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This is Dr. S. P. Harsha from Mechanical and Industrial Department IIT, Roorkee, in 

previous lecture we discussed about the 2 degrees of freedom systems, that how you 

know like the damping or the masses or the stiffness are being varied, when we are 

taking the 2 degrees in that. We discussed about that how the Eigen frequencies can be 

calculated when you have the 2 degrees, and how you can make you see the coupled 

equations in that. 

And we know that when the system is in the 2 degree of freedom systems, there are two 

natural frequencies, which are simply a reflection of our characteristic roots of the 

equations. And then we have the corresponding mode shapes for that, and these mode 

shapes are absolutely reflecting a individual natural frequencies for that. 
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And then also we discussed about when you have a damping involved in that, then 

certainly we can simply like calculate, the undamped natural frequency and the damped 



natural frequencies for that. Lately we solved some numerical problems for along you 

know like with these kind of concepts, in the today’s lecture again we will, like further 

carry out the similar kind of features that if we have the 2 degrees and more than 2 

degrees of freedom system. 

Generally we are referring more than 2 degrees of freedom system as the multi degree of 

freedom system, then how the things are being varied along with the masses or the 

stiffness or the damping for the high degrees. Like the natural frequency or the eigen 

vectors that means, the mode shapes, so in that same you see we are taking the same 

previous numerical problem in which, the two masses were simply under the oscillatory 

motion, which are being constrained by this spring motion. 

So, we know that when you have more than 2 degrees of freedom system, there are you 

see here, like the matrix formulations for making the equations of motion. And these 

matrices are simply reflecting that, like what kind of arrangements are there, according to 

the system arrangements the elements are being coming into the matrix formulations. So, 

the matrix formulations even makes it possible to solve the system differential equations 

using any kind of you see the solving techniques or the software particular. 

We need to first go to the basic equations like, the inertia force, the damping force or the 

restoring forces and when it is being excited by external forces, we can simply go to the 

Newton's law. So, you can see that the equation 1.26, which is simply the reflection of 

the same equation, but only in the state space form or we can say only it is in the 

formulation of the matrix. You can see that the mass matrix is there, which is nothing but 

you see the symmetric matrix along the diagonal and it has to be. 

If there are you see some problems in the formulation, it seems that the whatever like the 

degrees of freedom or whatever like the formulations are not being captured correctly. 

So, you can see 1.27 is nothing but showing the mass matrices along and it is you see, 

like the symmetric along the diagonal M 1 and M 2. And even if we are going for a high 

degrees it should be in the same manner only, even if we just see the damping or the 

stiffness matrices, they are also in the similar manner only. But, again if you just see the 

diagram that what exactly the diagram was, so that we can straightaway understand what 

the feasibility of the system arrangement is... 
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You can see that we have the two masses on which the two simple harmonic motion is 

being there, along with the displacement x 1 and x 2, and the forces are being acted on 

that F 1 (t) and F 2 (t). And with this you see, we have the stiffnesses k 1, k 2, k 3, we 

have the damping C 1, C 2, C 3, and then all these you see the motions are being 

occurred accordingly. So, now you see, if we want to just formulate this we know that 

the damping matrices is exactly in the same way just we derived stiffness matrices. 

And they have to be positive along the diagonal only, if any negative factor is coming 

along the diagonal in the damping or the stiffness matrices that means, there is some 

problem in calculation. Or there are some problems in the formulation of these features, 

either in the free body diagrams or in capturing those forces with these elements. 

So, you can see 1.28 equation is just reflecting that how the damping is being varied, like 

you see the first element it is you see here, as you can see in the diagram the M 1 is in 

between the C 1 and C 2, so certainly the damping is straightaway playing a key role in 

that. So, in the first it is C 1 plus C 2 and then on the second side it is minus C 2 and then 

you see here, our mass M 2 is also varied in between the C 2 and C 3, so certainly we 

have on one side it is minus C 2 and on another side it is C 2 plus C 3. And the same 

manner is coming in this stiffness matrices as well, because the arrangement of your our 

damper and the spring stiffness are in the similar manner in our previous diagram. 
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Then there are two displacements of the mass one and mass two, so certainly we have the 

mode shapes after being displaced by the F 1 and F 2 the forces. So, what we have we 

have x of t which is nothing but a reflection of our displacement outcome is x 1 (t) and x 

2 (t) of two manner. And the same forces which we are applying the input forces are F 1 

and F 2 (t) in the matrix form. So, now you see here, since we know the excitation forces 

are simply producing your homogeneous solution using the particular integral, or we can 

say this is something which like we want. 

