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Hi, this is Dr S P Harsha from mechanical and industrial engineering department, IIT Roorkee. I 

am going to deliver my lecture fourteenth on that subject of strength of materials, and this you 

know like course developed under the national program on technological enhanced learning. if I 

just you know like refresh on the previous concept, then in the previous lectures we have 

discussed about the main concept the stress and strains, and you see you know like when they are 

all the both components they are applying on this material, then you know like how the material 

is reacting, and you know like what the stress components are there and where we can get the 

maximum and minimum stress is that you know like we discussed analytical and the graphical 

away. 

And then you see like we discussed about the two main categories of this material as one if the 

ductile material is there, and we also discussed about that what the ductility is there and how 

ductile material is behaving when you know like we apply the tensile test. So, whenever you see 

you know like the tensile pulling is there, then you see you know like we define that the stress 

versus stain curve and there are two main reasons; one is the elastic region, and the plastic 

region. And also we define about if you are talking about the elastic region then what exactly the 

elastic constants are there like the modulus of elasticity, the shear modulus of rigidity, bulk 

modulus of elasticity, the Poisson ratio. 

All these are you know like the main constant which are you know like useful and which can be 

defined in the elastic region only. And once we go you know like the nonlinear the stress versus 

strain relationship; that means we are going the plastic region a permanent self deformation is 

there, and in that also we can get the maximum you know like the strength which is known as the 

ultimate tensile strength before fracture. 

And then we are approaching towards the fracture and if it is a ductile material like we have if 

we have the mild steel or high speed steel or high carbon steel or we can say aluminum or 

whatever you see this kind of ductile material which are you know like exhibiting a good tensile 

strength. Then probably we can say that actually at the end of the fracture, we have a very 

specified shape generally as we termed as the coco pine cone structure in which you see we have 



a cup; that is a dip is there, and there is a cone kind of that where you see you know like there is 

a extension gradually reducing portion is there. 

So, this is you see you know like as well as the ductile material is concerned under the tensile 

test. And if we apply you know like the similar kind of tensile test in the brittle material, then we 

would find that you see you know like that we have you know like the linear region and between 

the stress and strain where you see the proportional limit is there and epsilon is valid for that, but 

the plastic region is very, very small. So, once you know like leave from the yield point, then 

immediately you know like we found that the fracture is there, and there is no specified shape as 

far as the brittle material is concerned under the tensile test. 

So, this kind of you know like the information which we captured form the tensile test and if you 

are conducting the compression, you know like the compressive test on you know like the tensile 

on this particular ductile material or on the brittle material. Then we found in both of you see 

under compression if the ductile material is there or brittle material is there, the linear region is a 

similar as the tensile test; that means you see even if you apply the compression or even if you 

apply you know like the tensile, then there is no change in the linear region. And all those 

parameters is well applicable for both of you know like both material under all conditions. 

So, that is why you see in the numerical problems if you found that, that okay this material is 

under consideration of the tensile test or the compression test. Then always you can apply you 

know like if it is going beyond you see the yield point, then we cannot apply all those constant 

which we discussed like the Young’s modulus or shear modulus or bulk modulus or Poisson 

ratio. But if it is within this range in which the elastic region range, then it would be preferable to 

use those elastic constant to get the value of the stress versus strains, and we can say you see we 

can get all those you know like the values of maximum or minimum stresses within that object. 

So, this kind of you know like the relations which we set up for the ductile as well as the brittle 

material if it is you know under the application of tensile test or under the application of 

compression test. And also we would find that actually you know like the mild steel or we can 

say the ductile material if you want you know like capture the ductility of property, then always 

the elongation will be the key feature. So, how much elongation is there and always you know 

like we put the limit that if you want to go for ductility, then it should be starting from 10 

percentage to 40 percentage of the limit is there. So, that kind of you see you know like the 

ductility if you want to see in any material we can use those information. 

Then another point which we discussed about the elastic ray is that what will happen under the 

elastic action. So that is what you see there were four graphs which we discussed in between this 



stress versus strain. So, this again you see you know like the important information was there as 

far as the ductile property or the brittle property of a material is concerned. Then also you see 

apart from the stress strain ductile brittle, then there are some other properties which are very 

very useful to choose a material for engineering design. Because if you want to design the things 

then only the material is ductile or material is brittle is not at all sufficient, then we would go for 

the another property and those properties are the hardness. Then you see you know like to 

measure the hardness we define the hardness; that it is you know like the resistance against the 

penetration. 

Then there are some methods like you see the brittle hardness testing machine was there, the 

local hardness testing machine was there, even the Vickers hardness testing machine was there. 

So, all three are applicable, but they are applicable in the different different regions. Because you 

see in the Brinell we had used you know like that steel ball was there as a penetrator and the 

material is you know like a specimen of any kind of you know like either the steel or the less 

harder material as compared to the indenter. But there were some you know like disadvantages 

were there. 

So, probably you know like it is not acceptable that because of any truncation error or because of 

any you know like the geometrical deviation of indenter if you are not getting exact value of the 

hardness, then it is not preferable. Then always we are using the Vickers hardness in which the 

diamond point is there, but again you know like the biggest disadvantage in that was you know 

like diamond is there. And we just want to avoid the damage of the diamond because it is very 

expensive and even it is not safe to keep all those diamond points you know like for this kind of 

application to check the hardness. 

