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Hi, this is Dr. S P Harsha, from Mechanical and Industrial Department, IIT, Roorkee, in 

the course of Vibration Control, we are mainly discussing about the vibration 

measurement techniques. So, in last two lectures we discussed about, that what are the 

basic you know like the dynamic parameters which we can measure and we can 

characterize the vibration responses. 

And in the last lecture we discussed about that you know, when we are capturing the 

data, what the exactly the data acquisition systems are and when we are capturing data in 

the time domain, which sometimes you see you are not giving the clear picture about the 

response features. We need to convert this into the frequency responses, then you see 

here we can use the Fourier transformation series in that, and whatever the information is 

there in the time domain with respect to the this displacement velocity or acceleration. 

We can you know like convert this entire information, you know like into the Fourier 

transformation, where we can get the exciting frequency with the corresponding 

amplitude of the vibration masses. In this lecture now we are going to discuss about 

again the you know like the vibration measurement technique, in the Fourier 

transformation that what exactly you see here we need to you know like put those 

Fourier transforms, when the things are even sometimes you know like in the turbulence 

manner or sometimes, you know like when the abrupt changes are there in the signal, 

because of some external excitation then how do we measure those responses. 
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So, many machines or the processes give rise to sound or vibration which are not 

periodic, because you see sometimes even they are either the stochastic, or in some times 

we are saying it is a random or we can say the transient vibrations. So, when the 

responses are not you know like the steady state phase, or the periodic phase certainly 

you see here it is very tough to measure that. So, roughness of the contacting surface 

between the wheel or path for instance, we can say that you see here when the gear 

teethes are the meshing. 

And some kind of you see disorientations are there or some you know like the different 

surface roughnesses are there, some irregularities are there on the surfaces of the gear. 

Then, certainly you see here we have a randomly varying vibration features are there, in 

terms of amplitude and the frequency excitations or even we can say when we have the 

turbulence in flowing media, through which you see here the randomly varying these 

vibrations are being coming out. 

So, these random orientation the vibration which can be termed, as even the non periodic 

disturbances, in that the Fourier series decomposition which we discussed in the last 

lecture, that you see you know like how we can decomposes these information using the 

Fourier series. So, Fourier series decomposition cannot be made for that, so what is a 

solution for these kind of random in the signature, then we need to use the Fourier 

transform. Means you know like some segmental transforms are there, which can be 



immediately used for that particular time of period. And then we can simply you know 

like the classify or we can simply we can say analyze, what exactly the kind of you see 

the energy or we can say exciting frequency or the amplitudes are there in the signal 

itself. 
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So, if you see that the periodic, you know like these pulses then we can simply find that 

you say you know like the at the 0 point, we have the amplitude 1 with the period t you 

see here. So, it is a well periodic feature, which can be immediately measure using these 

you know like the Fourier transformation series or the decomposition, and we can 

featured out. But, even we when we have the pulse width say you know like with the t, 

this pulse width and when we are simply multiplying with the alpha, which is something 

you see you know like the this constant feature. Then we have even at minus t, and t you 

see we have a clear variation, but with the width of this alpha t, we can say that you see 

straightaway we can find out the coefficient of these complex Fourier series. 

So, if you are saying that you know like the complex coefficient is delta n for n-th type 

of you see you know like the signal, then it is nothing but equals to 1 by t, where the time 

period the total time period for this is capital t. So, 1 by t now here the yesterday we 

discussed about you see you know like the entire decomposition, that minus t by 2 to t by 

2 here, now since we are using one of the coefficient here. 
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So, we have now the total feature, in which you see you know like the entire the signal is 

being considered it is minus alpha t by 2 to plus alpha t by 2, and in that we can say that 

since the main amplitude is 1, so one into e to the power minus n omega 0 t in to d t. So, 

then you see we can straightaway convert into you know like, these two special features. 

So, we have now e to the power i n omega 0 alpha t by 2 minus e to the power minus i 

omega i n omega 0 alpha t by 2 divided by i n omega 0 t, or else you see here when we 

are trying to convert these exponential series into you know like sinusoidal features. 

