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This is Dr. S. P. Harsha from mechanical and industrial department, IIT Roorkee, in the 

course of Vibration Control, now we are in the last module and the last lecture. And in 

this module where we are discussing about the vibration measurement technique, 

straightaway we discussed about the basics of measurement technique. Then we 

discussed about what are the dynamic parameters which we can measure and through 

that, we can characterise the basic vibration signatures. 

And when we are measuring these, the dynamic parameters we know that this entire 

measurement with these sensors or the transducers which we are applying there, at the 

vibrating body they are in there, they are basically there in the time domain feature. So, 

the information which is coming in the time domain sometimes, we cannot analyze 

accurately, so we need to transfer this time domain information into the frequency 

domain part, using this Fourier series. 

And in the Fourier series decomposition, we know that there are various features which 

we need to because it is pretty easy now, because the mat lab functions are there in, and 

we can straightaway convert this time domain to frequency domain. But, the match is 

saying that we need to check it out that, what exactly the waveform feature, whether we 

are talking about sine wave or the triangular wave or the rectangular wave. Or we 

whether we are talking about the square wave, what kind of waveforms are there and 

then what is the corresponding mathematical functions in the Fourier series 

decomposition. 

And in the last lecture, we discussed about the Fourier transforms, when you have the 

non periodic features in that that means, when you have any kind of abrupt change, 

means through the shock or the pulse, the impact form. Or when we have the turbulence 

kind of signature, then instead of just going with the Fourier series decomposition, we 

can use this straight the short term Fourier transforms. 



And for that with the using of in this f of t, which we are saying the Fourier signal, in this 

the alpha which was the coefficient by changing the decreasing the alpha or by 

increasing the total time or by decreasing the time step. We can rather characterise these 

whatever the impulse features are there accurately, so here we discussed and all the part. 

And then we discussed about the numerical in the numerical problem, that when we are 

just taking these the sine wave or whether we are just talking about the square, or the 

rectangular wave, triangular wave. 

Then how by simply increasing the time total means, the time span or by decreasing the a 

alpha, how we can get accurately the variation features in that. So, in this lecture now, 

again we are going to discuss about the vibration measurement techniques, and in that 

the filters part which we are always being there. Like the filters are nothing but just it is a 

mathematical presentation, when there is a noise disturbance or when we just want that 

these frequency peaks are the important frequency peaks just to featured out. 

That what exactly the kind of vibrating these masses or the characterisations are there, 

then we can allow them and we can restrict the remaining exciting features in the spectra. 

So, the filters are basically designed accordingly to the desired, what is the decidedness 

and what exactly the application parts are there in that. 

(Refer Slide Time: 03:53) 

 

So, frequency analysis implies the study of the signal distribution along the frequency 

axis, and on one side it is just showing the amplitude, that what exactly the amplitude of 



the vibration excitations are… So, these frequency analysis has traditionally being 

carried out, mathematically or by means of analogue electrical filters, which are being 

constructed on the conventional electrical components in that. 
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So, whether we are talking about the fast Fourier transformation or digital filtering, these 

are the key components nowadays in the digital technology. And primarily we need to 

apply these two, especially either FFT or the digital filtering, according to our 

desiredness. So, both make use of digitized measurement values, and each type of filter 

is absolutely named after it is affect on the signal frequency spectrum, like if we are 

talking about the low pass filter, low pass filter itself means we need to allow the low 

frequency component. 

And then whatever high frequency components are there which has to be restricted, and 

correspondingly if we are saying the high pass filter, band pass filter, band stop filter we 

need to define the ranges. That, what is the frequency the range which is supposed to be 

allow or which frequency range is supposed to be stopped with these electrical filter 

design. So, if you look at that in this diagram, where it is clearly showing that we have a 

machine, which is vibrating. 
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And right now we are saying that we have the accelerometer, an accelerometer is being 

capturing whatever the frequency excitations are or this whatever the vibration 

excitations are there, in terms of you see the amplitude and the frequency. So, right now 

if I am saying that you see, this is what my raw signal in which it is a clear variation is 

there in the amplitude with the exciting frequencies. So, this is the total we can say the 

frequency spectra's are there, now the first case when we are saying that the low pass 

filter. 