So, you see preferable one is you know like the Rockwell hardness is there in which you know 

like the conical shape of indenter is there. And you see since it is conical shapes of 120 degree of 

you know like the shapes are there. So, it is preferable to use in industry, and since you see we 

are only measuring the depth of penetration and based on that actually we can calculate the 

hardness. So, it is preferable to use you know like this Rockwell testing machine to check the 

hardness. So, these three kinds of you know like that hardness testing machine was there, and 

then we discussed about the toughness. 

Toughness is nothing but you know like if you just refresh those things, then it is nothing but 

whatever the cracks are there in any material where the strains concentrations are there. So, it is 

the property of a material through which material the you know like the strength against the 

impact loading. So, whatever the energy which material can absorb against the impact loading, 



that is nothing but the toughness. So, it is always you see preferable to get the value of the 

toughness if we are using the Izod Charpy test or even the Izod test is there. 

Then there was another you know like the property was there that is the creep. Creep is nothing 

but you see when you apply the load and if it is a constant load, then again you see because of 

the surrounding temperature or the high temperature region like you see if you are using turbine 

blade or nuclear reactor or this kind of you know like this generator is there or any turbine part is 

there in which the steams are there, boilers are there. So, wherever if you are talking about the 

material which is under the application of high temperature region, then even the load 

application is same or the stress formation is similar. But due to the temperature variation, the 

thermal stresses are being set up in the material are so high that even you know like no load 

condition, but it will start from the strain hardening, and it will end up with the fracture of the 

material. 

So, this kind of failure always comes under the creep phenomena and even actually we have 

shown you know like the previous lecture that actually there is a standard creep curve is there 

which is you know like drawn in between the strain versus time. So, how you see you know time 

place an key role in that, and there how we can display all three regions of the creep, three types 

of the creep like first creep, second creep and third creep. And how they are you know like 

behaving; we simply want to calculate you know like any strain or strain hardening or you see 

within that actually the stresses, then how the tangent and how we can draw the tangent, and how 

we can get those value. This part in particular we have discussed in the previous lecture. 

So, you see you know like if you found that, then we had enough information now to analyze the 

problem. So, now we would like to go for you see if a material which is not the idealistic way; 

that means you see if you have material which is under the application of tensile load, and you 

see more than one load is there or even you see you know like in intermediate part o any 

specimen if different kind of loadings are there then how we can analyze those parts specially. 

So, that kind of you know like the information which we would like to discuss in this lecture. 

But again you see the key part is that actually first which material is there and what are you 

know like the application of the load is there within those materials and corresponding stresses 

and strains are coming. 
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So, if you see that actually there are some members which are subjected by the uniaxial stresses 

we would like to see that actually how the stresses are being formed if more than one load is 

applied on a particular metal, and then how the stress and the strains are there at the different 

locations. So, here you see you know like we have the members which are subjected by the 

uniaxial state of stress and for prismatic bar as we can see in this particular diagram, this 

particular we have a prismatic bar and at the two extreme corners of the bar, the tensions are 

there; that means the tensile axial forces are there towards the outward direction. And due to this 

load application we have an extension, and this extension can be measured by you see the delta. 

So, this is the delta 1; this is you see the total. I should say the gauge length is there, and 

whatever the elongations which are coming it can be easily computed by the stress versus strain. 

So, you see we have the delta which is nothing but equals to the PL by AE. P is the applied load 

is there, L is the total length divided by the, A is the area of the prismatic bar, and E is the 

Young’s modulus of elasticity. So, whatever the load application is there, we are going up to you 

know like the elastic deformation we apply the Hooke’s law. With the using of Hooke’s law you 

see you know like just put the relationship, the sigma is the stress is equals to E into strain; that is 

epsilon. Put the sigma value F by A equals to E which is the Young’s modulus of elasticity into 

this epsilon which is the strain which is nothing but equals to the delta by capital L. So, you can 

compute this delta L which is nothing but the deformation due to this application of load axial, 

okay. So, this is there. 
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Now suppose you see you know like if this bar is at one or more intermediate position; that 

means you see if we have a bar which has a different segments, then you see this equation can be 

easily adopted to you know like just to handle this particular kind of situation. It means you 

know like if we have as I will show the figure that actually if we have you know like the kind of 

total bar in which there are the parts we can say AB, BC, CD and you see you know like the 

another some elongations are there; that means you see what we are doing here we have a 

uniform bar as you see in the previous figure that was the uniform cross sectional bar, no 

separation is there. But if we have a bar in which there are some segments, and in the segments 

you see there is a close connection is there and if you are applying the load. 

Then whatever the elongation or you know like the shortening if you are applying you know like 

the extension or if you are applying the compression, then we need to take the elongation as well 

as the compression separately, and then you need to you know like simply if I am saying that in 

the AB part if we have a delta 1, in BC part if we have a delta 2, in CD part if I have a delta 3. 

So, what I need to? I need to calculate the deformation separately in separate segments, then 

some delta 1, delta 2 and delta 3 together, the total deformation in terms of elongation or 

shortening of the total deformation of bar. 