Because, we know that the complementary function is known homogeneous, simply 

giving you the, this transient feature our main part here is to calculate the steady state 

feature, which is simply bounded by this forcing factor or we can say a particular 

solution. 
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So, with that you see here, we can say that our force input F 1 and F 2 are simply 

showing the simple harmonic motion, so we have F 1 which is like, the time bounded the 

forces. So, it is f one e to the power i omega t, the force two which is acted on mass two 

is nothing but equals to F 2 into e to the power i omega t, so we have both the forces. 

And then we can expect the outcome in terms of the steady state formulation or we can 

say the particular integral, so x 1 p is nothing but equals to x 1 p, which is the amplitude 

into e to the power i omega t, which simply shows the simple harmonic, like motion in 

the outcome. Similarly, x 2 p which is a related to the displacement of mass m 2 is 

simply x 2 the maximum amplitude into e to the power i omega t, so we have both, we 

have you see the steady state solution with the x 1 p and x 2 p; and if we are combining 

all three, the input and output. 
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Then certainly we have simply end up with our main solution matrices minus omega 

square m plus x p, which is like which we want particularly like, so we have minus 

omega square m into this one, plus we have you see like i omega into damping matrices. 

And then you see we have this stiffness matrix and x part you see here and then it is 

equated to whatever the forces which is being excited, now our main theme here is to get 

the homogeneous solution. 

So, far that we need to apply a force factor and we need to put a entire thing equals to 0 

to get the eigen frequency, since you see in our equation we have the two main factor, 

one is the damping, one is the stiffness. And if you want the system performance in 

terms of the Eigen frequency, then first we need to keep the damping vector 0 to get the 

undamped natural frequency. And if the damping is there, certainly we have the damped 

natural frequencies, so first of all we need to keep this force equals to 0 to get, because 

you see the eigen frequencies are always coming for the free vibration conditions. 

So, the force vector on the right hand side of the equation 1.36 makes an equals to 0 and 

then in order to calculate the undamped natural frequency, we need to keep the damping 

vector 0, so that we can calculate the undamped natural frequency. So, you see here, in 

general terms now, our equation 1.36 will be equal to minus omega square m x p plus k 

into x p equals to 0. And it will give you, this equation will give you the undamped 



natural frequency, the characteristic roots which is simply reflecting the spring and mass 

system. 

Damping on other hand, simply brings the complex valued eigen frequencies that means, 

you see here if we have mass and spring system, whatever the roots which are coming 

which we are saying the characteristic roots or the eigen frequencies they are the real 

one. So, we can simply say that when the roots are real, they are simply showing the 

natural frequency and the roots are complexed values that means, they are showing the 

damped natural frequencies. 

Again you see here both the frequencies being there, because our system has the spring 

and the damping together. So, with this particular feature now, if you are going towards 

first, the undamped natural frequency, certainly since the system is having 2 degrees, we 

have omega 1 and omega 2 as the two natural frequencies. 
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Then we can calculate you see here, minus omega square m x plus k x equals to 0 as we 

discussed, and to find out these things, as we already discussed that, we need to keep this 

matrix into the determined form and makes it equals to 0. Then we have determinant 

minus omega square m plus k equals to 0 and from that you see here, we can simply 

calculate the natural frequency. Or else you see here we can say the eigen frequency 

which are nothing but equals to the natural frequency square. 



So, for a 2 degree of freedom system, certainly you see we have two omega 1, omega 2 

as we discussed or even you see, if you are going for higher degrees. We can say the 

linear terminology for this, that if we have n degrees of freedom system certainly the n 

natural frequencies are there for that. 
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So, from this part you see here, the since it is a 2 degree of freedom system, so we have 

the omega 1, omega 2. And since it is are the motion of the mass m 1 and m 2, which we 

are saying x 1 and x 2, like is being restricted by the spring stiffness k 1, k 2, k 3 

according to the arrangement in the previous diagram. We can see that omega 1, omega 2 

is nothing but equals to the square root of k 1 plus k 2 by 2 m 1 k 2 plus k 3 by 2 m 2 and 

then you see here plus minus square root of, this is simply like an algebraic equation. 

