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Hi. This is Dr. S. P. Harsha from Mechanical and Industrial Engineering Department, IIT 

Roorkee. I am going to deliver my lecture 20 on the course of Strength of Materials. And 

this course is developed under the National Programme on Technology Enhanced 

Learning (NPTEL). Prior to start this lecture, I just want to refresh you like that, what we 

have done or what we have discussed in the previous lecture. 

As you know that, actually, if we have rotating shaft and, you know like, under this 

particular shaft rotating, if any kind of twisting moment is applied or any torque is there 

at the extreme corner or there is a couple is there at the extreme corner, then what will 

happen. Then we found that wherever you have seen like this kind of torque is there, 

then this shaft is purely under the state of first shear stress and whenever you see, you 

know like, we are just keeping our torque under the elastic deformation only. 

Then we can simply setup the relationship between the shear stress which is there, and 

due the shear stress whatever the shearing strain is coming out, whatever the distortion is 

there, the angular twisting is there, you know like, we can simply setup the relationship. 

So, the shear stress is there, shear strain is there, then you see, you know like, the 

modulus of a… shear modulus of rigidity is there. And then, when we are talking about 

that, the applied torque is there and due that the shearing stresses are there, the shearing 

stresses are there, and angular twist is there, and the shear modulus of rigidity is there. 

We were just trying to, you know like, setup the relationship, and you know, like we 

observed that there is a straight relationship is there in between all these technical terms 

as T by J. T is the applied torque and J is the this modulus of, this section modulus of 

inertia or we can say whatever, you know like, the polar moment of inertia is there for 

the area. 

So, as you see, you know like, for the inertia if you are talking about this, so T by J is 

equal to tau dash by r or tau by r, whatever. You see, if I am saying that the shear stress 



is there at tau for any radius r, so T by r or tau by r, tau by capital R or tau dash by r is 

equals to G theta by l. 

So, this relation we setup, but to setup those relation, you see, we assume many things 

like, you know, like that we have whatever the material of this simple circular shaft is 

there is a homogeneous material, in which all the elastic properties are uniform in any of 

the direction is there. Then second, also our main assumption, was there that whatever 

this torque or the load application is there through which this stresses are forming, the 

shear stresses forming, this is under only the elastic deformation. 

So, we can simply define all those elastic constants like the shear modulus of rigidity, 

like the stress or strain, whatever you see or we can say, you see the Poisson ratio or 

whatever the last you know. Or we can say Hooke’s law is valid within that and also 

apart from these two, do these two begins since we assume that cross sectional area of 

the circular shaft is uniform throughout the length of this particular circular bar; with that 

also we assume that the uniform cross section means actually it does not have, you know 

like, the different, different segments. 

So, if we see, if you want to compute the shear stresses for a small section, we can 

simply put, you know like, the integration to capture the whole, either the deformation 

or, you know like, the torque or whatever like that. So, these kinds of assumptions, 

which we made to, you know like, analyze this T by J is equals to tau dash by r is equals 

to G theta by l. So, that is that what you seen, you know like, we discussed. 

And also, we found that actually if we are talking about the shear stresses or shear strain, 

the shear strain is always can be easily captured by knowing the total distortion, that 

actually how much total distortion is there. Or once you know the total distortion the vice 

versa is there the shearing stress can be, the shearing strain can be easily computed. So, 

that, that is what we discussed the, you know, like in the… and then also we calculated 

that if you know the applied torque and if you know, you see, due to this, you know like, 

what are torque is there or if you know that what is the power capacity of the shaft is 

there, that, you know like, what is the power developing because always the rotating 

shaft, the basic feature of the rotating shaft is power transmission. So, once you know 

that how much power you are transmitting and you see what is the speed of the shaft is 



there, then you can also calculate the applied torque. So, means how much torque is there 

by P equals to two pi N T by 60 into 1000 as in kilowatt.  

So, this kind of discussion, you know, like, which made in the previous section, so, again 

you see we are going to start in this our lecture 20 with the small portion of that, that 

actually, what exactly, you know, like the things are there, how we setup the relations, 

and then, you see, we will move that actually once, you know like, we are setting up 

those relations, then how we can, you know like, solve that numerically, that what the 

numerical real applications are there of this kind of formula, under these particular 

assumptions. 

 So, here you see, you know like, again the simple torsion equation, which is the basic 

torsion equation, is as we discussed, that T by J which is equals to tau by r, which is 

equals to G theta by l, or we can say that whatever the shearing stresses are coming, the 

responsible form for, you know like, inducing the shear stresses are G theta r by L. 
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That means what is the…what properties are there, through which the shear modulus of 

rigidity is coming? How much angular twist is there under the application of this tau or 

the torque? And what is the radius is there? Because as you move, you know like, right 

from axis to the outer circumferences the shear stresses are increasing. And also we 

know that actually the shear stresses are always maximum at the outer periphery of that. 

So, you see how this r is increasing and divided by what is the total length is there. 



This states, that is what you see, you know like, the sequence states that shearing stresses 

varies directly as the distance r. That is what you see, our matter of concern is from the 

axis of the shaft and the following stresses, you know like, the stress distribution in the 

plane. Now, you see we are going to discuss about that how this distribution of the 

shearing stresses are there in the plane of the cross section, and also, you see, how the 

complementary shearing stresses are, you know like, featuring against, you see, the 

applied shearing stresses r. 

So, now you see, we would, you know like, see in the different section in the next slide 

that how these shear stresses are forming. And then, you see we will find that if you see 

this particular figure, then you will find that we have a cross section of the circular shaft 

and if you cut the portion, then you will find that this is origin through which the shear 

stresses are beginto form, and then as you move towards the extreme corner, and this is 

you see, you know like, the maximum tau is there. 
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So, you will found that this is, you know, like my center of axis and either you are going 

in this direction, this you see here this is small, you know like, the stresses have begun to 

form, onset of the shearing stresses are there, and as you move further towards the outer 

circumferences or outer periphery of this particular shaft, you will find that the 

maximum shearing stresses are there. So, this as I told you tau is proportional to r. So, 

here as r is zero here, this see, there is no shear stress, and r when r is R - the capital - the 



maximum part you have tau is the maximum shear stress irrespective of this direction or 

irrespective of the downward direction. 