So, you see here the meaning is pretty simple that actually it has the same algebraic part as you 

see you know like we have if we have a uniform bar. So, we can either segregate those part in 

terms of the uniform deformation or we can simple sum up you know like what is the total load 

is there at the end and how we can sum up those things and how we can get the total deformation 

out of the entire length of this prismatic bar. So, you see here we have you know like the kind of 



as we discussed that whatever the prismatic bar is there the total segments are coming in terms of 

DL. 
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So, we will see here the d del which is nothing but equals to P x dx divided by E times A x. 

Meaning is pretty simple that if we have a small segment even if it is the tensile loading is there, 

it can be easily you know like the load applications are there in the axial part because it is a 

uniaxial loading is there. So, P x is there, and then you see whatever the small segment is there 

that is the dx segment in terms of the area A x is there in terms of Young’s modulus we have E. 

So, if you want compute for entire region that means you see if I want to just get that what is the 

total deformation is there for whole prismatic bar is integration is the perfect method. So, delta is 

nothing but equals to 0 to l which is the total length starting from 0 to entire l equals to P x into 

dx divided by E into A x. 
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So, meaning is pretty simple that actually whatever the load is there axial force is there and 

whatever the cross sectional area is there under the area of concern means whatever the matter is 

there in that and the load application is there what we need to do we need to go for individual 

you know like the load application, and then we need to sum up those things. So, if the 

expression for you know like P x or A x are not too complicated, then the integral can be you 

know like found out and through integral we can get the analytical solution or else you see you 

know like some of the numerical techniques are there just to you know like if we have any 

complicated part is there. 

So, what we can do here either we can apply the Runge-Kutta technique or even if we can apply 

the numerical, because there are tons of numerical techniques are there through which we can get 

exact you know like the deformation or we can say we can get the exact stress and the strains at a 

particular location. So, these are the key you know like the features in that which we would like 

to you know like maintain for a uniform prismatic bar. But now here you see if we do not have 

the uniform prismatic bar; means you see we have a bar which does not have the uniform cross 

section a non-uniform cross section is there. Then how we can get you know like the stresses and 

the strain at the different section that we would like to discuss. 
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So, now you see here we are considering a non-uniform bar, okay, which has a cross section as 

shown in this figure, and the tensile load is applying at the extreme end. So, you see here what 

we have. We have you know like this prismatic bar, which has a non-uniform you know like the 

cross section. So, the cross section at this; this is the tapered section the smallest area is there and 

as you move further it has a symmetric extension towards the x direction. So, we are ending up 

to this part. So, total length is L again similar, and if I am just cutting a section particular at let us 

say x distance from the left end. 

So, from this x distance if I have this section which has the total you know like the width is dx, 

and if I am just simply making the section of that and I just want to find it out that what exactly 

the stress or what exactly the deformation is there under that you know application of this load. 

Then what I need to do because here this area is not at all you know like the constant throughout 

this extension. So, here you see this length is you know like small and this length is bigger 

height. So, what I need to do here? I need to maintain you know like because the stress 

distribution is also not exactly similar as we have seen in the previous uniform prismatic bar. 
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So, here I need to apply some other technique here to get those values. What is here a is which 

we have discussed here nothing but the cross sectional area of bar chosen at XX sections. So, 

sigma is nothing but equals to P by A where here A which we need to calculate separately for the 

different shape of this prismatic bar. So, here E is nothing but as usual you see the Young’s 

modulus of elasticity and since we are applying the load within the elastic region. So, obviously 

this E is well defined for those you know like section, and if I just cut the section at XX it can be 

easily calculated with using of the stress calculated in the strain measure. So, strain is nothing but 

equals to sigma by E. So, it can be easily coming through this particular formula. 

Then you see whatever the extensions are there in that due to the application of load, it can be 

also be measured because if you know the strain you can get the strain is nothing but equals to 

the change of length divided by the original length. So, what kind of deformation is there under 

axial load. So, this formation into X the del X is nothing but equals to this epsilon, because 

epsilon will give you the real feeling about the strain that what exactly the distortion of the 

deformation is going to on in that particular prismatic bar. 

And then you see you know like if you know the original length then you can easily get that 

sigma divided by E into epsilon or whatever the undefined parameter is there you can easily put 

those things and get the another value. Meaning is very simple; only the change is there, the 

effective area under which this load application is there. Once you know like the area, you can 

easily get the sigma. Once you have the sigma you can get the value of E if you have the v E 

value if you have the sigma value. E is nothing but the property of the material. So, you can 

easily get from the any of the standard graph and then you can calculate the strain. 



Once you have the strain you can get that the deformation that how much deformation is there; 

once you have the deformation you can easily correlate that actually what exactly you know like 

the distortions are there under the application of the load. So, this kind of analysis can be easily 

made once you have all those parameters with you. 
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And then you see once you apply the original length then again it is nothing but equals to P by l 

into delta X by a. And if you want to get the extension you see the total bar, then nothing but 

what you need to do just the small small as we assume that actually this total bar is the 

summation of all the small small segments. So, again delta is nothing but equals to integration, 

because integration is a perfect way to get the final exact solution using this analytical method. 

