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Lecture - 09
Scalar Transport, Mathematical Classification and Boundary Conditions

Welcome back to the last lecture in module 02 mathematical modeling, in this lecture you would

finish  of  an  unfinished  business  in  governing  equation  that  is  you  would  obtain  governing

equation for transport of a generalized scalar quantity. Then you would focus on mathematical

classification of governing equation in fluid flow. And look at  what are the initial  boundary

conditions we require for numerical studies of the flow problems.

(Refer Slide Time: 01:06)

Let us see a brief recap of what we did in last lecture we derived energy equation starting from

the first law of thermodynamics we obtained the integral form for total energy, and thereafter we

invoked the Gauss divergence theorem to obtain the differential form of the total energy equation

from that we subtracted mechanical energy equation and we obtained a thermal energy equation

and in its different forms.

In this  lecture we would focus on scalar  transport,  mathematical  classification and boundary

conditions which we require in flow problems, so this what our outline would be.
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We would start off with scalar transport equation obtain an integral equation for transport of a

generalized scalar quantity, and thereafter again we would obtain as usual a differential form of

transport  equation.  Then  we  will  have  look  at  mathematical  classification  in  particular  the

classification  of  quasilinear  PDEs,  and  how  we  can  extend  this  classification  to  the  flow

problems governing equation fluid flow.

And what we do the effect of choice of initial and boundary conditions, and we would also have

a look at the classification of Euler and Full potential equations, and we will have a brief look at

most commonly encountered boundary conditions for flow problems. So let  us start off with

conservation of a scalar quantity.
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So  we  will  invoke  an  analogy  of  what  we  said  earlier  in  the  case  of  energy  equation  or

Momentum equation or mass okay, so we can extend the same conservation principle that is we

want to find out the time rate of increase of the scalar quantity phi in the system. Now this

increase could be due to two reasons, the first one is the sum amount of phi which is being

transported across the control volume boundaries okay.

Net rate of increase of phi due to diffusion across the CV boundary + net rate of creation of phi

inside the control volume, to understand this analogy further let us have a brief look at what we

did earlier in the case of energy equation.
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Let us explore the analogy further and let us go back to the statement of energy equation, so what

we had in the case energy equation we had rate of change of energy in our control volume, this

was contributed by two terms the diffusion or in general we can say the transport of energy

through the boundary of a problem domain + the second one we had was the generation of

energy of energy which could be due to a chemical reaction inside the control volume.

In fact we will find similar sort of things happening in the case of momentum equation, so let us

also have a look at the momentum equation, what we had the rate of change of momentum dP/dt.

Now this can be caused because of two things, first is we have got a body force which is similar

to a source term inside the body, so resultant of body forces, so this body forces are sort of

represent what we call sources of as a force present inside the body + surface forces acting at the

boundary.

Now the second part, if you look at the surface forces this could be thought of as diffusion of

momentum or this happens because of the transport momentum across the control surface. So

this explains the analogy which we had invoked in this case for a a generic scalar, you can say

the time rate of increase of the scalar phi is because of two things, net rate of increase of phi due

to diffusion across CV boundary + net rate of creation of phi inside the control volume.
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Now we can invoke the Reynolds transport theorem to convert the rates for a system to that our

control volume, the time rate of increase of scalar in the system this = rate of increase of phi

inside  the  control  volume  +  net  rate  of  decrease  of  phi  due  to  convection  across  the  CV

boundary.

(Refer Slide Time: 06:54)

So we combined these two equations together and the left hand side we will get rate of increase

of phi inside the CV + net rate of decrease of phi due to convection across a CV boundary = net

rate of increase of phi due to diffusion across the CV boundary + net rate of creation of phi inside

the control volume. So let us have a relook this rate of increase of phi inside the CV this would

be essentially a time derivative of volume integral.

And this  convection  term that  could  be because  of  a  surface  integral  the  convection  of  phi

because of fluid flow, and the RHS again you got increase of phi due to diffusion across the CV

boundary, so this again be represented by surface integral and the last term would be due to a

volume integral which is a net system of different sources inside the volume. Now to obtain the

formal equation let us have a detailed look at each one of these terms.
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So on the left hand side we had the term that is rate of increase of phi sorry, scalar transport time

rate of increase of phi inside the CV, now this a simply the temporal derivative of rho small phi

here we have assumed this phi is an intrinsic quantity, so it is essentially this phi represents our

physical quantity per unit mass d omega. And convection of phi through control surfaces this

would be given by a surface integral across our control surface rho phi v dot dA.