So, here this, this, you know like, variation or this variation will clearly signifies that tau 

is directly, tau is directly proportional to the radius specified. So, for this region or if you 

simply say on the plane region, for a solid shaft, then you will find that we have, you 

know, like this is a kind of solid shaft and this is the ray origin of the solid shaft, and as 

you move further right from, you see, zero to the extreme corner, you will find that the 

origin, that is the no shear stress, but as you move towards the outer circumference or 

outer periphery of the shaft you will have the maximum shear stresses; so, this is the 

maximum shear stress. 

Or even if you see that… actually if you have solid shaft, then we have, you see, this 

region where this solid, you see, hollow is there, and this is my inner diameter, this is my 

outer diameter of a solid shaft. So for that, you can simply signify that the stresses have 

beginto form at this particular region, because this is the hollow region is there. So, in 

that particular, in the micro structure all the layers of this particular solid region or 

intermediate region, they are simply inducing under the action of shearing action. 

So, starting from this region, even at this particular point, we have some shear stresses 

and if you go beyond, then you can simply find that at the outer periphery of the shaft 

you have the maximum shear stresses. So, all and all, the main thing is that the shear 

stresses have beginto form from the origin of the shaft and it is always maximum at the 

outer periphery of the shaft. So, whenever the torque application is there, on any circular 

shaft, if you are simply cutting from the neutral axis, you will find that the shear stresses 

are not there on those neutral axis. 

But when you start from, you know like, the neutral axis or the central axis, two outer 

periphery, you will find that the, all those, you know, distortions are coming right from 

that portion and it is that maximum distortion is there at the outer periphery, because the 

shearing action is maximum at the outer periphery. So, you see, you know like, as we 

discussed in the previous section also that, this tau dash by r is nothing but equals to G 

theta by l. So, tau is proportional to r or we can say that, you see like, the theta is there. 

So, angle of twist is also maximum in the corresponding section. As you see the r is 

increasing. So, this is, you know like, the coiled the signified terms are there, as you can 



clearly visualize in these kind of figures. So, the maximum shearing stresses occurs on 

the outer surfaces of the shaft where r is equals to R - capital R. 
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So, now you see, the value of… now we would like to see that what exactly is the value 

of the maximum shearing stresses are forming when we are saying that irrespective 

whether it is a solid shaft or whether it is a hollow shaft. 

So, by visualizing that previous figure, we found that we have a maximum shearing 

stresses at the outer periphery where the maximum radiuses is there. So, again by 

considering the same formula tau, tau by r is equals to T by J, now our main interest is 

where the maximum shearing stress is. So, now you see tau maximum, which we are 

taking, as, you know like, the r is equals to d by 2, the maximum radius which is equals 

to T into R. So, R is now we are taking as a capital radius. So, this T into R divided by J 

or we can say T, J is nothing but equals to pi d 4 divided by 32; this is the polar moment 

of inertia. 

So, if you are keeping those values and if you convert this R into d by 2, we are, you 

know like, having a kind of formula as T into d by 2 divided by pi d 4 by 32, where d is 

the diameter of the circular shaft. So, we can get the tau maximum in terms of this 

diameter, and this, whatever the torque applied is equals to 16 T divided by pi d cube. 



So, please remember this thing that we have, whenever a torque applied is there on a 

circular shaft and due to the torque applied, you see, we have this shearing stresses are 

forming and they are forming right from this central axis to the maximum of the radius, 

the total circumference - outer circumference. That means, you see, it is passing from 

zero r to the maximum R - capital R.  

So, you see, here if we are talking about that term, then we have the tau maximum, that it 

is the maximum shearing stresses, they are nothing but equals to 16 T divided by pi d 

cube, which is a very good formula for any kind of numerical problems. So, from these 

relations, we can simply conclude that the maximum shearing stresses are the function of 

applied torque, because, you see, tau is proportional to T; so, obviously, you know, like 

whenever more torque is applied, more couple is there, more twisting, you know like, 

moment is there.  

The corresponding shear stresses are always maximum, because you see, you know like, 

the more and more distortions are there or there shear stresses is nothing, but you see, 

these are internal intensity of resistive forces across the plane. So, whenever the more 

torque is there, more internal resistances are coming out from the circular shaft and 

corresponding you see more stresses are there. So, obviously, this is quite signifies that 

tau maximum is always proportional to T. 

The second relation is there tau maximum is proportional to 1 by d cube. So, as you 

move further, as, you know like, it is a inverse. So, as we have more and more diameter 

it is a cubic term, and you see, corresponding the shearing stresses are there. So shear 

stresses are more for ,you know like, the more torque, but it is always less for more 

diameter. So, you see, if we have the small shaft more torque is… if more torque is there 

more shear stresses are there. So, this can be easily concluded if the using of this 

formula. So the tau maximum formula is 16 T divided by pi d cube. 

So, now you see, once you have the torque, whatever the torque is applied on a circular 

shaft, you can simply calculate that what will be the power transmission as we have 

discussed in the previous case, that whatever the given power transmission is there and if 

you know the speed of shaft, that is N rpm, N is, you know like, the revolution per 

minute, then probably, you know like, you can simply get that how much torque is there 

or once you know the torque you can simply get the required power. 



So, power is nothing but equals to T into this omega; omega is nothing but equals to the 

angular rotation. So, it is always equals to… since it is angular rotation is there, so how 

much total periphery is coming? So, it is 2 pi into this N. N is the total rotation - that how 

much it is rotating per minute. So, 2 pi N by 60 will give you the total angular rotation of 

the shaft and once you multiply by the torque applied you will have the total power. 
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So, P is nothing but equals to T into 2 pi N by 60 or in terms of watts or you see if you 

want to calculate in terms of kilowatt then we have 2 pi N T divided by 60 into 1000. So, 

you see, you know like, always we are calculating for power that, this much power can 

be easily transmitted from the shaft. So, probably, you see, once you know the power, 

once you know the total rpm, then only you can calculate that. 