Then we have the two iota because you see this cos figure will be canceled out, as we are 

simply putting this e to the power i n omega 0 this alpha t by 2 is nothing but equals to 

cos of you know like. This i n this cos of n omega 0 alpha t by 2 plus iota times of you 

see you know like sin of n omega 0 alpha t by 2. So, cos, cos will be cancelled out then 

we have you see the 2 iota sin of alpha n omega 0 t by 2 divided by i n omega 0 t, so this 

is what you see here the coefficient from the Fourier series which we can compute in 

terms of you see the sinusoidal feature between alpha t by 2 to minus alpha t by 2. If we 

are converting this you know like the total time period in terms of you see the frequency, 

then we have 2 pi by omega 0, when we are keeping, so we have now the coefficient 

delta n is equals to alpha times of sin alpha n pi divided by alpha n pi. 
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So, when we are keeping this into the Fourier series specially in terms of you see the 

entire wave formation is in the pulse, then we can say that the Fourier series part f of t is 

equals to summation for all. From minus infinite to infinite alpha into sin of alpha n pi 

divided by alpha n pi into, whatever the exponential features are means e to the power i n 

omega 0 t. So, these you see the Fourier series coefficients can be evaluated for various 

values of alpha, and we can find out that you know like when we are increasing the alpha 

or when we are decreasing the alpha, how they are straightaway affecting the entire 

signature. 

So, you see here now we are taking three cases, in which the alpha is varying from say 

half one fourth, to and one eighth it is in the decreasing order of that. So, now, you see 

here I am going to show you first the alpha, and we would like to see that how the pulses 

are being you know like permitted straightaway. When they are simply showing from 

minus you know like infinite, this n equals to minus infinite to this total infinite part that 

you see how the things are how the frequency domains are being you know like 

capturing these frequencies. 
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So, the first case which we are going to show that when the alpha is half, so when the 

alpha is half you see now this is a clear picture, that you know like this frequency 

component n in the x part. And you see here the delta n by alpha because you can 

straightaway take the delta n over alpha, which is nothing but equals to sin and pi alpha 

divided by n by alpha. So, when we are doing this now, we can straightaway vary with 

this delta n by alpha with the n and you can see that absolutely at z 0, we have the first 

amplitude that is the unique the period 1 amplitude. And then the corresponding features 

are being there with you know like, right from minus you know like alpha to plus alpha 

means up to the eighth part. 

So, these are the clear excitations which are being there you know like with this constant 

amplitude and the frequency component, when we decrease the alpha, means one fourth 

now you can see the spectrum. The spectrum is showing the various frequency peaks 

which is very close to this part, because we know that you see when we just vary the 

alpha the discrete spectrum is clearly, you see the dense spectrum. 
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Rather I should say is clearly now just to you know like varying with the constant 

amplitude, so the first amplitude which is at 0, when you do not have any frequency 

component. You see we have just period 1 exciting frequency, but as we are increasing 

the frequency component towards positive or negative side. You see here this is a clear 

more number of frequency peaks are, and even we can now expect that the when we are 

decreasing now alpha from 1 by forth to even further half that is 1 by eighth. 
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Then you can see here this is a clear form of you see you know like the Fourier series 



decomposition, when the periodic pulses are they are right from this is 0. And then these 

are you see you know like we look at that, they are clearly showing the pulse form in 

terms of you see delta n by alpha two the frequency component. So, now you see the 

frequency components are upto 32, the previous case it towards for 16, and the previous 

case it was for 8. 
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So, these are you see the clear variation that, you see how many frequency peaks are 

being allowed when you are decreasing the alpha. 
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So, these diagrams which have clearly showing the few Fourier series decomposition for 

this periodic pulse train, with the constant pulse width that is delta t, so delta t is 

absolutely constant in that you see here. So, when we now you see from that we can 

conclude that for a smaller value of alpha say from you know like 1 by eighth, when we 

are just coming there is a clear increasing. 

And you see you know like the increasing of period t as we are moving that, you see the 

frequency component become all more densely packed. And they are absolutely showing 

that, how these you know like the exciting frequencies are being varied in the band form, 

but when we have you see the higher value of alpha. Then there is a clear peak of 

excitation, and you can straightaway found that you see what the tuning part is there, 

when the frequencies you know the exact the frequency part with the frequency 

coefficients, or we can say the frequency component n is. So, you see here these you 

know like alpha one half, one fourth, or one eighth they are clearly showing about that 

how they are laying more number of frequency components, when we are just going with 

the decreasing value of alpha. 
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So, to derive the relation for non periodic event, when the abrupt changes are there or 

any kind of impulsive forces are being there in the shock part, we can simply consider a 

limiting case of period t, which becoming you know like the infinite. And if you 

substitute the expression for Fourier coefficient as we shown previously, now the Fourier 



series we can say f of t is nothing but equals to 1 by t summation of. 