As per the name itself, we can say we are basically looking in terms of amplitude with 

the frequency means the initial pass, so if you want to design this that means, this is what 

the width which is supposed to be provided by the electrical signal to allow the initial 

part. And the remaining part, means I mean to say that if I am just looking towards this 

part, this total frequency spectra, so this initial feature of the frequency with the 

amplitude is being allowed and the entire remaining part is being restricted by that. 

So, if I am just looking to the actual situation, when this signal is being passed though 

this, we can say low pass filter, then I can say that I have this is what my frequency 

spectra with low pass filter. And this is clearly showing this at the low frequencies, how 

the variations are there in the exciting frequency with the amplitude. Second when we 

are saying that the high pass filters, the high pass filters means now, now basically our 

the analysis range is in the high frequency zone. 



So, when we are talking about high frequency zone, then you can see that the second 

figure which is clearly showing that, this part the initial part is absolutely restricted. And 

then the frequency component which is to be allowed to analyse, this is what which is 

falling in the high frequency part. So, this is the high frequency and if I am looking to the 

actual raw signal, then we will find that the initial feature means the initial peaks and the 

variation is restricted and the final part is being allowed now. 

So, this is if I am looking to the main part, this final part is being allowed and which can 

be shown here. Now, when we have such kind of say the pulse, in the impulsive form or 

such kind of in any defect feature is there in, and we are getting some kind of the special 

we can say frequency components during the running part. So, now we need to band that 

part that now, this is what I want to analyse that, why it is showing a different nature as 

compared to all other my signature. 

So, then we need to capture the middle part, we need to band the frequency ranges and 

that frequency ranges is being allowed, so that part we are saying that the band pass 

filter. So, band pass filter that means, the initial feature is being allowed, say if I am just 

talking about this part in the main structure, somewhere this exciting peak is high, it is 

the normal part. But, this peak excitation is at it is highest level, may be because of some 

defect, may be because of some certain excitation is coming. 

If we want to analyse this; that means, we need to allow this range that within, it is being 

falling at the frequency and with the corresponding amplitude. So, that means, if you 

look at this amplification part here, you will find that this is what being allowed and the 

remaining means the lower and higher frequency regions are being straightaway stopped 

there. So, in this raw signal this is what my now the signature, vibration signature which 

clearly shows that yes, in this particular frequency region you have this kind of 

frequency spectra. 

Or if I just reverse that, if I know that because of some irregularities or because of some 

kind of impactive, impulsive forces I know that I have some kind of non, the non 

periodic or I have you see some kind of the abruptive changes are there in my signature. 

And later on you see, once the things are being overcome then I have irregular 

phenomena, so now if I want to stop this the next filter is the band stop filter. So, band 



stop filter is now, if you look at the nature of the band stop filter that means, the band 

which we defined can straightaway stop this frequency component. 

And the remaining feature, if you look at the real nature of the signature or this real 

signature of the vibration, the nature itself says that, this peak is now absolutely omitted. 

And then we can say that the entire spectrum is being just varying whatever the required 

features are, so either we are talking about low pass, high pass, band pass or band stop. 

We can clearly feature our response this, whatever the responses are there in the 

signature analysis and we can analyse those corresponding, whatever the vibration 

signatures are there. 
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So, as we discussed the filter type, which is more common in, we can say is the low pass 

filter and such filters are often used as the input to a measurement system to filter, away 

the frequency components higher than those to be analysed. So, these removed 

components would be otherwise, introduced the error during the digitization process, and 

in the digitization process, like this contaminating the low frequency components or we 

can say the aliasing effect. So, when we are doing some digital these figures in that, so 

during this entire process, we know that this whatever these low frequencies which are 

coming in that, the anti aliasing features the features are being incorporated that. 

So, we need to remove this, so that is why generally we are saying that, the low 

frequency components or the low pass filters are pretty common in their application. And 



during this entire process, when we are removing this we can say that aliasing effect is 

pretty common in this part, so we are saying that you see the band pass filter. 
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This is what the third one, in that the ideal band pass filter which I am going to show you 

is just suppressed the components at the all frequency except those, which are being 

lying within this bandwidth. So, we need to now define the bandwidth, what is the width 

is there through which the entire frequencies are being passes from these filters. So, in 

practice the edges of band have certain slope, we know that when they are being passing 

they have the slope. 