Next, let us talk about the terms which contributes to it are the interactions from sources and the

transport of phi across the boundary. The first one is rate of generation of phi inside CV, this can

be expressed as the volume integral of q subscript phi dot d omega, now here similar to what we

saw in the case of energy equation, this q dot phi this represents the source term we can call it as

a volumetric generation rate.

And the last term which we had that is diffusion of phi through control surface, now this we can

represent by a surface integral of a flux like quantity, let us say that q is the flux of phi which is

being transported across the control surface q dot dA integrate over our surface, that will give us

the efflux or net rate of efflux of q across the control volume surfaces. So now you can substitute

these 4 integrals which we obtained in our verbal equations which we derived earlier, and that

leads to the integral form of the scalar transport equation.
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So this is the form conservation equation for a generic scalar quantity, so we can also call it

generic transport equation del/del t of rho phi d omega +phi times rho v dot dA=surface integral

of gamma times gradient of phi dot dA, now this gamma times gradient of phi we have put here

assuming that this is the this q can be represented in terms of a diffusion coefficient gamma and

gradient of scalar quantity phi, so gamma gradient of phi dot dA+rho times q phi d omega.

(Refer Slide Time: 12:22)

Now let us obtain the differential  form of generic transport equation, now this we can again

doing  by  following  the  same  method  which  we  had  adopted  earlier  for  derivation  of  the

differential forms starting from the integral forms.
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So differential form of generic transport equation, so let us first write down our integral form we

had first one was time derivative del/del t of rho phi d omega, now for a fixed control mass or

fixed mass we can represent it as an integral of the time derivative that is del rho phi/del t d

omega, the second term which we had on the left hand side of our integral form that was surface

integral that was rho phi v dot dA which represents the convection of phi across the control

surface.

Now this can be changed using Gauss divergence theorem into a volume integral,  so this  is

divergence of rho phi v d omega. Similarly, we had a surface integral on the right hand side

which was because of the flux term, so S q dot dA this can be transformed into a volume integral

divergence of q d omega. So let us now combine all these terms together and transfer everything

on the left hand side.

So we have big volume integral [del rho phi/del t+ divergence of rho phi v - divergence of q-q

phi dot] d omega= 0, so once again we get an integral which is 0 and this integral will be 0

irrespective of our chosen control volume omega okay. So this usual argument again applies it

holds if and only if the integrand vanishes everywhere in omega, that is our time derivative of

rho phi + divergence of rho phi*v - divergence of q-q dot phi= 0.



So now let us keep an unknown term on the left hand side transfer rest on the right hand side a

slight re-arrangement, so del/del t rho phi+ divergence of rho phi v= divergence of q+q dot phi,

so this is our differential form this is differential form of generic transport equation, it is not too

difficult to realize that look this equation can represent any of the equations which you have

derived earlier, for instance if you replace phi by 1 what do we get?

So let us do for a shake of exercise that this generic form which we have derived that is it or it

can be made to represent few transport equations which we have derived earlier.

(Refer Slide Time: 17:58)

Generic transport equation let us rewrite it again, so del/del t rho phi + divergence of rho phi v =

divergence of q+q dot phi, we can call it a generic transport equation only if it can be used for a

different  conserved quantities,  so suppose we take phi= 1 what does that  mean? That  is  the

transported quantity capital PHI that must be mass, so if you substitute phi= 1 in the previous

equation what do we get? We get del rho/del t+ divergence of rho v.

And in this case if you are dealing with a mass of system there is no diffusion of mass through

the control surface not any mass source inside, so the right hand side must be 0, so what do we

have got? This is precisely the continuity equation which have derived earlier. Similarly, we can

substitute for small phi any velocity component and this will lead us to an appropriate form a



momentum equation of course we will have we have to interpret flux in that case our q would be

given in terms of a stress components or divergence of stress.

And that is q phi that would be given in terms of body forces, so and if I we take phi= small e,

eta or small e, now our generic transport equation would lead us to energy equation, so that is

what we say that so called this generalized transport equation which we have derived that can be

made to represent the transport of any conserved quantity. So in the reminder of the course in

fact the first half of the course of CFD we would primarily focus on our attention on finding out

or deriving the numerical schemes which can solve this generic transport equation.