And from the algebraic equations we can get alpha 1, alpha 2 for that similar manner you 

see we can get this 1, so it is nothing but equals to this is square root of k 1 plus k 2 by 2 

m 1 plus k 2 by k 3 our 2 m 2 plus minus square root of the whole square this one. So, it 

is k 2 square minus k 1 k 2 minus k 2 k 3 minus you see here, we have k 1 k 3 divided by 

2 m 1 m 2. And again you see here, these Eigen frequencies are simply giving, like the 

real we can say the mode of this one, because this is undamped frequencies. 

And the real roots are always you see like simply showing that, how the variation of the 

masses are in terms of like the relative positions means you see here, means if one mass 

or two masses are in phase or out of phased. And you see here, these things in which you 



see the in phased or out phased are there, we are saying these are the eigen vectors or the 

mode shapes of this one. 
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So, these Eigen vectors are mutually interdependent as I told you, the orthogonal feature 

is contained the information that how the system oscillates in the vicinity of their 

respective eigen frequencies. So, for that, either if we are talking about the omega 1 the 

first natural frequency or if we are talking about the natural frequency omega 2, we can 

simply find out the relative displacement of their masses. And the mode shapes x 1 and x 

2 can be straightaway obtained by substituting these frequencies into the main equation, 

which simply corresponding say that you see in the equation 1.40 minus omega 1 square 

mass matrix plus k, this like the displacement matrix equals to 0. 

So, these like the displacement for omega 1 we have x 1 and similarly, you see if we are 

going for omega 2, the next natural frequency or displacement vector is x 2, so minus 

omega square m x 2 plus k x 2 equals to 0. So, in these two equations you see, we know 

that there is a like the coupled equations, like we can simply get those values x 1 and x 2 

in relation to these variation of the masses and natural frequencies. So, certainly we can 

calculate the mode shapes from these two, now we would we would like to apply this 

concept into the real application, so you see in the example this example which is there 

on your screen. 
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Simply a machine is mounted on the elastic foundation, this elastic foundation is not only 

providing the support, but the same time it is a kind of isolator to prevent the vibration 

transmission to the ground. So, you see here, if you look at that what we have, we have a 

mass which is being, like creating some kind of motion and through this motion you see 

here we have the oscillatory vibrations in that. And these vibrations are being, like just 

transmitted vertically downward, so that you see what we have, we have you see the base 

and with the base on n in between the mass. 

We have some kind of you see, like the damper or the spring, so if you look at that the 

mass m is like we can say it is in the motion, so this mass is something we can say m 2 

which is at the x 2. And similarly you see here the mass m 1 is our base feature you see 

look at that part this is the base, and this base is also, since it is coming under you know 

like this oscillatory mass, so it is also having some kind of displacement variation. So, x 

1, so m 1 x 1 from the base and m 2 x 2 from the mass is having you see makes the 

equation or make the system in 2 degrees of freedom. 

And on below of this mass or this base, we have like the damper and the spring, we can 

say this is simply a isolator just to prevent these things. So, with this formulation, we can 

say we have the double elastic mountings in between the mass and the base and then you 

see here these are simply providing both the stiffness and the damping together for that. 
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So, suppose that you see this machine, which we are saying that is representing by these 

two, so on top of that whatever the oscillatory mass is there it is m 2 and the base is m 1. 

And the force you see, whatever the force which is being excited or being applied this F 

excitation force is having the circular frequency of F. And our main theme is to reduce 

the amplitude vibration, which is being transmitted to the ground the this part, so we can 

incorporate the spring mass and the viscous arrangement in that. 