And which implies that the frequency components immediately outside the pass band are 

not completely eliminated, because they are not the squared one, when they are the 

squared one. Then we can say that whatever the frequency components are there, which 

are being assed passing through that, they can be completely recovered, they can be 

completely eliminated. But, since they have the curved shape, so from side these things 

are being passed through. 
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So, common way to define the upper limit, where the curved feature is there and the 

lower frequency here limit of the band is to indicate the frequency at which the signal 

can be reduced by three decibel part, 3 d B. 
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So, if you are just looking to the exact shape the ideal band pass filter, with these the we 

can say this indefinitely step cut-offs, so we have either initial frequency, the lower 

frequency and upper frequency range and if I am saying the bandwidth is this f u minus f 

l, the upper band and lower band, so this is the square form of this. So, if this is what you 



see the ideal form, but whenever we are talking about the real waveform of that, then the 

real filters have to be there with this imperfect cut-offs. 

So, we can say that when we are just talking about this, we have the curved feature of 

our signal part, and when we just want to use this bandwidth there we know that, if you 

are just going with this part, the slant part which is being there it is a kind of you see the 

error in that. Because, this is the imperfect cut-offs are there and the upper and the lower 

bounding frequencies are then defined by those frequencies at which the filter is reduced 

the signal by three decibel. If you are just looking at that point, if you are reducing the 

signal by 3 d B that means, up to almost we are in the perfect zone, where we can say 

that the real filters can pass this much bandwidth is there. 
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So, the band pass filters are named according to how the bandwidth varies along with the 

frequency axis, the frequencies with the bandwidth that do not vary along with the 

frequency axis, called the constant absolute bandwidth. That means, we have the CAB 

filters in which there is a clear absolute the bandwidth are there, and they are just 

constant all along the frequency axis. But, a filter with the bandwidth which is 

proportional to this centre frequency FC is called the constant relative bandwidth. 

So, if you are juts our basis the reference frequency, means the central frequency and 

then the filter is being decide based on what is this side, the lower side and upper side we 



are saying that this is the constant relative bandwidth. And when we are not changing the 

bandwidth, along with the frequency axis we have constant absolute bandwidth. 
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So, that we have constant absolute this, these bandwidths are there in which we have the 

absolute features are there, so if you look at that, they are absolutely varying with these 

say if I have the bandwidth of 100 Hertz. So, we can right away start from say this is 

what the scaling part is there, this is what in between that what exactly the bandwidth 

gaps are there, and this gap will be constant. So, if I am just going with this say 5 k to 1 k 

I can simply say that I have the difference the bandwidth is 100 Hertz. 

Or even when I am just going from the 9 k to this 9 k to 5 k, then again you say I can say 

that, I can simply remade you see this part as the constant width this bandwidth. So, here 

the bandwidth is not varying with the frequency axis, and it is typically presented with 

the linear frequency axis. So, whatever the frequency axis are there in the corresponding 

peaks, the peak is repeatedly occurring at the constant frequency and there is no variation 

in the nature of the excitation peak as well. 
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And if you are just talking about the variable means, now central frequency is first being 

calculated and based on this central frequency now, the other width are being considered 

there. So, we can say the bandwidth is now nothing but equals to this square root of the 2 

minus we can say 1 over square root of 2 whole cube of that into the central frequency. 

So, here this is what my linear frequency ranges are there, and in between the bandwidth 

is calculating based on the central frequency and corresponding width accordingly.  
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So, now if you are just going to this CRB which is nothing but the constant relative the 

bandwidth filter, a bandwidth that is a certain percentage of the centralised frequencies. 