Again, you see and the Fourier this constant is n, which is minus infinite to infinite, e to 

the power i n omega 0 into t again you see here, now we need to integrate for minus t by 

2 to plus t by 2 f of t into e to the power minus i n the iota basically, the iota n omega 0 t 

into d t. So, this is what you see you know like we need to keep, because you see we 

know that this non periodic event is absolutely for a very limiting case. 

So, first of all we need to define that you see, where you know like what is the period in 

which you see this non periodic form of the responses appearing in that. And then we 

need to you know like induct those information in this particular Fourier series, where it 

is a clear variation right form you see you know like the coefficient infinite to minus 

infinite to infinite, and then you see in between minus t by 2 t by 2 what the information 

are there in terms of f of t. 

So, to adopt this limiting case when the period t is just going to the infinite, we know that 

we need to interchange this omega 0 with what the delta omega a is for that particular 

this specific time period d t. Because, we know that when we have omega 0, which is 2 

pi by t n omega 0 transforms into the continues variable omega, so we can say that n 

omega 0 is now referring to the entire omega. 

So, step important thing here is the step size, the step size in summation becomes 

infinitesimally small, because ultimately we need to featured out that what exactly, 

because you see here. If you are taking you know like this our step size is bigger than we 

cannot featured out, exactly that what kind of variations are coming under  non periodic 

form. So, we need to just capture you know like at the very small means infinite decimal 

is small, you know like the step size and then you see a we can simply sum up entire 

feature, in you know like in the transformer equation towards the integral form. 

So, now you see here with this concept, now when we are going to the Fourier series f of 

t is nothing but equals to 1 by 2 pi, now it is being converting to 1 by 2 pi. As, we 

discussed already that you see this omega 0 is now being converted into pi by t, and then 

when we are just going with this we now the f of t is 1 by t. So, now, we have 1 by 2 pi 

into minus infinite to infinite e to the power iota n omega 0 t into, now you see whatever 

the information which we have saying that you see you know like the Fourier transform 

of the signal. 



(Refer Slide Time: 13:34) 

 

So, we need to go that what exactly the signal information, which is showing the non 

periodicity you know like, and what the informations are there towards that. So, we have 

into minus infinite to infinite f of t e to the power minus iota n omega 0 t into d t, and 

then it is d w, because ultimately we need to convert this entire omega 0 which is being 

here into d w as we discussed. 

So, certainly you see here now an n omega 0 is referring to the omega part, so we can 

straightaway put here into d omega, and the expression inside this part means f of t into 

this e to the power minus iota n omega 0 t into d t. Can now, be identify as the Fourier 

transformation of the signal, and we can say f of now omega is nothing but equals to 

minus infinite to infinite f of t e to the power minus iota omega t into d t. 

So, now when we are doing the inverse transformation, this Fourier transformation, then 

we have f of t, because of this you see the Fourier transform f of w is there. So, when we 

are doing this inverse transformation, we have f of t equals to 1 by 2 pi minus infinite to 

infinite f of omega e to the power iota omega t into d omega. So, this is what you see 

here the inverse Fourier transformation, which contains the you know like the non 

periodic form of the a signal information. 
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So, the Fourier transformation is certainly a complex quantity you know like, which in 

case f of t representing the force, and with this you see we have the Newton per unit 

hertz. And in order to you know like finding for f of t, which is to be very real we can say 

that f of minus omega is nothing but equals to f of this f of omega and you see here when 

the both are equal we can say the we can find out f of t for the real terms. 
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Now, we are taking the example in which you see here, we have the Fourier we need to 

calculate the Fourier transform, for a single force pulse, and the pulse width is given as t 



p, which you can see that its varying from minus t p by 2 to t p by 2. And this is what you 

see you know like the direction f of t with the t, and when we just want to find out you 

see we need to have the Fourier transform for this. 