So, now, certain parameters are there in this we have the mass m 1 and m 2, as 100 

kilogram and 500 kilogram, the stiffness is also given to us 5 into 10 to the power 6 

Newton per meter for first spring, and second is 1 into 10 to the power 6 Newton per 

meter. Similarly, we have the damping feature in this, like the d v 1 that is you see the 

damping in between you see, the base to the foundation that is you see here, 100 

kilogram per second and d 2 that is you see in between the base and mass is 200 

kilogram per second. So, we have a perfect isolator in between you see here mass to the 

ground, in the 2 degrees of freedom system. 
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The main thing is to calculate the undamped, the natural frequency or the eigen 

frequency, in which you see here the vibration frequency that means, like just generated 

by the machine, which is being mounted on this system. And second what the mode 

shapes are, since we are interested in undamped one, so certainly would like to reduce 

the effect of these dampers. So, we need to keep mathematically the damping matrix 

equals to 0, so the system is undamped one and then you see here whatever the 

undamped systems are there only the effect of this is mass and the spring together. 

So, we have you see whatever the roots, which are being coming out in the equation 

from this mass and the spring system is our undamped natural frequency reflection. So, 

you see here and then whatever the corresponding eigen vectors are there, they are our 

the mode shapes, so in this figure you see here we know that since the damping is there, 

but we just want to ignore the effect of the damping to calculate the undamped natural 

frequency. So, for that we already discussed that for undamped natural frequency, we 

could easily calculate omega 1 and omega 2 in the previous example, we discussed that it 

is nothing but equals to the spring stiffness variation and divided by the mass. 
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So, when we are doing these things you, we have omega 1 comma two is nothing but 

equals to square root of this 60343 and square root of 1657, or else you see it is almost 

nearly equals to 39.1 Hertz and 6.48 Hertz. That means, we have clear feature that the 

first natural frequency and the second natural frequencies are like that 6.48 first one and 

39.1 is the second natural frequency. And the systems undamped mode shapes can also 

see like be easily calculate using the homogeneous system equations, with the circular 

frequency f c for each eigen frequencies. 

That means, what do we have, we have you see the omega 1 and omega 2 and whatever 

the displacement which will be coming out from these say 6.48 Hertz and 39.1 Hertz are 

simply showing that how the mass displacements are there. And then you see we can 

easily figure out these things by putting this part into the main equation. 
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So, the first equation what we have, since the first natural frequency is 6.10, so we can 

keep that you say 6.10 x square, then you see whatever, like a this tends for 6 that is my 

stiffness you see here, into x 2 minus you see whatever the damping features are there; 

100 omega square, like this x omega n square x 1 equals to 0. And similarly, we can keep 

this part as 1 into 10 is to power 6 into x 1 plus you see here whatever we are keeping the 

other terms, like we have this stiffness term at k 2, and this mass 500 and we are keeping 

and we are making equals to 0. 

We can calculate the mode steps in terms of you see, the displacement x 1 and x 2 which 

simply indicates that, how the masses are being deviated. And by multiplying these 

things we can see that it is nothing but equals to minus 1 into 10 raise to power 6 minus 

100 omega square omega n square divided by 6 into this. And when we are calculating 

this, we could easily figure out that how the masses are being displaced at first natural 

frequency 6.48 or at second natural frequency 39.1 Hertz. 
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And substituting these numerical values in this we could easily figure out these eigen 

vectors, and it becomes identical to these things that, when we are evaluating those 

things it is a very symmetric process. And this means that you see both the equations are 

linearly depending, and in the complete arrangement they are simply giving the relative 

displacement in phase and out phase, in terms of the mode shapes. And the linear 

dependant system with two unknowns, has simply you see the infinite number of 

solutions along with that. 

So, you see here in order to solve these equations, certainly we need to apply that what 

exactly you know like the numerical datas, which can be incorporated to get the final 

solution, in terms of x 1 and x 2. So, when we are trying to solve these things now, we 

can simply put that in terms for this x 1 amplitude we can keep alpha 1. 

And in terms of x 2, we could simply find out that you see x 2 is nothing but equals to 1 

into 10 raise to power 5 divided by you see here, 1 into 10 to raised to the power 6 minus 

500, which was you see the mass m 2 omega n square alpha. And if this amplitude x 1 

has the value of you see the omega n, then certainly we can say that the x 2 must be 

having the value, which simply 1 into 10 power 6 divided by this numerical digit. So, 

now we have you seen like the Eigen vector, which is simply corresponding the first 

natural frequency omega 1 in these terms, where the alpha is simply a constant. 
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An Eigen vector is nothing but a vector which is specifically in a specified direction, like 

in phase or out phase. And we could easily figure out that what exactly the x 2 by x 1 is 

what exactly the ratio of that, which simply represented with the variation of this alpha 1.  
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And then when we are keeping those values in this, we could easily say that, now we 

have omega n which is equals to omega 1 and you see whatever you see which is 

reflecting phi 1 over minus 0.034. And omega n which is simply for a second natural 

frequency is phi 2 is nothing but equals to 1 over 5.8, so if you look at these values, we 



know that in the first one omega 1, we have the mass the mass placing is in the opposite 

direction, so orthogonal feature, or out of the phase. 