If you want to transfer this much power, this much torque can be easily generated or if 

you know the applied torque, if you know this N rpm, you can simply calculate the 

power generation or power transmission. So, this is, you see one perfect application of 

this shaft is there or circular shaft whenever the torque application is there and whenever 

the rotation is there. So, now you see, you know like, once you have this kind of 

relationship you can again, you know like, get this particular one term as which we 

discuss the torsional stiffness. Because, you see, whenever we are talking about a kind of 

a, you know like, this stresses, strains, and all those kind of things, one must have to 

know that actually how much stiffness is there; that means, how much deformation or the 



distortion can be taking place under the application of the applied torque. So, once you 

know that this, this is hard or this is more, you know like, stiff is there against the applied 

torque, then probably you know one can, one can easily define or design the applied 

torque, so that, you know like, the less deformation or less distortion is there and 

corresponding less, you know like, this stresses can be formed. 
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So, again you see this term - the torsional stiffness - is nothing but equals to, it is the 

ratio of the torque per unit what the twisting is there. So, k is nothing but equals to T, 

which is applied torque divided by what is the angle of twist. Or we can say that it is 

nothing but equals to G J by L or we can say k is equals to G J by L. So, k is not only the 

depending parameter on the torque as well as this twisting part, the twisting, this angle, 

but also it also depends on that what the material property is there. That means which 

material you are using? The material is more tougher, the material is more stiffer against 

the load. So, corresponding value as G is coming the shear modulus of rigidity.  

And then, what is the area? Means what is the section modulus of inertia is? So, you see, 

section modulus of inertia is absolutely dependent on what the area is pi d 4 by 32. So, 

again, you see, if you have taken a small diameter, definitely, the corresponding stiffness 

is there. So, it depends on G J and divided by the total lengths; if more length is there, 

definitely, you know like, the less is stiffer properties are there, because you see, you 



know like, it is distributed all along the circular shaft of the length. So, obviously, you 

know like, we have the lesser, this deformation is there in that particular shaft. 

So, meaning is pretty simple. You see, if you want to calculate the power transmission or 

if you want to calculate the torsional stiffness of a circular shaft that can be easily 

calculated if you know the applied torque. And if you know the rpm, then this power is 

there, and if you know the angle of twist it is the torsional stiffness is there based on the 

applied torque. So, from the ductile material source, since we are talking about this 

stiffness, that means the deformation, it is always, you see, we are going with the which 

kind of material is there. As I told you, the G is there, so it is absolutely clear this 

property of material. 
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So, for a ductile material, the plastic flow begins first in the outer surface, because you 

see, as we know that when you apply this, when you apply the torque, we have the 

maximum shearing stresses are there at the outer periphery. So, whenever you see there 

is a deformation is there in the layers, the outer periphery, firstly, you know like, gives 

you the kind of plastic flow. So, plastic flow the onset of the plastic flow is starting from 

this outer surfaces only under the action of this applied torque. 

So, for a material, which is weaker in shear - please focus on this point - if we are taking 

a material, which is weaker in a shear longitudinally than transversely, that means, you 

see it is weaker in shearing part as compared to this transverse; that means, the torsional 



part. For instances, if we have a wooden shaft with the fibres parallel to the axis, means 

we have a wooden shaft and all those fibres in the wooden shaft, they are just parallel to 

the axis towards the axis. 

So, the first cracks will be produced by the shearing stresses acting in a parallel axis; that 

means, you see, you know like, the first, the onset of the shearing stresses are always or 

we can say the plastic flow begins from the outer surfaces, and then, they will simply, 

you know like, all those, you know like, the shearing stresses, they will come on the 

upper of the surfaces of the shaft in a longitudinal direction. So, you see, first they will 

start from the outer surfaces and then they will distribute accordingly. So, if this kind of 

material is there, but if we have in case of material which is weaker in the tension than in 

shear. 
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So, now the things are different. In the previous case, we had a material, wooden shaft is 

there, which is weaker in the shearing action as compared to the tensile action, because, 

you see, always you will find that the wooden parts are always… they can bear up to 

maximum tensile; they can be long aided. But whenever you see the torsion or the 

twisting is there, they are simply, you know like, the layers are coming out from this 

surfaces and the rupture is starting or we can say the plastic flow is starting from that. 

But if we have a material which is even weaker in a tension side as compared to the 

shearing, for instance, if you are taking a circular shaft of cast iron - cast iron is a ductile 



material. So, in a ductile material always we found that they are, you know, the whatever 

the layers are in the… whatever the layers are there, they are well absorbed in this or 

they are well very much harder. So, they are they can be easily absorbed under the 

compressive action. 

But if you are applying the tensile loading, then these layers are easily taking out from 

this particular origins. So, if we have a circular shaft of the material of the brittle - like 

the cast iron or a cylindrical piece of a chalk - like whatever the chalk is there which is 

absolutely a brittle material; no this ductile it is there, that means percentage elongation 

is very small, a crack along a helix inclined at 45 degree will be starting to the axis of the 

shaft. That means, you see, what we have, whenever we are simply applying this kind of 

twisting, for this kind of material of the cast iron bar or we can say a cylindrical piece of 

cast iron, of this chalk particular, if these, you know, like this kind of material is there 

and if you apply this loading, then always the crack starts in a helical way. 

So, you see the arc forming on the outer surfaces, and they are, you know, helical with 

the inclination of 45 degree to the axis of shaft. So, this is a perfect, you know like, this 

kind of two special cases are there, and if you want to, you know, like analyze those kind 

of shearing actions under the application of, you know, like the torque, always we would 

prefer that actually, that the material should be ductile and it should, it can, you know, 

like resist the maximum shearing stresses, so that if we want to, you know, like rotate or 

if you want to simply transmit the power, that kind of material is always applicable if 

the, you know, like resist a maximum shearing stresses. So, that is what, you know like, 

if you want to explain that kind of phenomena, then the explanation is pretty simple, that 

this all things are, you know like, there.  
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This is because of the fact that the state of pure shear stress is equivalent to the state of 

stress in tension in one direction and equal. Similarly, you see, equal in the compress, in 

the perpendicular directions. So, that is what you see, you see when we are saying that 

there is a tension is there in a particular one direction, obviously, mutually perpendicular 

direction we have a contraction or we have a compression. 

So, a rectangular element cut from a outer layer of a twisting shaft with the sides of 45 

degree to the axis, will be subjected to a such a stresses and the tensile stresses can be 

easily, you know like, produces with the helical this crack monitoring. So, if you, if you 

are talking about that we have a chalk of this particular material, any material of the 

chalk, or we can say if we have a cast iron this circular shaft, and if you are applying the 

twisting moment, and which, you know like, always, since they are, you see very, they 

have the less tendency towards the tension, but they have a very good things as far as the 

shear stresses are coming. 