So, f of w is nothing but equals to minus t p by 2 to t p by 2 integration f, which is being 

applied here you can see this f bar, so bar into e to the power minus i omega t d t. So, you 

see here we can straightaway calculate, that what is the variation of this force with 

respect to you see here you know like the Fourier transformation, the we can say the 

pulse form of force. 
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And now, when we are keeping this, so f of w is nothing but equals to f divided by i 

omega into e to the power i omega t p by 2 minus e to the power minus i omega t p by 2. 

So, when we are trying to calculate this f of w which is nothing but equals to f into t p 

now we know that, when we are just trying to formulate in terms of sin and cos omega 

you see here means omega t p by 2. 

So, we have sin omega t p by 2 divided by omega t p by 2 this is clearly giving us not 

only the amplitude, but also you see here the phase. So, our interest is right now, to see 

the amplitude of the spectrum. So, amplitude of the spectrum becomes, now the modulus 

form of this f of w, so f of w modulus is nothing but equals to f that is you see you know 

like the whatever, the force in the single pulse magnitude f into t p modulus of sin omega 

t p by 2 divided by omega t p by 2. So, this is you see in the Fourier series my you know 



like the amplitude is there in the single pulse. So, Fourier transform is real which implies 

that the phase spectrum is determined by this sin of this sin alpha t p by 2. 
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So, Fourier transformations amplitude spectrum, and the phase spectrum these two are 

simply you know like we are going to discuss about that, which simply says that. When 

you have the dimensionless frequency with respect to you see you know like delta t p, 

which is being incorporated in that we need to transfer the rectangular form of pulse into 

you know like the real form with the delta the alpha times to 0. So, the discrete spectrum 



for this pulse train, now in this case particular single pulse is transformed into the 

continuous you know like this spectrum form. 

So, when we are doing these things, now you can see that we have a clear this magnitude 

form f w by the this modulus of f w divided by f t p, and you see here at the 0, we have 

the maximum amplitude. And then you see here these you know like the wave 

transformations are there as we are, because we know that we can characterize with the 

using of the you know like this sin part especially with the sin of alpha into you know 

like t p. 

So, when we are just trying to move this omega t p, then we have you see here whatever 

the changes are there with the 2 pi, 4 pi, 6 pi and 8 pi, you can see there we have a clear 

this you know like the amplitude is 0. But, in between what are the variations are there 

dough you see the amplitude is clearly varying as we are moving towards even 0 to 8 pi, 

or 0 to minus 8 pi. 

And these you see the amplitude is decreasing or when we are going with the you know 

this is what you see my amplitude, and when we are going to the phase part the phase is 

nothing but equals to you know like when we are just trying to capture. You know like 

for this Fourier transformation the phasor spectrum, so the phasor spectrum is clearly 

showing you see that, when we are just going from you see 0 to pi part 0 to pi, then you 

see this is you see at for every entire part this. 

When we are just going from 0 to minus 8 pi or 0 to 8 pi the variation is very clear 

exactly, at this 2 pi you can see that the maximum phase differences are there, then they 

are being constant. Then again you see the phase difference from pi to 0, when we are 

just approaching to at the 4 pi, at the 6 pi, and at the 8 pi. So, similarly you see here at 

the minus 2 pi, minus 4 pi, minus 6 pi, and minus 8 pi, there is a clear phase shifting is 

there for these kind of Fourier transformation. 

So, you know like when we are trying to simulate these two features, then we will find 

that the amplitude the you know like this particular part, the amplitude spectrum is 

clearly showing that. When we are trying to move from 0 to 2 pi means the this omega t 

p at the 0, at 2 pi at 4 pi and 6 pi and 8 pi, they are showing 0, but at that time there is a 

clear phase shifting is there in the phasor part. 
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So, we can say that by the analysis of the transient forces in the time and the frequency 

domain, we can say the number of general conclusions can be made. And you see here 

through that we can clearly featured the response analysis that, you see here what exactly 

the response is saying in terms of the amplitude and in terms of the phasor, and that is 

very you know like we can say helpful information for designing part. 