Second the both are the positive values 1 oblique 5.8, that means you see here we have in 

phased mass and they are absolutely moving together, so the interpretation of these the 

first eigen vector for this, is the system is excited by the eigen frequencies, just near the 

first we can say eigen frequency. And it simply we have the resonant conditions of the 

amplitude with you see the second mass is always being reflected with 0.034 times of the 

first one. So, the second mass is you see more and more oscillated at the resonant 

frequency, and the minus sign is simply indicates that both are in the opposite phase as 

we discussed. 

So, you see here this diagram or this example simply showed that, we have a clear kind 

of a the arrangement and these arrangements are simply showing that, whatever the 

constraints are with the systems always the masses will be in phase or out phase with any 

degrees of freedom systems. 
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And now if you are going with any arbitrary number of degrees of freedom, means you 

see here if we are going to the any real time real life examples, we know that the system 

is very complex. May be you see here right now, we were simply formulating the 

equation of motion based on a linear propagation or linear motion that axial motion. But, 

if you see the band is there or if any twist is there or any elongation is there in two 



different directions, then certainly the mass which is being distributed is not the discreet 

one; and can be assumed to any of the different models. 

And then the entire elasticity is straightaway disturbed by that, we cannot take you see 

the linear propagation of the spring as we discussed in the previous cases, because there 

is certain nonlinearity is there, due to the geometric feature. So, in the reality we have 

infinite degrees of freedom in the system, but for our convenience, because we just want 

to analyze the system performances under the dynamic action. So, certainly what we are 

trying to see, we are trying to put the finite degrees of freedom system in that. 

And the methods of modelling, which is simply putting altogether is always depending 

on what exactly the computational facilities are, and accordingly we can go for the 

degrees of freedom systems. So, you see here right now, we discussed about the 2 

degrees of freedom system, so even we can go with the these 2 degrees in the various 

configurations. 
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So, on your screen you can see that, we have one diagram which simply shows that, if 

we have the springs in the series formulation. That means, you see here we have say m 1, 

m 2, m 3, m 4 and all the n masses are being arranged in such a way that, all the spring 

and the dampers are coming in the series formulation. Like you see here for m 1, we 

have k 1 and C 1 on left hand side and on right hand side we have k 2 and C 2. So, for 

movement of m 1 is straightaway reflected or straightaway you see deviated from this 



path and similarly, you see for mass m 2 it is straightaway affected by these constraint C 

2 m 2 on left hand side C 3 m 3 on other side. 

And up to you see if we are going up to n’th mass, then certainly we know that on left 

hand side we have the spring stiffness k n, and this damping is C n, on right hand side we 

have k n plus 1 and C n plus 1 of the spring 1. And with these you see here cascaded 

masses, all these series solution or the series arrangement of the mass or this spring and 

damper is giving a perfect resolution of the forces, means the damping and the restoring 

forces along with the inertia forces of the mass. And say if you want to arrange these 

masses along with the masses or the damper and this stiffness is, along with their own 

forces.  
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And we can say that first, the equation of motion becomes for the first type of 

arrangement, it is mass m 1 into d x 1 t over d t square d 2 x 1 t over d t square plus C 1 d 

x 1 t over d t plus you see here, whatever the damping which is in between. That means, 

you see here we have the C 2 and if this C 2 is coming in between d x 1 by d x 1 t by d t 

minus d x 2 t by d t. And similarly, you see here we have both k 1, which is absolutely 

related to x 1 t and k 2 which is related to the difference of these x 1 t minus x 2 t. 

And then since the force is being applied on the mass m 1, so you see on right hand side 

we have the foreseen factor. And similarly you see here, we can easily formulate all 

these equations up to the n’th mass, because ultimately this is a discreet system in which 



the system motion is absolutely constrained by these springs, as well as the dampers part. 