So, again we are trying to applying you know like these kind of technique to get the final 

solution. So, delta is nothing but equals to integration 0 to l P by E into del X by a. 

So, if I want to get the extension of the entire bar, it is pretty easy and it is equals to P by E 

because P is load, E is the modulus of elasticity, and they are constant in nature. So, they will 

come out and integration because what the changing is there change in only the delta X. So, delta 

X delta X delta X. So, all those small small segments they have the different width is there 

because it is a non-uniform bar is there. So, what we need to do here. We need to calculate 

integration 0 to l delta X by a. So, in corresponding you see you know like the deformation will 

come of the whole hole. 

So, instead of doing you know like the small small portion and get you see what the delta 1 plus 

is there, delta 2 plus is there, what we can do here we can straightaway apply the this integration 

method. So, either direct method or integration method both are applicable if you see you know 



like the shape is not too complex it is pretty easily to apply the integration. But if shape is 

complex, then you see we need to divide the shape into the proper regular you know like the 

shapes and then you see calculate the different different deformation for these value specified 

regions or we can say the well defined region and then sum up those things, and that is known as 

the summation method or the direct method. So, both methods are applicable depends on what 

kind of shape is there and what kind of load applications are there. So, now you see come to the 

main point again. 
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Then let us you see the example is there when you like the bar is tapered as usual you see this 

some tapered bars are there uniformly from the d at x equals to 0 and capital D at x equals to 1;It 

means you see at initial point we have you know like the tapered bar that means the small 

diameter is there that is the small d and at extreme end; that means at x equals to l we have the 

diameter is capital D. So, you see the total length is L as it is showing and then again we will go 

the previous section that actually in towards the x direction, because the load is applied along the 

x axis. 

So, what we are doing here? We are just cutting the x section, okay, along you see you know like 

the x axis. So, what it is there at the x axis right from the D this D or we can say x equals to zero, 

we just cut the section which has the width is dx and it is you see the total length right from this 

is this you see as we can simply shown by this shaded area. So, what it is there you see if you 

just you know like trace those points then you will find that this area in this particular figure the 

curser is showing this is the diameter small d. So, as it is you know like cutting those things and 

probably you see we will end up here is D by is this capital D which is this final diameter. So, 



capital D minus small d by 2; so this is this portion. This portion is again you see we have the 

distances capital D minus small d by 2. 

So, once you have these two portions this is the standard right angle triangle. So, you can get you 

see in the required information, because this distance is nothing but the L, this distance is D 

minus d by 2, and this is the ninety degree, okay. So, you can get you see with the using of the 

trigonometric relations one can easily get the required extension. So, now you see as you apply 

the load what will happen the extension will be you know like there and extension will be there 

along the x axis. So, here you see this at these particular directions you will get the extensions, 

and if I am saying that this is the k distance; k is nothing but you see you know like here I am 

cutting this plane whatever you see this particular you know like the structure is there. If I am 

cutting from these things then this distance from the centre region you see. 

If I am saying that the k then what the impact of the k is because if I am cutting from here if I am 

cutting from the here the k will vary. So, what I need to do here instead of you know like cutting 

this sec cutting this section at its small small segment, what I am doing? Simply taking the 

uniform you know like region you know like just take a small segment, find out what the 

deformation is there, apply the integration right from x equals to 0 to x equal to a and you see 

here at x equals to 0, what we have? We have the small diameter d at x equals to l, we have the 

capital diameter this D, so all those. Either a small diameter or bigger diameter both information 

which we have at x equals to 0 and x equals to l. And also what we have? We have two triangles 

right angle triangles at these two corners. So, with the using of this information we can easily 

extract the total deformation by integration technique. 
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So, you see here. So, in order to compute you know like the value of the diameter of a bar or any 

other undefined parameter what we need to do here, simply you know like using those similar 

triangles as I shown you. So, with those diagrams D minus d by 2 was the base of the diagram 

which was pretty same, length of you know like the triangle was again similar, so it was l. So, D 

minus d by 2 divided by l it should be equals to k by x or we can say that actually k is nothing 

but k was as I told you the distance was there from the central distance to this particular tapered 

bar at a particular distance which we have taken the x region. So, we can say that the k is nothing 

but equals to D minus d divided by 2 l into x. 

So, now you see what you have? You have a distance, which is known as the intermediate 

distance, which is you see you know like as you move further this distance will vary accordingly, 

and how it will vary? It will vary by D minus d you see here. If you see the formula it will vary 

that how much difference, what is the exact difference is there in between the major diameter 

and minor diameter and also it will vary with the x; as you move further with the x it will vary 

accordingly. So, you know like the diameter y whatever you see it is there in the x section we 

can get the d plus 2 k or we can say y which is we are saying that the diameter is nothing but 

equals to d plus 2 times of you see. So, two two will cancel out. So, d plus D minus d into x 

divided by l. So, now you see what we have. We have a diameter in terms of this 2 is small 

diameter. So, the total we can say the average diameter is nothing but equals to d plus D minus d 

into x divided by l. 
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So, you see as we move further then we will find that since we are talking about the x you know 

like XX cross section. So, for that the area is nothing but equals to pi by 4 y square and you see 



since we know that what the y is. So, we can simply say that it is nothing but equals to pi by 4 d 

plus D minus d into x by l whole square. So, once you sum up those things. So, now what we 

have? We have the effective area that exactly which is you know affected by the application of 

load and how the deformation will take place; now we will go for that. So, the total extension of 

the bar will be given by delta which is P by a as we have seen in the previous derivation that P by 

E into integration of zero to l d del X by a. 