And it is typically presented with the logarithmic scale, because of the logarithmic scale 

the stack in the figure do not get say the wider, and when we are moving as previously I 

shown you, just we need to move along the positive axis of x. So, we can say that this 

figure like is called the third octave band filter, and has the bandwidth is almost we can 

say the 23 percent of central frequency. So, octave band is to be designed in such a way 

that, that we are reducing this signal by 3 d B upper and lower, and once you calculate 

the central frequency, then the variation of this is the 23 percent of either. 
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So, when we are talking about the third octave or the octave band filter, the third octave 

and octave band filter are nothing but the constant relative bandwidth filters and widely 

they are using in these vibration part. In which the main part is coming that, what is the 

central frequency which we needs to be standardised there and then we can simply 

configure the other two part. So, both type of filters are named with the band number, as 

I am going to show you the table and more often by their central frequencies they can be 

varied accordingly. So, we can simply see now, that each octave band spans or three 

octave band in each octave band the span of three octave bands, which explains the name 

of this category of the filter. Means in each octave band now, there are in the entire span 

there are three octave bands which are being there within that. 
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So, if you look at this, these basically on the definition of these third octave and the 

octave band filter, now we are absolutely say in octave band filter, my lowest frequency 

is absolutely that the f l is nothing but equals to the 1 by square root to 2 of my central 

frequency. And when I am now categorising this frequency band with the three this part, 

so certainly my lower band under the third octave band filter, f l is nothing but equals to 

1 of square root of 1 by 2 square root of to the power 1 cube, means 1 by 2 to the power 

we can say the cubic features are there into f c. 

So, f c divided by square root of 2 to the power 6, and similarly, you see if I am going for 

the higher frequency, again I need to go right from the central frequency towards that. 

So, again this is nothing but equals to the f u is square is square root of 2 into this, 

because now I need to go on the upper side, so it is into central frequency and similarly, 

if I am going towards the third octave band filter with this upper limit. So, my upper 

limit exciting frequencies are nothing but equals to the f c central frequency into square 

root of 2 to the power 6, means 1 by 6 I can say. 

And then based on this upper and lower limit in both octave band and third octave band, 

we can calculate the bandwidth, so the bandwidth in the octave band filter is nothing but 

equals to f u minus f l as we know that. So, we can say it is nothing but equals to as we 

discussed already square root of 2 minus 1 by square root of 2 into f c. And similarly, 

you can calculate the bandwidth there in the third octave band filter, so again you see it 



is nothing but equals to f u minus f l which is nothing but equals to the square root of to 

the power 6 minus 1 by square root of 2 to the power 6 into f c. 

And even we can calculate the central frequency in both the cases, so the central 

frequency in both the cases is nothing but equals to f c is equals to square root of f l f u 

means, this lower and upper frequency into square root or in for third octave band also, it 

is nothing but equals to square root of f l and f u. So, this is what you see the clear 

definition, where the first once we defined the third octave band, and once we define the 

octave band we can make a clear relation. Because, in the octave band, now we can 

separate the three different segments and again same every segment is showing the 

octave band features only in the three forms. 
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So, now you see here we can standardise the central frequencies upper and lower 

frequency limit, for third octave band and octave band filters with these the octave band. 

So, these shading features are there, so if I am just talking about the band number say. I 

have the band number 1, I can see that the central frequency can be of 1.25, if this third 

octave band is almost 1.12 to 1.24 and then here when we are increasing the band 

number say 2, 3, 4 or whatever you see. Say if we are at the band number 3, our central 

frequency is 2 and the third octave band means you see, f l minus f u is 1.78 to 2.22 and 

we can get the octave band filter for this is 1.41 to 2.82. 
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That means, we can straightaway start from the minimum for these right from band 1, we 

can say straightaway, we can say from band 2 to band 4 for this the third octave band 

filter is being, it is being designed. And the frequency for this is 1.41 as the lower and 

2.82 as the upper frequency, so similarly you can go for 5 to the 5 or even 5, 6, 7 for this 

and then for 8, 9, 10. And then we can go for the for this 11, 12, 13, so for these part 

specially we can all for three parts, we can go and define that what could be the central 

frequency, what is the we can say the octave band filter part especially, where the third 

octave band is there and octave band filters are there. So, for individual part means for 

individual band number, the octave band filters and third octave band filters are to be 

designed and in these tables particular. 