And only thereafter, we would apply those techniques or we will extend those techniques for a

solution  of  full  Navier-Stokes  equations.  Now  before  we  can  proceed  with  the  numerical

solutions we have to grab with few issues that what should our choice of the governing equations

be that is one thing that will depend on the physical phenomena. 

(Refer Slide Time: 21:59)

And based  on  the  physical  phenomena  physical  situations  we  can  derive  the  way  we  have

learned our  governing equations,  that  is  the basic  conservation  laws which  will  give us  the

questions for continuity Momentum and energy, but you should know what is the nature of these

equations because that will dictate the choices of the numerical schemes which we can use. So if



you look at any of the equations of governing equations of fluid flow the second order nonlinear

partial differential equations in 4 independent variables.

A time dependent problems time is 1 and 3 space coordinates, so mathematical classification of

this  nonlinear PDEs is a rather difficult  task, but we have to get some picture at  least some

qualitative  picture because choice of numerical  scheme as well  as the number of initial  and

boundary conditions  which will  be required that  depends on the mathematical  nature of our

governing equations.

So if you have got no options but to explore or at least get some estimate before we can proceed

with the choice of numerical schemes, so what we normally do is that we try we attempt to do a

classification of our governing equation that as Navier-Stokes equation and energy equations

usually  based  on  their  linearized  form.  So  our  first  task  would  be  to  have  a  look  at  the

classification of this linear or quasi-linear of second order partial differential equations.

(Refer Slide Time: 23:26)

So now let us have a look at a generic or generalized quasi-linear partial differential equations

which we can represent this forms suppose for time being we will dealing with an unknown

function unknown variable u which is dependent on 2 variables x and y. So first this situation we

can write our generic second order PDE as A times del 2 u/del x square+B times del 2 u/del x del

y+C times del 2 u/del y square+D times del 2 u/del x+E times del 2 u/del y+F times u+G=0.



Now here A, B, C, D, E, F and G these would in general be functions of x and y, what would be

the nature of this particular equation? We can derive the so-called equation for characteristics for

this case and those characteristics are basically given by so-called discriminant B square-4 AC

okay. Now this particular term B square-4 AC in fact it comes if we compare this equation will

be the second order algebraic equation.

(Refer Slide Time: 24:55)

So let us have a detailed and let us have a look at what second order algebraic equation in 2

variables, so we can write as A x square+B times xy+C times y square+D x+E y+F=0, if you

recall from geometry this second order equation represents an equation of a conic section. So it

represents a conic section, by conic section we mean it could be circle it could be a parabola or

ellipse or a hyperbola, so what are the conditions for each type of conic section?

So what would we see that, that would depend on the discriminant B square-4 AC. So we say

that if B square-4 AC>0 this equation represents a hyperbola, hyperbola essentially a curved in

fact it contains 2 different curves combination of two curves. B square-4 AC=0, so in this case

we have got a single characteristics and we called this curve as parabola. And B square-4 AC<0,

we do not get any characteristics and we call this equation as or rather this equation represents

geometric shape called ellipse a circular forces specialized case of an eclipse.



So our classification for PDEs is basically are the nomenclature which we use that follows what

nomenclature used in geometry for classification of hyperbola, parabola and ellipse. Let us have

a look at B square-4 AC now if it is >0 we have got 2 real characteristics, the characteristics of

the ones basically the space curves along which an information would propagate, B square-4

AC>0 that says that will have 2 real characteristics.

And in this case of equation or PDE would have what we call hyperbolic nature, because that is

what we have got in the case of hyperbola we have got 2 different or 2 distinct branches of an

hyperbola, so that is the same analogy which has been used in this classification. B square-4

AC=0, so we have got one real characteristics that is we have got only a single branch in the case

of parabola and the same terminology been used here B square-4 AC=0 this equation would be

called parabolic.

And a B square-4 AC<0, we have got no real characteristics and in that case we will term of a

quasi-linear PDE as elliptic. Now let us have a look at one example of each of these types of

equations and what do these mean?

(Refer Slide Time: 28:59)

So let us have a look at hyperbolic equation, now this in the case of hyperbolic PDE we have got

2 distinct characteristics okay and the information that is to say we have got problem domain, we

introduce  at  some  point  some  disturbances,  that  disturbances  propagates  along  these



characteristic lines they have characteristic lines along which the information propagates and

information propagates at a finite speed.