So, when we are simply configuring all these forces, we can apply straightaway the 

Newton's law to individual masses and we can get you see all the force balance equations 

for that. 

So, you can see that even for m 2 or m n minus 1 or even for m n, we have all these you 

see the arrangement of the individual forces like from, this m n d 2 x n by d t square, so 

this is my inertia force for n’th mass, this is my damping force. As in a left hand side you 

see here, we have d x n over d t, on right hand side we have C m and this is all the 

differences of this d x n by d t and minus d x n minus 1 by d t. And similarly, you see the 

stiffness variation like for k n or k n whatever you see, the displacement differences are 

there for this and the displacement individual is coming together. 

But, these are the individual equations which were simply reflecting that, there is a force 

balance equation for individual masses and all this setup, under this excitation is under 

the static equilibrium, even after the forcing F 1, F 2 or up to F n or x 1 or x n 

displacements are there. So, now you see here we can straightaway go, because it is a 

multiple degrees of freedom system, we can go to our the matrix systems. And we know 

that there is a straight formulation for that, like for mass the mass matrix should be 

identical along the diagonal feature, so you can see that on your screen. 
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The equation 1.46 is nothing but the mass matrix in which all the elements along the 

diagonal is symmetric, right from m 1, m 2, m 3, m 4 and then m n along the diagonal 

and all other elements are simply the balanced equation. Since it is balanced equation, so 

it should be 0, similarly for damping we know that, when we are talking about the n’th 

degrees of freedom system, there is you see the diagonal feature must be positive. 

So, you look at that we have C 1 plus C 2 starting from this and ending up to C n plus c 

m plus 1 and then you see the corresponding feature, if we are just on the first part, 

means the first mass which is the motion of the first mass is constrained by both c 1 and 

C 2. So, what we have c 1 plus C 2 on your screen you can see, equation 1.7, C 1 plus C 

2 other side minus C 2, and if you are going towards the mass m 2, then you have minus 

C 2, C 2 plus C 3 n minus C 3. Similarly, if you are going towards further directions, we 

can simply find out that all the damping parts are coming exactly in the positive manner, 

when we are moving along the diagonal of that matrix. 

And if we are going now towards the stiffness part, it has a similar feature, because the 

arrangement of the damping and the stiffness is, the deformation in the stiffness and the 

velocity in the this damper they are having the similar manner, no nonlinearity is there. 

So, along with that you see the elements, in the matrices are also the symmetric along the 

diagonal feature and they must be positive. 
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So, with that we can see the stiffness matrix k 1 plus k 2, similarly k 2 plus k 3 plus 

similarly you see, if we are moving towards you see the n’th part k n plus k n plus 1. So, 

this entire symmetricity is simply showing that this is a well balanced equation, and they 

are showing that the entire system is in equilibrium manner. Where the non zero element 

not shown in the equation are simply marked with the dot, and the zeroed value elements 

are marked with the a in these equations like that in these matrix elements. And one can 

even allow the masses to be coupled in parallel like you see now, if we just want to 

arrange our masses in the different configuration, like you can see that in this 

configuration. 
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We have the masses, so the first mass m 1 is absolutely with our k 1 and c 1, but you see 

the masses m 2 and m 3, they are absolutely coupled with now over these k 2 and k 4, 

and if this is coupled with k 3 and this is my k 5. So, when these masses are now coupled 

parallelly, we can see that there is a clear impact of these coefficients in the matrix 

formulation or the equations of motion, because now we have a parallel coupling of the 

masses along with their stiffness and these damping coefficients. 

And then later on you see if you are ending up with our you see m 4 mass along with our 

k 6 and damping coefficient d 6, so when now if we have this arrangement, we can again 

see that you see what exactly these forces, which are being balanced by this F 1 on m 1, 



F 2, F 3 and F 4 on these m 2, m 3 and m 4 masses and when it is, so then you see here 

the equations are like that. 
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On the for the first masses there is no change as such you see here, because this is what it 

is you see the m 1 and this one, the damping here is somewhat change, because whatever 

the damping. 
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If you look at the previous diagram, whatever the damping is coming for this first mass is 

an integral feature of this first k 2, and you see the k 3 the stiffness and the damping is 

coming from this d 2 and d 3 here. 
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So, we need to calculate accordingly, so if you are going towards that you know that, the 

first C v 1 is coming with the d x 1 by d t there is no problem in that, it is a straight 

damping force. But, as far as you see the C v 2 is concerned we have d x 1 and d x 2 the 

differences and similarly for here, it is d x 1 and d x 3, because you see here on right 

hand side there is a clear interaction of x 2 and x 3 velocity vector. And similarly, if you 

are going for our stiffness matrices, now the stiffness we can say the restoring forces. 