So, the smaller of the impulse means, when we are going for the small amplitude of the 

impulse part, and the lower amplitude can be clearly you know like featured out within 

the frequency domain. And you see you know like we just want to see the effect of the 

two different modification in the pulse, and what the modifications are there now we are 

going to use and here we are using you see the dimensionless frequency f into t p part 

there. 

So, now, you see if you look at that, we are basically you know like focusing here that 

when we are trying to change, means when we are trying to modify the impulse then 

what exactly there. So, you look at that we have you see you know like, the sound part 

here, and you see this is what my frequency then a dimensionless frequency f into t p. 

So, as we are just moving from you see you know like with the this is what my t p 

feature, this t p and i equals to i p that is what my impulse feature, so when the impulse 

and you see the t these it has the clear relation is just like that. We can simply see that 

when f t p the non dimensional frequency is 1, now this amplitude whatever the you 



know like this amplitude is there it is just coming 0. 

(Refer Slide Time: 21:30) 

 

And then you see here it just remain you see for constant some time minus 10, I should 

say and then you see again the pulse is being there which can be again formed in this 

way, because of my this time period t p now you see here it becomes you know like 

going like that. In the second case when you can see that, when we are just going with 

the t p by 2 to i p by 2, so now, you see we simply bifurcate this entire signal into say the 

positive side where the half if t  

 by 2. And you see the i p by 2 is the intensity part is there of the impulse, then we can 

see that at f t p, you see this the you know like the there is a clear amplitude of this you 

see you know like the signal is. The signal is absolutely going upto the maximum the 

two, when the total completion is there, and when we are going with the you see you 

know like i equals to i p by 2 means we are simply you know like just lowering. 

The amplitude of the impulse say I which is nothing but equals to integration of f t into d 

t, so this you see here when we are just trying to you know like go with this integration 

of f t into d t with the half i p by half. And but we are not changing the time period just 

like in the previous case we converted both into the half, but here we are keeping this 

one. We can see that you know like this amplitude is just coming down and you see here, 

it will be at the lower phase for maximum time, and then the another you see the peak 

will be formed in this way. 



(Refer Slide Time: 23:45) 

 

So, when we increase the duration or we can say rather the pulse width t p in the time 

domain, which simply the translates into the lowering of cutoff frequency. In generally 

we are just taking the frequency, at which you see the level has fallen 3 decibel you know 

like point with respect to the maximum amplitude, that is what we are saying that the 

cutoff frequency. 
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So, the 3 d b sound you know like the sound level, you know like this is one of the 

standard feature at which, you see whatever you see you know like the maximum 



amplitudes are being there, we can say that this is my cutoff frequency. So, by making 

the pulse with the longer you see you know like duration, means when we are increasing 

the duration the lower frequency excitation can be easy immediately obtained.  

And this can be you know like and that is why you see here, when we are just going with 

the half of t p, you see that we cannot get that what exactly the lowered form of the 

exciting frequency. The total you see the blurred features are there and it is just 

bypassing the entire f t p part, so that can be exploited to shift the excitation in the 

frequency band, which is less disturbing or we can say in which the structure is not as 

effectively excited at the lower frequencies. 

So, you see rather we can simply show that when the t is infinite, you certainly you see 

here you know like these Fourier series is there is nothing you see here it is absolutely 

the 0, but when we are now going with this t equals to t 0. That means, you see here this 

time strap is very short, now you can see this information is absolutely you know like 

coming down, and then this is clear this is clearly showing that at what frequency feature 

we have a excitations. 

And then you see now we are increasing this time period, you see say in the feasible 

manner 4 times of t 0, you can see that all the number of frequency excitations are 

clearly exhibiting in the frequency spectrum with the variation of their amplitudes. And 

when you see here we are just taking that you see when we have the t p, and in this t p 

particularly you see when we are just trying to see that what exactly the variations are 

there. 

Below, you see this is what you see you know like we can say 2, now we are changing 

only upto 1.5 you can see that it is clearly showing the variation with the time response t 

p. So, this is beauty of the time you know like amplitude, means when we are just going 

with the you know like more the increased form of the pulse width. Certainly, you see 

here we need to check it out that, how the information is to be transmitted into the lower 

form of this cutoff frequencies. 
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So, if the rise or fall time of the pulse is lengthened, means if we are just going towards 

more length of that the amplitude decays more rapidly with the frequency, and you see 

here we can say that at above cutoff frequency. There is a clear we can say decays are 

there of the cutoff frequencies, so this can be exploited to reduce the high frequency 

contained in the excitations, and also we can apply to higher time derivatives for that. So, 

we need to check it out that how you know like the rise or fall is there with the pulse, and 

we know that since the amplitude is clearly decaying at a faster rate. When we are just 

you know like talking above you see the cutoff frequencies, then we need to check it out 

that you know like the high time derivatives, how we can apply these things to that. 