So, now you see if you keep those values there then probably we have you know like delta is 

nothing but equals to 4 P divided by pi E because the area is there pi by 4 square. So, this 4 will 

go on top of that this E value, okay. So, 4 P by this pi E into 0 to l because at X equals to 0 we 

have a small diameter at X equals to 8 at we have bigger diameter. So, integration of 0 to l into 

del x divided by this whole you know like this this area; what are the area will come, so it is we 

have this small d plus D minus dx by l whole square. So, now what we have? We have the total 

deformation in the bar if you apply the load in towards the x direction. 

So, instead of going for the small, small segments and instead of the calculating the different 

deformation and then sum up those things, it is better you know like once you have a symmetric 

geometry, cut the x section, take portion. In the portion just see that how the variations is going 

on; once you have the variations within that structure integrate those things at from beginning to 

end and then get the value of the total extension and that is what it is you see here. 
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So, now you know like once you have you know like after the integration what we have because 

we know the values at both the points 0 and l. So, we can simply get the final value of the 

deformation that is 4 by pi into P into l divided by E is Young’s modulus of elasticity, D is the 



capital diameter of measure and d is the small diameter. You know like the thing is that whatever 

the information is given in the problem like you see the load is given to you, the deformation is 

given to you or Young’s modulus is always there as per the material selected, and if any of the 

diameter is given to you then you can calculate the remaining parameters that exactly. 

So, this information is very, very you know like fruitful to design any of you know like the 

material for the application when the tensile loading is there, because we have the total load. We 

also have you see the specified shape of this any material. Once you have those things once you 

have the material, then you can calculate that actually if you apply this amount of load then 

probably you will end up this kind of deformation and then you see you can safely design those 

things. So, an interesting problem is to determine the shape of a bar which would have a uniform 

stress in it and under the action of its own weight and the load P. 

So, now you see in the next segment what we are going to discuss; till now we didn’t select what 

the weight effect is there. So, now if we go further then it would be very interested to see that 

actually if a weight is there and due to its own weight what kind of extensions are there and with 

those extensions how the stress formations are there with the interaction effect of an external 

applied load. Because you see what will happen? We have the segment due to its own weight 

you see it is going towards the centre of gravity is always towards the downward direction. So, 

the stress formations are there, load application is there at the extreme ends. So, because of that 

stress formations are there, then what the interaction effect is there of these two segments we 

would like to see and that is you see you know like in the next figure we would like to see. 
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So, this figure clearly shows uniformly you know like the tapered bar which is hanged vertically. 

So, now we would like to consider the weight of that. So, in that what we are going to do this 

you know like this is hanging at this particular position, this is you see the symmetric geometry 

is there and at the extreme corner you see this load is applied. So, once you apply the load you 

see we have two different components. One we are considering here the weight and due to the 

weight you see you know like this area is also affected; that means you see the centre of gravity 

as it somewhere it this particular location is there where this see these two the central lines are 

you know like crossing. And now at this particular section we would like to see that what the 

impact of the weight as well as the external applied load is there. 

So, this form can be easily continued by taking again the similar kind of analysis that just cut this 

particular section by the XX. So, now we have this particular effective area and we would like to 

say that how this effective area is being distorted or the deformed shape will come due to the 

application of load. So, what we are doing here? Again we are taking the same delta X as the unit 

width of those things and it is occurring at right from this particular corner which is a tapered 

corner is there. So, if you are taking this X distance right from this we have the delta X and those 

things this area. This is the effective area, which is shown here, and this is the effective area 

where this particular load application is there 

So, these two areas are clearly showing that at one point we have the self weight at one point the 

external applied load is there. So, now if you are considering the weight of the bar which is you 

know supported under the section of this XX here clearly you know like this arrow is showing 

here. It is nothing but equals to integration of 0 to X, because what we are taking here? We are 

taking the small segment of that. So, now we would like to see that actually how these you know 

like the variation is there of the stress or any kind of you know like the extension within this 

particular structure 0 to X. 

So, 0 to X you know like the integration of 0 to X into the density because now we are 

considering the weights density into the gravitation aspiration because the weight is acted 

towards the downward direction due to the gravitation aspiration into the area into dx. So, now 

you see what we have? We have now the weight, and due to this weight we have an extension. 

So, we would like to see the impact of that. So, this rho is the density as I told you. 
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So, now we can see that what the stresses are there due to this. The stresses are nothing but 

equals to P, which is the external applied load. It has a uniform you know like the magnitude is 

there plus the weight. So, weight is nothing but as we have discussed in the previous part that 

actually the rho into g into this the area, because you see know if you are considering the mass; 

mass is nothing but equals to density upon volume. So, whatever you see from those components 

we can easily computed that what exactly the weight is there. So, rho g a into dx integral 0 to a 

divided by whole area. So, now this is the total load external applied plus weight divided by area 

will give the stress, or we can say that if you multiply those things by the manipulation what we 

have the stress due to the combine you know like the applied load and the applied weight, sigma 

into a is equals to the applied load P plus integral 0 to x sigma g a into dx. 