Then again the restoring forces on the left hand side, we have a straight k 1 x 1, but on 

the right hand side we have the k 2 and k 3, they are in the integral feature of x 1 x 2 and 

x 1 x 3, and then you see we are making equal. So, only what we need to see, we need to 

make in a free body diagram in such a way that, that how the forces the restoring forces 

or the damping forces are coming on mass m 1 from left hand side, or from right hand 

side. And once we are making balance of these things, then we could easily figure out 

that under these force balance conditions. 

There is you see, whatever the mass, whatever usually, the oscillation is there in the 

masses with the m 1, m 2, m 3, m 4 that could be easily figured out. So, now, if you are 

going towards the other masses m 2 and m 3, so far m 2 we know that since the m 2 is 



moving with the x 2 only. So, the inertia force has no problem, but the damping here, the 

damping force is something you see integrated with x 1 and x 2 part here, and here it is x 

2 and x 4 part. 
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So, you look at that you see here, this is something here we have k 2 and k 4 see this is d 

v 2 and d v 4 and these both the part you see here is straightaway affecting the motion of 

this one. Similarly, if we are to m 3, we have you see k 3 and here we have the k 5, here 

we have d v 3 and d v 5, which are simply making the entire balance of this m 3. 
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So, with this you see here, if you are trying to see the relative motion or the relative 

effect of this part you see here, we can say the damping forces or the restoring forces all 

the forces are being resembled here in a proper way. Similarly, for mass m you see 3, 

which is again the independent masses here, we could easily figure out this part. 
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And m 4 which is the separate part the last part you see here, here on the left hand side of 

this m 4, we have a clear interaction of the two main a spring, this is from the fourth and 

the fifth one. And also you see here, we have a clear interaction on the right hand side we 

have the this whatever the springs are there like you see here, whatever the spring forces 

are there from the 6 and d v 6 from the damping forces. So, you see here all these 

features are being straightaway incorporated here, now if you are just going towards the 

masses, that how the mass matrixes are being arranged along with the masses which are 

being placed in the equations. 

So, you can see that the mass matrix is again the same m 2 to m 4 is the four masses are 

being there, so we can see that since it is a 4 degree of freedom system, and we have you 

know like the mass matrices. It is again it is symmetric along the diagonal one, and now 

if you are going towards the other features, like the damping matrices. 
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We can see that even in the damping matrix right from the first one, because you see the 

first feature of our the m 1 which is straightaway affecting by three damping forces, one 

d v 1 the damping coefficient on left hand side, on right hand side there was a straight 

effect of d v 2 and d v 3. So, this part is straightaway you see coming here, we have d v 

1, d v 2 and d v 3 altogether here, and on the other side we have since, there was you see 

a clear dissipation on the right hand side, it is minus d v 2 and minus d v 3 on the other 

features. 

Similarly, if I am going towards the other part it is minus d v 2 which is being there, and 

then you see in the middle of one, since it is being straightaway we have the two main 

part on m 2, one on these d v 2 and d v 4. So, certainly you see the featured, all the 

featured will come into the main part d v 2 and d v 4 here and similarly, you see all the 

diagonal feature is you see it is positive and they are being arranged in this way. And 

since you see as per the damping feature, the stiffness the spring is also arranged in same 

way. 