So, the more rounded or we can say the soft excitation in the time domain, more rapidly 

the high frequency content decays are there, so if you do not have you see you know like 

clear peak of excitations, we when we have the rounded form is there. Then certainly we 

can simply you know like justify that it is you know like, the fallen feature in these 

amplitude is more rapid you know like in terms of you see the high you know like 

frequency contents. 
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So, now, we are going to the another example, in this you see here the nature of periodic 

force applications you know like, just we can we can simply apply this force application 

that bring about the sound and vibration determination, how great the problems that 

arises are. So, now, you see we are simply showing the Fourier series decomposition of 

the rectangular wave, a triangular wave and the sine wave. 
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So, you can see that this is you see the first is like the this square wave is there, and this 

is what the feature of this square wave, and now we can see that what the variation of the 



amplitude is there with respect to the frequency component n. So, this variation is clearly 

you see you know like at all these component, upto say you know like the nineteen 

component these are the variation in the amplitude, when the frequency this waveform of 

this you know like propagation is the square wave, and when we have the triangular 

wave. The triangular wave feature is like that you can see that even for all the 19 

exponent what the variations are there, when the decay is there of the amplitude, this is 

also decay, this is also decay. 

(Refer Slide Time: 28:43) 

 

 (Refer Slide Time: 28:53) 

 



And the third form, when we are just taking you see here the sine wave, then this is you 

see here the frequency component 90 and you see this variation is there. So, the 

amplitude of these over tuned decay more slowly for rectangular wave, as we can see 

that you know like 1 by n is there for the decaying part, where the n is nothing but the n-

th frequency component. Then for the triangular wave where the decay is 1 by n square, 

so this is the pretty clear picture is there, that when we are just looking to the rectangular 

or you see the square wave. 

And when we are talking about the triangular wave, the decay is you see this is what this 

is what the drastic decays are there, because the dependent feature is 1 by n square, 

where you see the decay is very slow, because the dependent feature here. In this square 

or triangular wave is 1 by n, and because the over tuned you know like often fall in more 

disturbing this frequency band we can say it is a good design principle, which always 

make force you know like application. 
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As, a soft or even more towards the sinusoidal feature of the decaying part in the you 

know like, all these variations with the time domain. So, when we are going towards that 

you can see that when the sine wave curves are there, they are the soften part, and they 

are simply showing a stream lined motion along the path. So, we can say that you see 

when we have the sinusoidal feature this is a clear peak of excitation clear tone is there, 

exactly at these particular you know like the dedicated frequency component, and the 



variations are alike that. 

So, another phenomena that occurs in the case of periodic forcing is the distance is delta 

between the frequency component, and when it becomes larger the shorter period t can 

be clearly showing that, you see what exactly the exciting peaks are. So, we can say that 

for a periodically you know like the repeated rectangular pulse, we can simply featured 

out that you know like, when we have this square. When we have the triangular, and 

when we have this sinusoidal wave, what kind of you see the excitation peaks are being 

there. 
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So, the fact that you see we can use to minimize the number of frequency component 

excited in the sensitive frequency band, only we need to check it out you see what 

exactly the peak forms are there. So, now, you see right now we have this t p is nothing 

but equals to 0.8, you know like the millisecond, and you see here we just want to find 

out you see for this t by 5 is nothing but equals to 0.01 s. 

So, now, you can see that at the frequency, whatever the you know like the exciting 

frequency we have a clear tone, and you see here the sensitivity of these frequency. You 

know like this sound with the frequency components can be clearly showing, the kind of 

exciting frequency component n. So, you see here that can be straightaway show that 

what the exciting frequencies are there, and how we can get that part, so this was you see 

the example in which you see it was clearly showing that when you have a different 



frequency component. 