So, you see, whatever the deformations are there, as we discussed that actually starting 

from zero at the central axis and they have the maximum, you know like, the shearing 

stresses at the outer periphery, when you see, when you are simply cutting the angle at 

45 degree.  
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So in this figure you see we can clearly show that, we have a circular shaft here and, you 

know like, starting from this region what we have, you have pretty similar, you know the 

symmetric regions are there, but as you move further in this 45 degree angle, you know 

like, we are having this 45 degree. So as the helix angle is there, you see this is the 

helical shape is there. So, as you apply the torque there, stresses are forming and they are 

forming at the maximum at the 45 degree, and they are in the shape of the helical, and 

you can see here this stresses, so they are in the tensile way. At the one end, you see it is 

simply tensile, but in the other region we have the compressive in the nature. And these 

are, you know like, the applied torque is there, this is the resistive torques are there, and 

they are simply forming in the helical shape at maximum at the 45 degree. So, this is the 

45 degree which can clearly shown in this particular diagram. 

So, you see, you know like, as we have a different kinds of shape and if you are talking 

about, you know like, the material which is good in tension and less in shear stresses, 

those you see, you know like, this wooden plates are there with which they can clearly 

exhibit this kind of relation, but if we have, you know like, if they are good in tension. 

If they are not good in tension, but they are good in shearing, then you see these kinds of, 

you know like, the examples are perfect for just to show the shearing stresses are 

occurring as well as the tensions are. 
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So, now you see in the previous section we discussed about that kind of phenomena, but 

now you see, if we have, if we want to transmit the power, and if we have a hollow shaft, 

so what will be, you know like, the torsions are there within those hollowed shaft? We 

would like to setup the relationship for that. 

So, from the torsion of the solid shaft of a circular cross-section it is seen that only the 

material at the outer surfaces of a shaft can be stressed to the limited assigned as 

allowable working stresses. That means, you see, know like as we discussed that if we 

have a circular shaft and if we want to see that how the shearing stresses distribution are 

there, always we simply cut the section and found that in … we showed in this particular 

transparency also that as we are moving from, you know like, zero central axis to outer 

periphery starting from zero, and you see, you know like, this kind of layers are there; 

that means, you see it is uniformly varying all across the outer surfaces. 

So, as far as the solid shaft is concerned what we have, we have you know like, the 

uniform material is there, it is homogeneous is there. So, all those displacement under the 

action of twisting, you see, this displacement is uniform. So, the corresponding shearing 

stresses are also starting from zero to maximum is there at the outer periphery.  

So, you see it is always to be defined that whatever the stresses are there, if the stresses 

to be, to be you know, defined in the limited way as in allowable working stresses, and 

all the materials within the shaft will work at lower stress, and is not being used to full 



capacity, because you see, you know like, we simply apply and we apply the torque 

within the elastic deformation. So, we cannot go beyond certain limit. 

So, that is what you see now, what we are doing here? Here simply we are assuming that 

since it is a solid shaft and it is twisting, and though you see it has a uniform distortion 

all along the material, but we cannot go beyond a certain lead. So that actually, the 

permanent set or whatever the cracks can be started to form, and then, when the cracks 

are there or when there is a permanent distortion is there, the stress concentrations are 

there, and whatever the theory which we have applied, it is at valid.  

So, that is what you see here also what we are doing here? All the materials within the 

shaft it has to work with the lower stress limit, so that once you remove the load, it 

comes to its original way, and there is no stress formations are there within the element 

whenever the unloading is there, and it is not being used for the full capacity.  

So, now you see, thus in these cases where the weight reduction is an important, because 

weight is also a key feature in that it is advantageous to use a hollow shaft. So, hollow 

shaft has its own unique feature and in discussing the torsion of the hollow shaft, the 

same assumptions will be made as in case of the solid shafts. So, you see here also as far 

as the hollow shaft is concerned, we are again putting the same assumptions, and just I 

want to, you know like, repeat those assumptions so that actually it is just refreshing you. 

That, you know like, for solid shaft, we simply assume, the biggest assumption that 

actually our material is homogeneous and also isotropic. So that whatever the elastic 

properties are of the material, it is uniform and it is uniform in all the direction; it is 

showing, it is exhibiting all these unique properties in all three directions. So, one is that. 

And other assumption was that actually it is simply following the Hooke’s law; that 

means, whatever the distortion or the deformation is there under the action of shearing 

stresses, it is elastic region. So once you remove this torque or once, you see, remove the 

load applied, the body comes to its original shape without any kind of permanent set of 

deformation. So, this was the second.  

And third was, you see, whatever we are taking the cross section of the circular shaft, it 

is, it has to be uniform. So, in this also for this hollow shaft is concerned, we have to be 

very very careful that actually whatever we are taking the two different diameters, that 



both diameters are to be supposed to be having a uniform cross-section. There is no 

distortion is there that at the initial step we have bigger diameter or whatever the 

difference is there in the diameter, at one particular point of time it is more, at one other 

point of time it is less. So, this is not supposed to be there; otherwise, you see, whatever 

the theory which we are going to develop it is invalid. 

And then you see, you know like, the another assumption was there that whatever the 

material is to be there, it is, there is no cracks or spares or nothing has to be there. That 

means, there is no stress concentrations are there on the material. The materials well, you 

know like, surface finishing is there. So, whenever we just want to apply the torque, you 

see, whenever if because if any kind of distortion is there initially or any cracks are there, 

and if you apply, you know like, the torque, then it is simply showing the weaker section 

of the material. So, it has to be uniformly polished or we can say the surface finishing or 

whatever you see the honing, lopping all those process are to be applied just to have a 

perfect surface. So, that if you apply the load, these material show a uniform distortion or 

we can say that whatever the displacements are there of these microstructure, the 

material from one point to another point, it is simply exhibiting the similar kind of nature 

under the application of the load. So, these all assumptions are very much valid for the 

hollow shaft also. So, the general torsion equations as we apply, this in case of torsion 

also solids are will be holding a good amount of the similar kind of nature.  

Like you see, now like this torque is nothing but equals to 16. As we discussed that 16, 

you know like, T divided by pi d cube. So, this was there the tau maximum for this solid 

shaft or we can say, you know like, the T by, this T by J which is equals to tau dash by r 

which is equals to, you know, G theta by l. This is also, you know like, valid for the 

hollow shaft also as well for the solid shaft. So, now you see, you know like, you would 

like to again discuss all these kind of issues for hollow shaft, as we discussed for the 

solid shaft. 
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So, here, you know like, we have T by J as we discussed which is equals to Tau by r 

which is equals to G theta by l. So, for solid shaft what we had? We had, you know like, 

J G which is which was the nothing but this polar moment of inertia, which was nothing 

but equals to pi d 4 by 32, because d was the solid shaft diameter.  