So, we have the spring, we can say coefficients are k 1 plus k 2 plus k 3 as far as you see 

the left and right hand side of m 1 is concerned. And similarly if you are going up to the 

n’th part, up to the fourth mass we have both k 4, k 5 and k 6 for this one, so in this also 

we could easily figure out that even you see here, whatever the arrangements are. The 

general principle for generating these matrices for the system in which you see the 



direction of forces and the velocities are defined in this one, can also be summarized in 

this way. 
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First the mass matrix must be diagonal, that means you see here you like whatever you 

see even the masses are arranged in the parallel way, or the masses are arranged in the 

we can say the coupled one, the series one just you see in the first case which we 

discussed, the mass matrix must be diagonal. So, this is one of the thumb rule for that, or 

else we can say it is a checking point for this, second the diagonal element in the 

stiffness matrix or the damping. 

Because, you see here both the spring and damper is arranged is arranged in such a way 

that, they are absolutely occurring in the similar manner as far as the restoring force, or 

damping forces are concerned. So, the stiffness or damping matrix is sum of the spring 

rates or the damping coefficient respectively of all the springs, and the dampers 

connected to the mass indicated by the row number of elements. 

That means, you see here even the first mass as just in the previous case, which we 

discussed the first mass either in the series feature, if it is being constrained by k 1, d v 1 

or k 2 d v 2. Or else in the second case where the coupled one is there the parallel one, if 

this m 1 was like on left hand side it was k 1 and d v 1 or on another side it was k 2 d v 2 

and k 3 d v 3. But, their arrangement whatever coefficients are coming, they are coming 



exactly along the diagonal feature, that what exactly the contributing these forces or the 

elements are. 

And an off diagonal element at a specific row or the column position, in the stiffness or 

any damping matrix has an opposite or negative value of the spring rate or damping 

coefficient respectively. For that, the connection between the masses simply indicate by 

row number and that indicated by the column number, so what does it means that, it 

means that whatever you see the off diagonal elements are there. At any row you see 

here, they are simply giving the position of any spring or the damper features, by the 

negative way, minus d v 2, minus d v 3 in the first part. 

Or even the second row when it is starting from the second element in the first column, 

minus d v 2 and then you see here the other things are coming d v 2 plus d v 3. So, what I 

mean to say that in these or either we are in the inter 2 degree of freedom system or multi 

degree of freedom system. The arrangement of the elements in these matrices are pretty 

standard one and this is what you see making a thumb rule for all these arrangements of 

the elements in a perfect positions in the matrices. 

And it is even you see a check point for this, that if the things are not coming in these 

ways that means, either the forces are not properly configured or there is some problem 

in calculation features. Or in degree when we are just doing the free body diagram, we 

are not able to characterize properly, so you see in this today’s lecture, we discussed 

mainly about that you see, if we are talking about the 2 degree of freedom system or 

multi degree of freedom system, does not matter. 

Only we need to see that how these forces, because this is a discreet system, so how the 

forces like the inertia forces are being balanced by the stiffness force, this restoring 

forces through the stiffness of the spring or the damping forces through this damping 

coefficients. And when all these being under balanced condition, even the force 

excitation is there then what exactly the elements are being arranged in the matrices. 

Because, we are now playing with more degrees of freedom system, the multi degree of 

freedom system, so there was a straight rule which we discussed already that in the 

elements. Either we are talking about the mass matrix, either we are talking about the 

stiffness matrix or the damping matrix, how the elements are being arranged in a proper 

way. So, you see here in these 4 lectures till date, we were just discussing, it was a it all 



these lectures were the review feature, because you see here ultimately our main theme 

of this course is to control the vibration the vibration control. 

So, until and unless if you are not able to characterize the vibration properly with the 

single degree, 2 degree or multi degree of freedom system, then we cannot say that, we 

can effectively control or we can even effectively adopt any control strategy for this 

systems. So, in the next lecture now, our another feature will start the second module that 

simply shows that, how we can control the vibration. So, first of all we would like to 

discuss in the next lecture, that you see what exactly the formation of vibrations in the 

different systems for a mechanical machinery. 

How we can strike on the root cause of vibration, and once you find out that, this is my 

cause of vibration, then how what kind of control strategies are there, because ultimately 

in the vibration the three main features are there. First the source second the receiver and 

the sink, and you see the transmission means what is the path of that, the transmission 

feature. So, you see here where do we need to put the isolators, if the passive vibration 

control, in active vibration control, the first thing is there strike immediately on the root 

cause of vibration. So, in the next lecture we would like to discuss the aspects of control 

of vibration, along with the transmission the root or the, means the source or the sink of 

that. 

Thank you. 

 