Like you see when you have a rectangular or the square wave or the triangular wave, and 

the sine wave then how the features are being there, in terms of you see you know like 

the amplitude and the corresponding exciting frequency. So, this is you see all the 

diagram they are clearly showing, now in the next example we are taking the sound 

pressure level. 
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Which, is being carried out you see you know like always at the third octave band with 

center frequency 800 Hertz, 1000 Hertz, and 1250 Hertz. So, whenever we are trying to 

see that you see, when the octave bands are there what is my central frequency, and then 

what us corresponding you see the sound power is means in terms of d b. So, when we 

are saying that when we have the central frequency say 800, so the sound power in this, 

the sound pressure level is you see the 73.4 decibel, when we have the this central 

frequency 1000 Hertz, and if we have a 69.8 d b, 1250 hertz my central frequency, 

correspondingly 72.1 is my sound pressure level d b. Now, we just want to calculate the 

sound pressure level, for octave band with the central frequencies if we have the 1000 

Hertz. 
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So, certainly here we need to just go first that what, mean squared value of my sound 

pressure in the third octave band, and then you see here we can sum up the mean squared 

values in accordance with the you know like, those Parseval relations. So, we know that 

the Parseval relation says that, this p square you know like these octave band is nothing 

but equals to p 1 square. If we have you see the three values so; that means, the 3 sources 

are there, so p 1 square plus p 2 square plus p 3 square. 
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So, first of all we need to find out you see, what the square terms are there with this, so 



we have you see the frequency at 8000 and 1250, the p square is clearly showing that it is 

you know like the 8.75 into 10 to the power 3 3.82 into 10 to the power minus 3 and 6.48 

into 10 to the power minus 3. 

So, you see now, we can simply calculate the sound pressure level l p, which is nothing 

but equals to ten into log of p octave square divided by p reference square. And when we 

are you know like calculating the p octave that is nothing but equals to p 1 square plus p 

2 square plus p 3 square. So, this we can simply find out the 1.91 into 10 raise to power 

minus 2, and when we are keeping this now with the p reference that, was you see 4 into 

10 is power minus 10. So, now, we have the 10 log 1.91 into 10 is to power minus 2, 

which was being calculated as p octave square, and p reference square is 4 into 10 is 

power minus 10. So, we can get you see the some pressure level 76.8 d b, so we can 

calculate the you know like this part specially, when you have you see all the frequency 

levels together there itself. 
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Now, in the last example we would like to see that when we are just you know like 

exciting the machine, and how we can design the foundation specially with terms of you 

see you know like the isolator. So, machine with its you know like foundation is you 

know like just exciting the periodic force, and we can approximated this by the sine by 

the square wave. 

As, we are going to show you that and foundation vibration at 250 Hertz becomes the 



problematic, so now, this is my threshold limit that I need to go upto 250 Hertz like that 

when I am going to 250 Hertz. Then the problematic features are being there, due to 

structural resonance at the frequency close to that 250 Hertz by incorporating the 

vibration isolator. The force excitation can be modified to some of the approximation a 

saw tooth waveform, so now we are changing the waveform from the square to the saw 

tooth waveform. 
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So, you can see that this is what you see here, the two main forms are there the 



waveform is this you see here, where we have the squared feature, and this is what my 

you know like the time, and this is the amplitude variation of the forces are. And when it 

is being saw tooth feature, then again you see here this is my another featured of when 

we are simply adopting the vibration isolator. Now, we need to calculate the Fourier 

series for these signals, and also we need to calculate the amplitude of the force spectrum 

of the two signals at 250 Hertz. 
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So, first the Fourier series expansion for the square wave, so when we have the square 

wave we know that the f of t is equals to you know like 0.1 t in between minus t by 4 to 

plus t by 4. As, you can see that this is what it is when I am saying that my t is this, so 

minus t by 4 to plus t by 4, you see here in this entire you know like we can say the 

spectrum, we can get you see the pure form of you see that the total information of this 

Fourier series component. 

So, if I am just talking about minus t by 4 to you know like t by 4, I have f of t 0.1, and 

when I am going below means minus t by 2 to minus t by 4 then it is minus 0.1. And 

when I am just crossing this means t by 4 to t by 2, then you see here, I have minus 0.1, 

so this is what the variation is there in the square waveform, when i am just you know 

like crossing the right from 0 to minus t by 4 and plus t by 4. It is just 0.1, and then 

before that below and after we have minus 0.1, as f of t because you see we have the t as 

0.02 second. 