We can go up to the band numbers almost up to 43, and there for even when we are 

talking about say 41, 42, 43 for 41 we can say the central frequencies are 12500, and 

then we can simply define the third octave band. Say for first 41 band number it is 11200 

to 14100, for 42 it is 14100 to 17800 and for 43 it is 17800 to 22400, and when we are 

talking about the octave band filter, in which you see a lower and upper limits are there 

for band number 41 to 43, then we can say that it is for 11200 to 22400. 
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So, this is almost we can say, once you define these central frequencies in between you 

see here the both the bandwidth can decide and then accordingly the filter can be 

designed for many number of the band numbers. So, for 43 we have shown in here in this 

that, how we can design those features together, now in the another section, we are now 

going to discuss about the addition of the frequency components. 
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So, there are you see various ways through which we can describe the signal distribution 

in frequency dimension, or we can say in the frequency bands. And when we are talking 



about the narrow bands, they are simply giving the detailed information on the 

distribution of energy and in that with the relatively low amplitude in each band. So, the 

narrow bands are always just discretized those entire informations, within that how the 

distributions are there at those the lower amplitudes. 
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So, you see if we just want to show this part, then this is what it is you see here, this is 

the actual waveform which is being there, and if we are talking about the narrow bands 

this is what the narrow bands are there. And they are absolutely showing that at the lower 

amplitude, what is the this energy distributions are there, but the key feature if we are 

using the octave band. So, for the octave band that, this is being starting from this phase 

and then you see this is for this way, so when we have these say variation like that, the 

octave band starting from this to this. 

And again when it is going dip and the variation is there, the new octave band in the 

second form is starting from here to here. So, this is the second form and then the next 

octave band because again there is a drastic change, so here we are again putting the 

octave band and then up to this before the narrow band this octave band is there. And 

then all the variations are there, so this is my octave band for the fourth octave band, and 

when we are putting the third octave band in individual the octave band. 

So, we have these octave bands where the variation, then again an octave band and then 

octave band, so now this entire octave band is to be divided into three equal segments 



where the featured are being taken in such a way that, we can classify the bandwidth for 

you know like whatever the variations are there. So, for this octave band also, there are 

third octave band in that there are three components this and this and this one, so they are 

simply showing that how the variations are there. 

So, as we discussed with the octave band and with the third octave band, and with the 

narrow band we can simply capture that what is the amount of , which is being there 

during excitation. And how much energy which we just want to pass, and we just want to 

see that the frequency band upper and lower frequency band, how they are being varied 

with these kinds of signals. 
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So, now in this particular the same sound spectrum which I was presented there with the 

narrow band, third octave band and octave band, and we know that the bigger bandwidth 

more frequency components can be contributed to any band, and they are always giving 

the higher levels. So, this logarithmic feature of the frequency axis can simply causes 

this constant relative bandwidth filters to have the same apparent width per band, 

whatever over the entire spectrum. 

And when we are considering the constant amplitude bandwidth with their fixed band 

along with the axis, and when the fixed bandwidth are there over the entire spectrum, 

they are appearing to grow more dense as the frequency being increases. So, that is why 

when we just want to see the specific or the discrete frequency features, certainly we are 



always going with the CRB, the constant relative bandwidth. And when we know that 

there are not many number of frequency peaks are there or the spectrums are there in the 

entire vibration signature, then certainly we are going with the this CAB type of filters. 
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So, we can say that when we just want to calculate those things, we can simply use that 

what exactly the total pressure levels are there in this. So, we can say that total the sound 

pressure in that, is the summation of all these the p n square right from n equals to 1 to, 

this means we can say simply calculate with the individual frequency excitations we can 

sum up and we can calculate the total in our frequency band. So, we can say that as we 

already discussed the sound power is nothing but equals to 10 log like summation of all 

these power on the basis of 10, so it is 10 to the power L p n divided by 10. 
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Because, now when we are talking about, the numerical problem this one say when we 

have this 1000 Hertz octave band, which includes you see 800, 1000 and 1250 third 

octave bands. So, within this octave band now 100 Hertz, now we have all three 100, 

1000 and 1250 third octave band, we need to find out the octave band level, if the third 

octave band levels are 79, 86 and 84 d B respectively. So, now you see our sound level 

power which are simply we want to calculate this the total band level, so this is nothing 

but equals to L p equals to 10 log. 