But here, you see, what we have. We have the hollow shaft. In the hollow shaft, we have 

two different diameters. So, you see here the difference comes first here at the section 

modulus of this inertia. So, here it is, J is nothing but equals to pi, D outer periphery 

diameters. So, outer, D outer to power 4 minus d inner to the power 4 divided by 32. 

So, D, D 0 is nothing but the outside diameter. d i is nothing but, d i or we can say d 1 

whatever, you see, is nothing but equals to inside diameter, and d i, you see, if we are 

saying that, actually if we are simply sectioning these hollow shaft exactly at the middle 

of the portion, that means if I have a relationship in between d i and D o as 1 by 2; that 

means, d i is equals to D 0 by 2 and if I am keeping that in value of J, then what I am 

having? I am simply having the maximum shearing stresses. And because you see, you 

know like, as we setup the relationships in between the shear stress and the radius that 

tau maximum is there always when it is proportional to R. So, you know like, we have 

shown actually starting from zero, origin, if I going up to the maximum radius, that 

means, you see, outer periphery the shear stresses are maximum. So, by taking that 

condition what I am having? I will be having the maximum shear stresses, if I am 



considering d i is equals to D 0 by 2. So, by keeping this relation here, what I am having? 

I am having maximum stresses. As far as a solid is concerned, we already derived that it 

is nothing but equals to 16 T divided by pi Do cube. So, this is for solid shaft. 

Now you see what I am having here? I am having here this hollow shaft, this tau 

maximum for hollow is nothing but equals to T times D 0 by you see here, simply from 

this tau is G into theta into r by l. So, by keeping those things, or by, you know like, 

taking J, what we have? We have T into, you know like, this D 0 this, whatever the r is 

coming. So, dt into r. So, T into D 0 by 2 divided by this J; J is coming from this portion. 

So, pi by 32 D 0 to the power 4 minus di to the power 4. 

So, by now, you know like, analyzing those things what I have? What I am having? I am 

having 16 T divided by, you know like, 16 T into this, you know like, this 32 will be 

cancel out from this 2. So, we have this 32 will be coming on the top half side. So, 16 T 

into D 0 divided by pi, if I am taking D 0 out. So, D 0 to power of 4 what I am having? I 

am having 1 minus. So, this will be 1 minus d i by D 0 to the power 4. 

So, now you see what I am having, simply if I am keeping this value here, I will be 

having this 16 T divided by pi D 0 cube into 1 minus 1 by 2 to the power 4 or what I am 

having just if I am calculating those terms I will be having 1.066 into 16 T divided by pi 

D 0 cube. So, if you, now you see, you can simply visualize that if we have a solid shaft 

and if you want to calculate the maximum shear stress, the maximum shear stress is 

nothing but equals to 16 T divided by pi D cube 0 pi D 0 cube and if you are calculating 

the maximum shearing stresses for hollow shaft, then we have 1.066 into 16 T divided by 

pi D 0 cube.  

So, now you see, if you are comparing these two equations what we have. So, we found 

that the maximum shear stresses which are forming in the hollow shaft is 6.6 percent 

larger than as compared to the solid shaft. If we are taking you see, you know like, the 

shearing stresses maximum at this di by D 0 is there till half. So, now, you see, now you 

would like to see that once you have the 6.6 percent is more shear stress is. 

So, what about the weight consideration? So, how much weight reduction is there exactly 

if you are going for the same, you know like, the consideration of the hollow shaft. So, 

considering a solid and hollow shaft for the same length l and the same density rho. Only 



with the consideration of d i by D 0 is half, you can see that we have a solid shaft with 

outer diameter D 0. 
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And we have the hollow shaft with this inner diameter is exactly 0.5 D 0 and outer 

diameter is exactly half of this one. So, means we have, you know like, this half of D 0 

and outer diameter D 0, with those consideration now what will be the weight of the 

hollow shaft? 
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The weight of the hollow shaft is nothing but equals to pi D square 0 by 4 into l into rho. 

So, this is nothing but the outer surface of weight minus inner is pi d i. So, d i is nothing 

but D o by 2 whole square by 4 into l into rho. So, pi D square by 4 into l is the area into 

density will be the weight. 

So, you see here with that consideration, if you are going for that, then you will be 

having, you know like, pi D 0 square by 4 minus pi D 0 square by 16 into a length of the 

shaft into the density will give you the effectiveness of the weight of hollow shaft. Or if 

you are doing, like you know, taking pi D 0 square pi D outer square divided by 4 take it 

out, then we will be having 1 minus 1 by 4, because 4 is coming out, so 1 is here and 16 

is there. So, 1 by 4 will be there into l into rho. 

So, if you know like, 1 minus 0.25 will be 0.75 pi D 0 square divided by 4 into l into rho. 

Meaning is pretty simple that actually we have the weight of hollow shaft, which is 

absolutely depending on that what will be the outer diameter into what is the length and 

what is the density? And since, you see, it depends on what kind of material which you 

are taking, the density will be coming as usual. So now, this is for the hollow shaft. 

And if you are taking the solid shaft; so previous cases, if you are talking about the 

hollow shaft, we assume that the inner diameter is nothing but equals to outer diameter 

divided by 2, which is exactly we are taking in the middle portion of, we are taking out 

that portion exactly from the middle portion of the outer periphery. So, here if you are 

considering the weight of solid shaft it is nothing but equal to pi D 0, because we are 

considering that the whatever the diameter is there, that is the D 0 that pi D 0 square 

divided by 4 into l into rho. 

So, this is the weight of solid shaft; this is the weight of the hollow shaft. So what is the 

reduction of the weight? That means, you see, if we are taking, you know like, the 

middle portion out that how much reduction in terms of the weight is. So, this is 1 minus, 

you know like, this minus this. So, this is exactly pi D 0 square by 4 l into rho minus 

0.75 pi d 0 square by 4 into l rho. So, if you are simply minus it, then it is 1 minus 0.75 

pi D 0 square by 4 into l rho. Or we have 0.25 pi D 0 square by 4 into l into rho. Meaning 

is pretty simple that, you know like, if you are considering about the weight, then the 

total 25 percent reduction of the weight is there. 



If you are simply taking out, you know like, from a solid shaft the middle portion of the 

solid shaft is. So, total weight reduction is 25 percent, but, you know like, in terms of the 

shear stresses generating, because whenever the torque application is there, as I told you 

it is subjected to the pure state of the shear stress. So, the total shearing stresses are 

maximum 6.6 percentage larger in a hollow shaft as compared to solid shaft. 