Now, we need to take the any instance and we need to calculate the complex Fourier 

series, so we are saying that we need to just go with the coefficient delta n. As, discussed 

already it is nothing but equals to 1 by t integration of minus t by 2 to say minus t by 4. 

The first one I know that my f of t is minus 0.1, so I can keep you see here minus 0.1 e to 

power minus iota, and omega 0 t into d t, the second 1 by t now it is from minus t by 4 to 

plus t by 4 and you see here it is the positive f of t. 

So, we have 0.1 e to the power minus i omega 0, and t into d t plus now you see here, 

now we are going towards further part right from the t by 4 to t by 2. Then it is you see 

again f of t is minus 1 into the power minus iota n omega 0 t into d t, so when we are 

summing of all these things, now we have delta n which is coefficient is 0.2 divided by n 

pi sin of n pi by 2. 
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So, these you see the variation of these particular we can say the complex form when we 

are considering the square waveform, now if you are going with the triangular waveform 

then certainly I have the f of t the Fourier transformation is 0.1 plus 0.4 t by t. When, we 

are just going with minus t by 2 to 0, and when they are going from 0 to t by 2, now this 

is what my width for the triangular waves are, then it is 0.1 minus 0.4 into t by 2, so with 

this t 0.02 second. 

Now, we can calculate you see both the things in my coefficient, the complex coefficient, 

so dealt n is nothing but equals to 1 by t integration of minus t by 2 to 0.1 plus 0.4 t by t e 



to the power minus iota omega n omega 0, and t d t plus 1 by t. Now, 0 to t by 2, so now, 

it is 0.1 minus 0.4 t by t, into you see we can say that e to the power minus iota n omega 

0 t into d t, so when we are trying to do these things now, we have you see the two main 

features. When, the n is you know like the odd number, then we have 0.4 divided by n pi 

square, and when the n is of even number 2 4 6, then the delta n is equals to 0. 
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So, this is what you see the first part in which we can simply calculate the Fourier 

coefficients, the Fourier series particular for both the signals, when we have this square 



part and when we have the triangular part. Now, the second is we need to calculate the 

amplitude of the force, you know like the force spectrum for both the signals. 

So, now, we are going to this the amplitude of the force spectrum at 250 Hertz, so first of 

all we need to go that what is the exciting frequency for this. So, omega 0, which is being 

there you see you know like 2 pi by t or the t is given as 0.02 second, we have the 

exciting frequency 50 Hertz, so we know that, when you have the natural frequency 50 

Hertz. So, certainly at 250 Hertz the coefficient this Fourier coefficient is n equals to 5, 

and when it is there you see now we can keep and we can get the for square wave, the 

delta n is nothing but equals to 0.2 divided by n pi. 

And delta 5 is nothing but equals to when we are keeping you see n, then it is 0.04 by pi 

and for triangular wave which is nothing but delta n modulus is nothing but equals to 0.4 

divided by n pi square, we can say delta 5 is 0.016 by pi square. So, this is all about you 

see you know like this particular chapter in which you see we simply analyzed the 

information, whenever we are capturing, through our sensors in terms on the time 

domain. 

And you see the information is not periodic one, which is one of the specific you see you 

know like, we can say application for that, when the machine is running all the time we 

cannot get you see you know like the periodic form. The turbulence or the non 

periodicity is there, then we need to take the Fourier transform we just pick that part we 

need to featured out, with the using of you know like this coefficient alpha, when we 

need to go with the lower value of alpha. 

So, that we can you know like in incorporate the broader band of the frequency, and then 

we can just take the this infinite decimal step at that point, wherever you see this abrupt 

changes are coming. And we can simply get the Fourier transforms, for that particular 

value in terms of you see whether our sine wave, our square wave, triangular waves are 

there of the wave feature. Now, in my last lecture I am going to discuss about the filters, 

that how we can select the filters, what exactly the basic you know like these featuring 

parts are there in the filters. And then you see some of the numerical problems, you know 

like again for you know like the vibration measurement, and the control part. 

 Thank you. 