 (Refer Slide Time: 30:41) 

 



Now, 10 to the power now, we have this 79, 86 and 84 already third octave bands are 

there, so we can say 7.9 plus 10 to the power 8.6 plus 10 to the power 8.4, and when we 

are calculating this is almost nearly equals to 89 d B. Now, we are going to take the last 

example where we have a car model, say a quarter car model. 

And we just want to find out the dynamic properties, using the vibration features and the 

model is greatly simplified based on the assumption that the car has the vertical motion, 

that can be described using the point mass model, in which the mass of the car is 

uniformly distributed on each of the 4 wheel. So, we are simply assuming that through 

this centre of mass, the car can be divided into four equal segment, and every segment is 

being supported with the tire part, because the 4 wheels are there, so the entire wheel is 

being supporting, so that is why we generally we are saying that this is the quarter car 

model for this. 
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And the quarter car model consist of two masses m 1 and m 2, so we are saying that 

quarter of the car body mass above, which the suspension is there that is my m 2, and the 

complete wheel mass is my m 1. And correspondingly we can say that the mutually 

coupled spring damper system is there, so we can say k 2 and this d 2 they are simply 

showing the compliance, we can say the this spring and the damping features, while you 

can say when the wheel mass which is finally, coupled with the road way by the spring k 

1 is being compliance with the tire itself. 
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So, we can say the quarter car model which can be clearly shows here that we have you 

see the m 2, which is being here, so as we have already discussed that this the complete 

wheel mass is my m 1, and m 2 is the car body mass. So, this is what you see the car 

body mass is there, 1 4th of the car which is the car body mass, then it is being 

suspended and during this suspension we have the both k 2 and d B 2 is are there, which 

is being associated with the car model, the car body mass and with this wheel mass. 

So, this is what my wheel mass m 1 is there and this is what wheel, and below the wheel 

we know that with the surface road surface contact, we have the damping and these this 

spring properties with the tire deformation. So, this tire is now providing the stiffness 

feature and the damping feature, just the k 1 and d v 1, so from the prospective vehicle 

dynamics it is of the great interest to study the displacement z 1 and z 2. You can see that 

we have a clear z 1 and z 2 when the car is travelling there is clear excitation of the 

wheel and the body suspension with this. 

And the profile of the road surface relative to this elevation, now the profile, when we 

are just talking about the profile, we do not have a clear the smoother road surface. So, 

that means, we have a time dependent displacement from the ground and this is what the 

zeta of t. 
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So, with this now our interest is to now find out the mass stiffness and the damping 

matrices of this car models, just to see that how formation of these matrices are. And 

now the data which we can straightaway use for the typical passenger car, say m 1 is our 

20 kilo gram m 2, which is of the wheel is just 20 kilogram the entire body mass the 

vehicle means 1 4th of this is 350, not the entire means 1 4th of that 350 kilogram. The k 

1 the stiffness associated with this the tire one is 200 kilo Newton per meter, and k 2 

which is associated with this body to car suspension, they are of very less 20 kilo 

Newton per metre. 

The d 1 is not there, because damping is not being acted as along with the tire, so we are 

assuming that there is only the restoring forces are being there, when they are being 

excited from ground to tire itself. And then d 2 is given as 1 kilo Newton second per 

meter, so this is one we need to now determine the undamped eigen frequency of the 

model. And also if you are assuming that the car travel on the road surface with the 

sinusoidal profile now, and that sinusoidal profile having the wavelength of 10 meter, 

then we need to find out the velocities at which the severe vibration of the car are to be 

expected. So, this is something a typical vibration problem and we need to formulate 

using this part, so we can say that, how we can put those things. 
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So, first thing the mass stiffness damping matrices that can be straightaway get with the 

usual term, so m this is along the diagonal they are being symmetric, so m 100 m 2, k is 

k 1 plus k 2 minus k 2 k 2 and this one, and this is what it is. Now, if you want to 

calculate undamped frequency, eigen frequencies we can calculate you see the k 1 plus k 