So, you can simply compare the situation that even you see wherever if you want to 

design any component, and the weight is the proper criteria, then we would like to put 

the hollow shaft as compared to solid shaft; but if we are talking about the shearing 

stresses and this the dominant parameter as compared to any weight, we say respect to 

weight, we are not bothering about a weight, then probably, you know like, we would go 

for a solid shaft region, because in solid shaft we have a less, you know, at the same 

torque application, we have less shear stresses while in comparison with the hollow 

shaft. 

So, this is a quite comparison with the solid as well as the hollow shaft under the same 

application of torque and the same material as well as the same diameter is. So, this is a 

perfect comparison as compared to the solid as well as the hollow shaft. Now, we would 

like to apply those formulas in terms of the problem is specified.  
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So, here you see, we have a simple problem which you can see on your screen the 

diagram, this diagram is nothing but, you see, we have a two different diameters are 



there. So, this shaft is known as the stepped solid circular shaft, which is built in its own, 

you know like, the ends are there; the both ends are rigidly fixed. So, this is a great 

condition that actually both ends, we were not allowing any end to freely rotate. As you 

discuss that actually one, in probably you know most of the cases, that one end is rigid, 

one end is free. So, you can simply, you know like, put the apply the torque and it is 

simply rotating, means the twisting is there, but here the constraint is pretty simple that 

both ends are extremely fixed. 

And then, you see, if it is subjected to an external applied torque T 0 at the shoulder as 

shown in this particular figure. So, at this junction point now what we are doing here? 

We are applying a torque in counter clockwise direction as you can see here. So, now, 

there are two portions of that. This small portion, which has a diameter d 1 is total length 

of A is there, and the bigger portion which has a diameter d 2 has the total length as B. 

So, you see now, when we are applying a torque at middle portion, we would like to 

determine that what is the total angle, angle of a rotation is there? The theta is zero, you 

know like, of the shoulders section where t 0 is applied. That means you see, where ever 

this particular shoulders action is there, the junction point is there, where we are applying 

a torque, we would like to see that what the theta 0; that means, what will be the angle of 

rotation is? 
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So, for that you see first we would like to discuss about what the steps to be followed. 

So, this action is statically indeterminate system because there are two systems are there, 

and both are rigidly fixed at the extreme two corners, and they are, you know like, joined 

with the junction, and at this particular junction we are applying a torque, and because 

the shaft is built in both ends, and both ends are fixed, and all that we can find from the 

statics is the sum of two reactive forces you see. Because as we apply the torque, there is 

a resistant torques are there at the two extreme corners though they are rigid, but they are 

tending to move in a opposite direction as compared to the T 0 applied. 

So, you see, if you are simply applying… since and we are assuming that it is statically 

indeterminant system is there. So, these two reactive torques T A and T B at the two 

level string corners A and B are always built in these particular ends of the shaft. They 

must be equal to the applied torque; then only we can say that the system is in an 

equilibrium manner. So, by applying this particular statics what we can say that the T A 

plus T B, because both are applying in a same manner, but exactly opposite to the T 0. 

So, T A plus T B is equal to T 0, or we can say that T A plus T B means the total torque 

at the two reactive ends is minus T 0, the applied torque will be 0 or we can say that it is 

under the application of these torques, action and the reactions, the system is in well 

equilibrium manner. 
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So, after you see, you know like, when T A and T B are reactive torques and they are 

you see, you know like, coming due to, you know like, the applied torque at these two 

extreme corners T B, at these two extreme corners A and B, and T 0 which we are 

applying at this contact point of these two shafts. So, after consideration of these, you 

know like, the torque what we are, you know like, we are thinking that this T 0 which is 

applied torque from the consideration of the consistent deformation. 

We can simply see that it is, you know like, the statically indeterminate system is there. 

So, whatever the deformations are coming, at these, you know like, junctions as well as 

these two corners it has to be same; otherwise, you know like, this will not be in the, you 

know like, the system will not be in this particular format. So, if we are applying this 

condition that, you know like, the what are the twisting are there in the individual 

portion, they must be shown with the same value or we can say if theta A is equals to 

theta B is equal to theta 0, we can say that the system is well in the equilibrium manner 

or the statically indeterminate system is there. 

So under the application of these torques. So, by considering these things what we can 

say that, we can say that, we can say simply that T by J which is equals to G theta by l as 

per the extended formula now we would like to apply this formula for different, different 

regions. So, first you are applying for this first action where the theta 1, where this d 1 is 

the diameter and A is the length, so for that, if I am saying that the angle of twist for this 

particular portion is theta A. So, theta A is equals to T A into A divided by J A G where 

T A is the applied reactive torque in the x action as we have already assumed into A is 

the total length divided by… because this l will be gone in that. So, T l by G J will be 

there as theta. So, T A into a, the l is the total length of a divided by J A, that is nothing 

but equals to pi d 1 to the power 4 divided by 32 into G is there. 

So, G is a common because we are taking the same material for both of the portion of the 

shaft. So, G will be equal, and then, you see, similarly we can simply consider the angle 

of twist for the second region that is the b region, for which the total length is B and 

whatever this polar moment of inertia will be there as pi d 2 cube divided by 32. So, by 

keeping those things in consideration we have a theta b is equals to T B into B, which is 

the total length divided by J B into G. 



Now, you see, we have already assumed that whatever the angle of deformation is 

coming in individual portion with the junction, it must be equal to retain the system is an 

statically indeterminate system. So, by keeping those conditions in our mind, what we 

can do? We can simply apply those values theta A is equals to theta B is equals to this 

theta 0 or we can say that TA into A divided by J A into G is equals to T B into B 

divided by J B into G, which is equals to theta 0 or we can say that T A by T B; that 

means, the ratio of the torque in these two portions because of the applied torque T 0 is 

equals to J A into… J A divided by A into B by J B.  

So, you see here, these torque distribution in these two sections are absolutely depending 

on these dimensional parameter, that how much length is there and what is the diameter 

corresponding. Because, you see, if you are talking about J A by a, a is the length of this 

particular specified, you know like, the shaft, and J A is absolutely depending on this 

polar moment of inertia. So, what is the area is concerned? So, pi d 1 to the power of 4 

divided by 32. So, you see here whatever the torque distribution is there, it has to be 

there on the basis of J A by a into b by J. 