So, now you see you know like if you differentiate those parts you know like by taking dx into 0 

to x. So, what we have? We have sigma into da by dx by differentiation. So, once you apply the 

differentiation, this will gone because it is a constant value; there is no variation as such with the 

X distance unlike towards the vertical direction. Then what we have? We have sigma g a, okay, 

because dx will be integrated. So, now we have an equation which will clearly show that actually 

how the area is varying because you see da by dx is nothing but the variation of area in the X 

domain. So, you know like area intersection is there all across the body due to you know like 

those load application we would like to see. So, sigma into da by dx always gives you this rho 

into g into a. 
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So, now you see like with the same previous equation what we have, we have da by a. the change 

of area divided by original area which is equals to this rho, which is the density of bar whatever 

the material which you are preferring; you know like here. Since it is a extension is there, tensile 

load is there so always we prefer to use the mild steel component or any ductile material. So, tau 

is nothing but equals to you know like it will come in the denominator side, so sigma is there you 

see so what we have. We have rho into g divided by sigma into dx from the previous figure 

which will give you da by a or if I now integrate those that you see for a small small segment 

which we have taken for a small XX segment or other segments also. 

So, if you integrate those things what we have integration da by a is equals to you know like 

again density into gravitation aspiration divided by sigma which has a constant value into 

integration of dx. So, now if we are doing those things it is pretty simple that actually 

logarithmic is there. So, log of a to the base a to the base e is equals to density into gravitational 

aspiration divided by sigma which has a constant value plus c. So, if you put the condition as 

usual like that if you have you know like at x equals to zero at the bottom you see where the load 

application is there, we have a equals to a 0. So, what we have? We have the equation a by a 0 is 

nothing but equal to e to the power density gravitational aspiration into whatever the total 

distance which we have taken you see if you see the previous part x divided by sigma. So, now 

you see you know like the original area or the effective area now we have both the area and the 

ratio will give you the exponential component. 
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So, now again if I just reverse that component that you see you know like just hanging at the 

below and it is simple you know like when towards the top then it is all just reciprocal parts are 

there, the load application is compressive now. In the previous case it was tensile, compressive 

load is there and we are considering at a this area is a 0 as I discussed and this area which is you 

see you know like at the self weight this area is effective area and the a by a 0 we have discussed 

that actually. It was nothing but equals to exponentially this density into you see the gravitational 

aspiration into x divided by P. 

So, now if I have this region that if it is just you know like reverse this phenomena then I have 

the compressive load and due to that you see you know like we can say that the sigma is nothing 

but equals to P by a 0. Because the a 0 is the effective you know like the load application is 

there. So, since this is the effective area under the compression load so I need to take the 

compressive stresses at this particular stress is nothing but equals to this P by a 0 while if I am 

going for the XX section then we have you see this ratio of the area a by a 0 which will be 

nothing but equals to. In this case the exponential terms e to the power this density of the 

material whatever the material which we have taken here gravitational aspiration which is going 

towards the downward direction here into you see the x this distance, which we have taken the x 

from the applied load to this centre, and you know like the a 0, which is you see this effective 

area at that particular end divided by the load. 

So, you see the same results even if you are getting you know like if I am just doing like putting 

the downward direction. If I am putting you know like the upward direction, there is no change, 

only the load application will change here and that term you see what we have the nature of the 



self weight and the applied load will be in the extension part or we can say the tensile loading is 

there and in this case you see we have the compression loading. So, it is pretty easy to calculate 

both in respective of only plus sign will come in the tensile, minus sign will come in the 

compression of load. So, you see here now we would like to calculate some of the numerical 

value so that actually this refresh you know like the basics of the formula and how to apply those 

formulas into the real problem. 
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So, first of all the statement of the problems says that we have a round bar of length this you see 

and it is tapered uniformly from you see the radius r 1 at 1 end to the radius r 2; that means you 

see you know like we have the two different radius as usual, because it is uniform you know like 

extensive bar has a taper shape at these two extreme corners. So, now you show that the 

extension of you know like due to the tensile load protection, we have you see some sort of 

extension, and we would like to find out that this extension is nothing but equals to P L divided 

by 2 pi E r square where you see nothing you know like this r 2 is equals to two times of r 1 and 

you know like means this final extension r 2 is twice of the previous r 1. 

So, you see what we have? We have nothing but you know like at small segment this is bigger 

segment and this you see if I connect those things doubled of those things we have this kind of 

uniformly tapered bar and we are applying the extension. So, we would like to see that actually 

how this extensions, okay, will take place and what the magnitude of this extension is. 
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So, now you see you know like same you know like if you trace this problem in the real figure 

then you would be having this the small r as I shown you; this is the bigger R which has doubled 

of this R. Now the same this extension is going on right from this particular you know like the 

central line. So, as you are simply extending these parts then probably you will end up with you 

know like kind of extension. So, if I am taking that at x equals to 0 this part is there like this base 

is there. I just you know like I need to take the x section which has you know like the uniform 

this thickness is there that is the dx. So, this dx will be calculated here. 