2 by 2 m 1 plus k 2 by 2 m 2. And then the square root of both the square plus you see 

here like k 2 square and minus k 1 k 2 over 2 m 1 m 2. So, when we are keeping those 

values, we can get straightaway the first natural frequency of this is 104.91 radian per 

second. 
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And similarly, you see here we can get the omega 2, because it is a 2 degree of freedom 

system, so again it is being there along with the k 2 and k 1. So, we can simply put those 

values, because k 1, k 2 are given to us and m 1, m 2 is there with us, so we can calculate 

the omega 2 as 7.26 radian per second. So, this is what the excitation frequencies are 

there at the for the wheel and for the body mass. So, correspondingly we can say that f 1 

will be excited at 16.7 Hertz and f 2, means the body the car body mass at the 1 4th will 

be excited at 1.16 Hertz. 
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So, that is what one formation how do we calculate this, but the main feature is coming 

when the car is moving at the constant speed, and we have a sinusoidal road surface 

profile at the lower end. And they are being coming to the our tire part for which the 

spring k 1 is going under the sinusoidal vertical motion say z 0, so now we need to 

assume that z 0 which is nothing but the epsilon t which is given the question is nothing 

but the epsilon 0 sin omega t. Because, all these features are being there, all big feature 

of the road is being coming to the vehicle, and even we can explain this in the complex 

form generally we are using the z 0, is the epsilon 0 e to the power i omega t. So, we can 

calculate the circular frequency based on what the wavelength is giving of the road 

surface, through which this sinusoidal feature of excitation is coming on the vehicle. 
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So, when we are trying to do we know that say the given speed V is there for car, which 

is passing through the certain number of wavelength on the road surface profile per 

second. So, that number that means, the frequency f can be calculated from the ratio of 

the distance travelled by the vehicle in per second that means, we can say that the 

frequency is nothing but equals to the velocity V divided by the wavelength lambda. So, 

when the car is driven to the speed that, causes the roughness induced the exciting 

frequency must be equal to one of the two eigen frequencies. 

So, we can say that the strong vibrations can be expected at these two exciting 

frequencies are there, so we can calculate the critical speed V critical is nothing but 

equals to lambda into f 1 plus and lambda into f 2. The lambda is given the wavelength is 

given as 10 and the exciting frequency first was coming at 16.7, so the first is 167 meter 

per second and second the critical where the V critical at two part. So, lambda into this f 

2, lambda is 10 and f 2 is 1.16 exciting frequency, so we have 11.6 meter per second, so 

this is what the speed, the critical speeds are there where we can expect the huge we can 

say vibrations at that. 

So, this is the last numerical of this course vibration control, in which we discussed 

almost you see all types of signatures signature analysis, using the filters, data 

acquisition systems, fast Fourier transformation, time domain frequency analysis. 
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And for developing the entire course, we have used various references and I have already 

quoted in many of you see the citations wherever it was there, but also especially we are 

so thankful to from the book which we have adopted, in our one of the MOU with the 

KTH Sweden, and IIT Roorkee for developing the courses. And just flourishing this 

awareness about the sound and vibration to this Indian conditions, so that MOU was 

under the Euro, Asia project. So, that book was provided by them by professor Metsberg 

and team, so we are so thankful and we are simply citing these fundamentals of sound 

and vibration by KTH Sweden book, that is one of the basic book. 

We also used the main core books of the basic vibrations like, the fundamentals of 

mechanical vibration by Kelly, fundamentals of we can say the vibrations by meirovitch, 

and then the mechanical vibrations by S. S. Rao theory and practices of mechanical 

vibrations by J. S. Rao and professor Gupta. Handbook of noise and vibration control 

especially by Malcolm Crocker, and also the active vibration control by we can say, by 

this professor Nader there in the Clemson university. 

And also professor Inman, Denial Inman the vibration control we have also refereed 

those various there, and we have cited there, and also lastly, but not least the Wikipedia 

sites also providing some kind of the basic informative features, and we have taken the e-

materials from that itself. So, thank you very much from team, through which we 

generated those courses, and either from the web or the video part.Thank you very much. 