So, this will give you the torque distribution or we can say the ratio of the torque in these 

two portion of a shaft. So, you see here, we are simply assuming that modulus of rigidity 

G is to be same for both portion. 
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Because as usual, if you are considering the same material, it has to be same G, will be 

same. So, you see we need to define the ratio of T A by T B, once you know those things 

you see, we can simply solve those equations one and two, and then probably, we can get 

the theta 0. So, theta 0 is pretty easy to get, you know like, the value once you have all 

those parameter.  

So, what we need to do here, you know like, these are the steps which you have to be 

taken care. You know like that what the parameters are to be given and what we need to, 

you know like, consider. So, after applying those conditions which we have simply 

discussed, they are the T A by T B is nothing but equals to, you know like, G A by J by 

A into B by J B. After putting those conditions, we have those values, and then if we are 

keeping in the first equation, you will be having theta 0, because theta 0 is nothing but 

equals to it is theta A equals to theta B. Or you can keep those values there in these 

respective formulas. 
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So, this is you see, you know like, these formulas again we are keeping those values in 

our terms. So, T A was nothing but equals to T 0 divided by 1 plus J B into a divided by 

J plus JA into b or we can say this T B is nothing but equal to T 0 divided by 1 plus J B J 

A into b divided by J B into a. 

So, under these considerations, you know like, we have, you know like, these relations. 

So by keeping those relations, what we have we have the angle of rotation theta 0 at that 



particular junction where T 0 is applied. So, this is nothing but equals to theta 0 is 

nothing but equals to T 0 into a into b. So, a and b are nothing but the simultaneous 

portions of the length in these two corresponding sections divided by J A into b plus J B 

into a. 

So, this is, you see, the total, what we can say, this shear, this moment of inertia is there 

plus whatever the section modulus of inertia into the corresponding length. So, this will 

give you the total effective areas under this load application. And you see, you know 

like, if you multiply with the G, then you have the total angular rotations. So, the angular 

rotation theta 0 at the junction will be computed by, you know like, both of the effective 

area section. So, what we have theta 0 is nothing but equals to T 0 into a into b divided 

by J A into b plus J B into a into shear modulus of rigidity. 

Because we are assuming that G is constant for that material by keeping those values we 

can simply calculate theta 0 or one can be easily calculate T A and T B by keeping those 

values here. So, you see, you know like, these values can be easily computed by putting 

those value here J A J B, you know like, J A J B or this because you know d 1 d 2, so 

you can calculate J A J B. You know, A and B, so you can put those values here, and you 

can get this, because T 0 is applied torque. So you can get those values here easily T A 

and T B, and also the same time you can calculate theta b by keeping those values here. 
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So, this was you see one like this one problem was there, only the key feature of the 

problem is we have a statically indeterminate system; that means, the system is rigidly 

fixed up at these two extreme corner. And we are applying a load at middle section and 

we would like to see that actually how this angular twisting is there, because you see, 

that is we are not allowing any shaft to freely rotate at its outer surface. 

So, you see, we are putting the constraints here, at the extreme boundaries that whatever 

the angular rotations are there, it has to be confined under the action of this T 0. So, that 

is what you see, you know like, with that condition theta 0 is equals to theta is equals to 

theta B. And then you see, corresponding values of J, J B or A B or whatever you see, 

you can calculate this theta 0 at the junction point, that how much angular rotation is 

there if you apply the T 0. 

So, now you see, in this particular portion, now we would like to see that if we have a 

non uniform torsion then what will happen. So, it means actually if the torsion is not 

uniformly distributed all across the section of this particular uniform bar, so then what 

will happen? So, you see here we are taking the pure torsion refers to the torsion of a 

prismatic bar, which we have discussed, subjected to the torques acting only at one ends, 

while the non uniform torques is such that it differs from the pure torsion, in the sense 

that the bar oblige the shaft or any, you know like, the section need not to be prismatic, 

and the applied torques may vary along the length; that means, you know like, it is not a 

prismatic bar and it is not acting by the same torque in an particular direction. Here you 

see we have a non uniform, you know like, the bar; that means, you see the normal 

prismatic bar is there and the applied torque which is, whatever the applied torques are 

there, they are always varying along that particular length. 

So, now you see this particular figure, then you will probably, you know like, judge these 

kind of non uniform torsions are that we have at this particular extreme corner, we have 

the torque which is applying in the counter clockwise direction. And then you see, if you 

move further, then at a certain distance we have the different torque which is in the 

reverse order, and you see it is, you know like, it has a different magnitude as well it has 

a different direction. 

And now you see, if we move further, then probably you will find the two different 

torques and the both are in the opposite nature, but and with the same, you know like, 



both are in the different direction, but with the different magnitude also. So, if we have a 

this kind of a specimen or a bar or a shaft, and these kinds of torques are there which are 

applying at a different segments and have different nature, then this kind of the total 

portion and the study is known as the non uniform torsions. 
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So, if you are considering those things, then you see what we need to do here, the shaft is 

make up of the two different segments as we discussed. The small this radius is there and 

bigger diameter is there, and both are having a different diameter as we shown, and 

having the torques applied at the several cross section such, you know like, these kind of 

shaft is always known as the non prismatic bars. 

And each region of this non prismatic bar between the applied torques always changes in 

the cross section is in the pure either the torsion, hence you see we can say whatever the 

formula which we applied it can be easily applied here, because whatever the portions 

are there in the individuals sections again we are assuming that it is under, you know 

like, they are uniform in between these two portions. And we can say that whatever the 

torque applied is there, it is under the shear deformation and it is under the elastic 

deformation of the shear part. So, either the shear stress and shear strains are there; they 

are well proportional, they have the linear relationship. So, whatever the formula, which 

we have derived for the previous sections for a prismatic bar, it can also be, you know 

like, derived for the same this non prismatic bar. Thus from the, you know like, the 



internal torque and the maximum shear stresses and the angle of rotations for each 

region. 

Now, you see. what we are doing. Here we are simply segregating these, you know like, 

the total shaft into the small, small regions where you see we are starting from one region 

and, you know like, we are ending where the next torque is there. And then, we are 

starting from that region and ending in the next torque. So, for individual torque 

application, and then we are trying to sum up, and also with the summation, we are also 

just see that actually what is the impact of these corners of the proceeding these torques. 