So, I have a uniform you know like this sort of thickness is there all across the x axis. So, this dx 

is there, and now what I am doing here? I am taking you see the distance right from here to here 

as the total length is nothing but the L is there. Now I would like to see that actually what exactly 

the relation is because this is if I am saying that this r 1 is there and this is my r 2 is there, then 

the relation of r 2 and r 1 is nothing but equals to it is the doubled of the small radius. 
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So, now you see you know like if I just apply concept here then what I am having just you see 

you know like considering those figures I have r 1 you know like will be the radius of the smaller 

end and r 2 will be the radius of the bigger end; it is doubled of those things. So, now just taking 

the linear relationship because it is you know like uniformly distributed all across the entire 

length of this particular uniform bar. So, if I am just taking those things then I have the radius at 

this smaller end is nothing but equals to you know like this r 1 first smaller end r 1 plus this you 

see the intermediate position which is nothing but equals to x by l; x is the distance, l is the total 

distance of that. 

So, x y l is the non uniform you know like this non dimensional parameter is there into what the 

difference of these 2 radiuses. So, r 1 plus x by l because x is the distance of that small segment l 

is the total. So, x by l into r 2 minus r 1 or I can say that if I am taking that this k is nothing but 

the constant which is equals to r 2 this r 2 minus r 1 divided by l into 1 upon r 1. Then I am 

having this r 1 into 1 plus kx. So, now you see if I am keeping those things and if you want to 

find it out that what will be you know like the stresses are there, then it is pretty simple that I 

have the radius the intermediate radius where you see I am considering the delta x as a portion, 

so P by pi by 4 a square. 

So again you see if I am going for this that what the diameter is there, then it is easy or if I am 

going for the radius then it is pi r square. So, by considering those things I can easily calculate 

the radiuses like these things that if I have uniform section there, then what the stress distribution 

is there, and what the extensions are there. So, stresses are nothing but equals to since it is a 



tensile stress. So, it is nothing but equals to the load divided by pi into r square which we have 

calculated r square into 1 plus kx square. 

So, you see this will give you a clear-cut picture that actually if we have the two different 

radiuses and if we are not considering the weight, then how you all different radiuses are giving 

the impact and also with that actually where we are considering the x. So, right now you see you 

know the stresses are nothing this is not a total stresses; this is just the stresses are there at the 

XX component. 
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So, now if I you know like sum up those things for the entire region of the bar which has a 

tapered bar then you see you know like we can again go further that what the strains are there 

once you have the stress. So, strains are nothing but equals to stress divided by E. So, you see 

here p divided by E into the entire area or we can say you know like if you want to calculate that 

deformation for that now you have the strain. So, probably you can if you sum up those things 

for the entire region of this particular uniform bar, then it is nothing but equals to zero to l 

because you see started from 0 and we are going up to the end, intermediate position was the x. 

So, 0 to l into p times of dx divided by E pi r 1 square into 1 plus kx whole square or we can say 

you know like if we integrate a simple method then you simply take because this is the multiple 

of the x and we are you know like integrating with a dx. So, just take it on the top of that so 

probably you know like we have P by E pi r 1 square into 0 to l 1 plus kx to the power minus 2 

into dx or you know like if we have minus 2 then minus 2 plus 1 divided by minus 2 plus 1. So, 

we will be having you see you know like P into L divided by E times pi r 1 square 1 plus kL 



because again you see now we need to put the this X in terms of the L. So you see here minus 

sign minus sign will be cancel out, so we have this much you know like this extension. 
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So, you see now go back to the relation then what we have? We have 1 plus KL equals to r 2 by r 

1 or what we have? We have the total extension if you are keeping those things. Then it is 

nothing but equals to pL divided by E you know like E into pi times r 1 r 2. So, that is what you 

see you know like we would like to just put those conditions and after putting those conditions 

you see. 
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Now if I just want to you know like compare the expansion by keeping the case where you see 

the special case was given that r 2 is two times of r 1. Then you see what we had we had PL 



divided by 2 pi E r 1 r 2, and if we are keeping those things, then we have PL divided by 2 pi r 1 

E times of r 1 square. So, in that we found that actually whatever the extensions are there it is 

due to the applied load whatever the extension is there and also the r 1 is there; that means what 

the smallest region of you know like the segment is. So, these two are the influencing parameters 

are there and we have to be very careful that actually while selecting those things you know like 

that what the extension is there and how this extension is taking place due to the applied load as 

well as the a smallest region of that particular segment is. 
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So, now you see if you want to calculate because what we have taken we have taken the x 

segment in between you know like the tapered bar. So, again we would like to see that what the 

mean radiation of the taper bar is. So, the mean radius is nothing but equals to 1 by 2 r 1 plus r 2 

or we can say now if I keeping r 2 as this thing. So, what I am having? I am having 3 by 2 r 1. 

