we can calculate the deflection. And how we can calculate the 

slope, you know like, we are going to discuss in the next lecture that how we can 

evaluate those things. So, for this lecture I think these, you know like, the Macaulay 

method is sufficient and you just try all those numerical problems again, then you can 

again clearly, you know like, see the feasibility of this parenthesis. Then how write this, 

you know like, the moment equation for that. And once you write the moment equation 

here, half of the question is solved and then only you need to put those boundary 

conditions to get the value of deflection as well as the slope. 

Thank you. 