So, with the consideration of all the relative impact and the individual component we are 

simply measuring that what the angle of rotation is there with in those regions. And then, 

you see we can simply apply that these formula for individual regions like T by J is 

equals to tau by r or we can say that T by J is equals to G theta by L. 
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So, by considering all those things, so the total angle of twist of one end for one bar with 

respect to the another end is obtained by summation as I told you. So, you see, theta is 

nothing but equals to summation of… this is the summation term of i equals to 1 to n, 

where i is nothing but equals to for individual section that how many sections are there. 

So, it is T i L i by G i J i. So, you see, if I am talking about the first then you see the T 1 

L 1 G 1 or J 1 is there; so, how much T 1 is applied, that is the very well known, because 



it is a applied torque if there. So, values very well known. L 1 is what is the effective 

length is there under the applied torque divided by the G which is the metal property. 

Generally if we are taking G as a constant, then G will be constant for all those segments, 

and if you are even changing, if we have a composite kind of prismatic bar this non 

prismatic bar, then even for that actually we can apply this kind of formula and J 1 is, 

you know like, what will be the area of the modulus of this section is there. So, 

corresponding you see all we can simply compute those things, where i is the index for 

number of parts always that how many, you know like, whether we are considering two 

parts or three parts or four parts. So, will go for i is equal to 1 to 2 3 2 3 4 like that. And 

then, n is the total number of parts.  

So, if either the torque or the cross section area are changing continuously along the axis 

of bar, then summation, you see, now here, we are, you know like, this summation which 

we are using is to be replaced by the integral sign, because, you see, if it is a uniformly 

well varying a bar then what we are doing here instead of taking the different, different 

segments it is linearly varying section. So, instead of taking summation bar, we can 

simply use the integration right from 0 to the extreme end. So, you see, we will be 

having, you know like, to consider the different elements in that part, and since you see 

as we have done in previous cases, take a small segment of that and then sum up that 

sections.  
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So, you see here if we have this kind of region where, the uniform cross sectional areas 

are there, it is a J, you know like, the small diameter and it is a bigger diameter, and you 

see this area is linearly varying from this end to that end, and it has a length of L. 

What we need to do here, you know like, here this torque is there, you see, on the outer 

periphery we have the kind of torque applied. So, you need to take the small section, just 

cut the portion, take this small section, because it is in the x direction. So, the thickness 

of the section is d x and it has distance from the x, from this particular left end corner, 

which we have discussed in many cases. So, now you see, what we need to do here we 

need to simply, you know like, check the deformation for this region. Once you have the 

deformation theta for this region, because for this region you have this, you know like, 

whatever the torque applied T, you have you see what is the total length, whatever the 

length is there d x divided by what you have. You have J 1 and you see, you have the 

relative component.  

So, once you have those J G l or whatever like that, you can simply compute the 

deformation for this region, then put the integration sign, because this is for dx region. 

Once you integrate for entire length, from you see, if I am saying that from 0 to L. So, by 

keeping 0 to L integration sign, you have the total deformation or the total this stresses 

along this particular uniformly varying cross sectional area. 
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So, now you see what you have? You have the deformation for a small section as I told 

you d theta, for that small dx section, what you have you have the T x, which is the 

torque applied for this particular region into dx divided by G l x. 

So, this is a specified region. So, for that you can simply compute the angular of rotation 

for the… or you can angle of twist for that, and now you see, substituting this expression 

for T x and, you know like, the J x for this at a particular distance x from the end of the 

bar. Then what you need to do? You need to simply integrate between 0 to L, as I told 

you, because it is varying from 0 where you see the bigger section is there, the bigger 

portion is there and it is going up to the L, where the smaller portion is there, linearly 

varying areas are there. So, what you need to do? You need to consider the total angle of 

twist for that, which is theta is equals to 0 to L d theta, and you see, simply if I am 

keeping d theta here, what I am having at the end? I am having 0 to L T x into dx by G 

into l x. That means pretty simple. 

The total angle of twist is simply sum up of the individual segment deformation. So, you 

see, if I am saying that this is response for this much, you know like, the total twisting, 

so it has to be uniformly distributed. So, as I told you, see if I am talking about the 

uniformly distributed, you know like, the cross sectional bar or even, you see, if we have 

the non prismatic bar, simply we are applying the same theory as we applied for a 

prismatic uniformly cross sectional bar. So, with that consideration, you see, we can 

simply compute that what is the total angle of twist is there for this kind of uniformly 

tapered sectional bar is.  

So, you see here in this particular section, we discussed many things about that what will 

be happen, you know like, what will be, you know like, happening when you apply a 

torque and we have a prismatic bar is there, then how we can relate; and if we have a 

solid shaft and if we have a hollow shaft, then what exactly the relations are there, in 

terms of the shearing part and we found that the shear stresses are always 6.6 percentage 

larger than a solid shaft if you are comparing on the same diametrical basis, the same 

material. 

And also you see, in this chapter we discuss that if there are, you know like, the weights 

are the two different weights are there, then two different, you know like, the solid and 

hollow shafts are there, and if you are simply reducing the hollows at exactly at the 



middle portion, then the total weight reduction is of 25 percent from solid shaft. So, you 

see that if, if somebody wants to design, you know like, the shaft as on basis of this 

weight, then probably the one is going to go for, you know like, this hollow shaft and is 

somebody wants to design on the basis of their stress criteria, then solids shaft will be 

considerable on the basis of hollow shaft. 

And then also, you see, if you have a stepped bar then how we can go for, you know like, 

considering with the theta 0 or theta A or theta B in the numerical problem we discussed. 

And in the last portion, you see, if we have a non prismatic bar, then how we can go, 

how we can put the different, different segment, and how we can calculate theta for 

small, small segment, and then how we can sum up - this part we discussed. 

And then if we have non prismatic, but if we have a prismatic bar, but in that linearly 

cross sectioning, you know like, the bar then, how we can go with the using of not 

summation, integration, this theta angle of twist, you know in the last, you know like, 

slide which we discussed. So, you see here, in this portion we discussed lot many things 

about the circular shaft irrespective of their cross sectional area or you see, we can say 

irrespective of their material properties also.  

So, you see here this was, you know like, up to the solid shaft, now we are going to 

discuss in our next lecture, that what will happen if we apply a similar kind of torque to a 

spring, because, you see, once the torque is there on the spring, because you see once the 

torque is there on the spring then how, you know like, its material property or the 

number of coils or even you see the stiffness will vary, and how they are impacting on 

the deformation side or angle of twist. 

Thank you. 