So, therefore if we have a uniform bar the extension of the uniform bar is nothing but equals to 

you know like the original length into strain or we can say if I am keeping original length as L 

the strain is sigma by E. 
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So, now you see by keeping by those derivations in that particular formula would be ending up 

with the deformation is nothing but equals to sigma by E into L or we can say what are the 

extensions are there simply keeping those you know like the responsible parameters to see the 

value or see the significance of those things. Now what we have? We have L by E into P divided 

by pi which we have calculated 3 by 2 r 1 whole square, because r 2 which we have calculated 

that is nothing but equals to the mean radius which we have calculated is nothing but equals to 3 

by 2 r 1 square 3 by 2 r 1 the whole square. 

So, now if I am you know like generalize those things then I am ending up with the deformation 

is nothing but equals to the 4 PL divided by you know like g times pi E into you know like this pi 

r 1 square. Hence, if I just want to find it out that if I have a uniform bar as I discussed recently 

and if I have a tapered bar, then what the difference is. The difference is pretty simple that if I am 

talking about a tapered bar then the influencing parameters are the load applied as well as the 

smallest segment of that parameter r 1, and if I am taking about a uniform bar; that means there 

is no taperedness is there. Simply I am going for the middle portion what the intermediate 

position is there. Then you will find that you see here, not only these positions you see 4 PL is 

there divided by you see g times of pi r 1 square. 

So, both are the responsible parameters you know like see that if you have a uniform bar and if 

you have this tapered bar. So now you like if I just calculating you see this comparing those 

things then what I have? I have this, the extensions in this uniform bar divided by extension of 

this bar is nothing but equals to 8 by 9; that means you see you know like you can easily 

compute that what exactly the total extensions are there in the uniform as well as the tapered bar. 



So, in this chapter what we have discussed; we discussed that actually if we have a uniform bar 

then what kind of extensions are there which are the influencing parameter, and if it is you see 

you know like this uniform bar is extended by its own you know like weight. And if any this 

applied region the external applied forces are there, then how to get the total stress distribution as 

well as the deformation. 

And also we discussed that if we have a total you know like the elongated bar we can easily 

calculate by just separating the individual sections and just calculate the deformation for 

individual sections, sum up those parameter and get the final deformation of the entire length of 

the beam. So, this was you see you know like we did it for the uniform bar and if I have a 

uniformly tapered section; that means you see you know like it is uniform cross sections are 

there all along varying with the x axis. So, in that what we need to do? We need to just take and 

see the small segment right from you know like taken a specified region that, okay, right from 

you know like the left corner attach distance if this particular portion is there, cut that portion, 

see that actually how the deformation is taking place due to the load application and how the 

stresses are being set up in those you known regions. And due to the stress and load application 

we have deformation. 

And once you get the deformation for the specified region or the small segment sum up those 

small small segment for the uniform tapered bar because you see in the uniform tapered bar only 

the variation is the area is there. When the area is changing, load is same. So, stress will be 

different, and if the stress will be different definitely the strains will be different. So, sum up 

those small small segments, once you have you know like sum up those things or integrate. So, 

either we can adopt the sum up positions or we can adopt the integration of that. Once you have 

the total integration of that you have you know the extension of the entire uniformly tapered bar. 

So, in that you see segment we discussed the two main things. If you see it is horizontally put the 

condition then nothing XL loading is there. If I am keeping that you know like that uniformly 

tapered bar as a vertical position that means the self weight is there, there are two types of load 

application self weight and the externally applied load. Then you see you know like you need to 

add both the component external applied load and the self you know like weight, add those 

things, see the effective area that had self weight which is the effective area at external load 

application which is the effective area. And when you sum up those you know like the loads with 

this effective area you will be ending up with the summation of the two different stresses. 

Once you have the stresses and you have the Young’s modulus of elasticity you can calculate the 

strains. Once you calculate the strain you have the total length of the bar, you can easily calculate 



the change of length that means the deformation. Once you have the deformation now you can 

either distribute those deformations to different segment or you can simply compare those things, 

and that is what you see you know like we discussed in the entire chapter. So, you see you know 

like in this chapter the total orientation was on the stress and the strain with this distribution 

under the elastic components. But in that you see you know like what we assume that whatever 

the load application is there it is uniformly you know distributed all across the element. 

But if I am saying that this load is you know like distributed even the load is distributed at 

different different segment. It means if I am saying that I have a uniform bar and in this bar you 

see you know like for this particular segment the load application is 10 Newton, for this segment 

20 Newton load is there, for this segment 30 Newton load is there. So, if the different different 

segment is experiencing a different load then what kind of deformation is there, and how you can 

sum up the deformation you know like for calculating the entire you know like the deformation 

for the entire beam; that is the really a matter of interest that how the you know like the different 

load will play an important role to design you know like especially this prismatic bar. 

And that is what it is happening in the realistic way that you see we have a different you know 

like in the building also or in any of the uniform bar we have the different different load 

applications are there, and under the load application how you see the deformations are there 

which you know like which part of the beam is weakest or which part of you know like the beam 

is the strongest and how to calculate you see the different deformation at these things are really 

very important. And for that you see to define the stress verses strain relationship is also very 

important. So, in that you know like the next segment this all kind of analysis we are going to 

discuss.  

Thank you. 