So  we  have  got  finite  speed  of  propagation  of  information  regarding  where  the  particular

disturbances would introduced and what is its effect on the field, so a typical example of this

equation would be a wave equation, a typical example of a hyperbolic PDEs that is del 2 u/del t

square=c square del 2 u/del x square, let us see what is this geometrically means? We have got 2

independent variables here x and t.

And suppose we say that extent of our physical domain in x is along A and B, so our information

would propagate or if you look at any particular point P we want to see what would happen at a

given instant of time, the things that P would be influenced by the information contained when

this region the characteristics which are propagating through P originating from either side, so

what  would we say in  this  particular  slant  has domain which would be called  is  domain of

dependence.

So solution at point P that depends only on this slant hatched portion and whatever happens at

point P that affects only this narrow region contained between these characteristics let us put

these as horizontally hatched region, so this region we would call as domain of influence or

simply means if we introduced a disturbances at point P that will affect the solution only on this

small region of this space and time this at any point let us say if you got a point Q located here

anything happening at P will not affect what happens at  Q.

So  it  is  a  basic  nature  of  the  hyperbolic  PDEs  that  domain  of  dependence  and  domain  of

influences  both  fairly  confined  and  well-defined  regions  in  space,  and  in  this  case  we  will

typically need a second order PDE in times we will need 2 initial conditions and 2 boundary

conditions given at points a and b.
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Next, let us have a look at the next type that is parabolic equation, now in this case of parabolic

equations we have got only one real characteristic, and let us say it will propagate along only one

directions for instance if you have a time dependent problem, suppose one dimension in space

and one dimension in time. So now in this case whatever has happened in our domain or physical

problem domain at time prior to a time t1 that will affect our solution at point Px, t1.

So whatever happens before P in terms of time that will affect the solution of P similarly, the

happenings at point P they will affect only the solution behaviour only at future times not at the

prior times, so now in this case this becomes what we call our domain of dependence and on the

later times are what we can say is domain of influence. So beautiful thing about this parabolic

PDE is that at information propagation, the information propagates only in one direction.

And this simplifies your task a quiet a bit that we can do what we can say marching or we can

apply marching type numerical  schemes,  that  is  if  we have got  the time= 0 we know what

solutions of different points are using this solutions we obtain or we can obtain the solution of

times slightly afterwards let us say time t= delta t, now we can use this solutions at these values

and obtain the solution at t=2 delta t and so on, and thereof thereby we can just keep marching

along the time direction.



So this solution procedure is fairly simple in the case of parabolic. And the typical example of

such equations as our heat conduction equation or we can also call it heat diffusion equation, so

we  can  write  it  as  del  u/del  t=alpha  times  del  square  u  this  alpha  represents  of  a  thermal

diffusivity. Let us have a look at carefully here now this first order derivative which involved in

time derivative in time.

And the right hand side what we have got if you will look at the expanded form of our del square

operator this is del 2/del x square+ del 2/del y square, and this operator we would see it is got so

called elliptic nature, so in fact some people called this heat diffusion equation as parabolic in

time and elliptic in space.
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Now the last type which we discussed is elliptic equations, a typical example which is our steady

state equation del square T=0, now in such cases suppose you have got a problem domain if you

look at a specific point P x, y the solution at this point depends on whatever happens anywhere in

the domain, so if you introduce a small disturbances at any point at the boundary or inside the

domain anywhere that influence the solution at our specified point P x, y.

Similarly, if you introduce the disturbance at P its effect is failed everywhere in fact we would

theoretically call here that this speed of propagation of disturbances that speed is infinite, now

that introduces some complications since the solution at or disturbances at one point affects the



solution everywhere, the solution of elliptic PDE is relatively compression, and in this case we

must specify BCs must be specified along all the boundaries okay.

Now this is general description about nature of the PDEs or what we call quasi-linear PDE, we

had  looking  at  some  of  the  examples.  Now  can  we  extend  this  classification  to  our  flow

problems, so we would be primarily solving Navier-stokes equations and energy equations, so

what is the nature of Navier-Stokes equations or energy equation?
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So classification  of  Navier-Stokes and energy equation,  there  are  broadly 2 cases  which  we

would like to deal with, let us first take the case of incompressible flows where the situation is

rather simple. So incompressible flows if the problem is time dependent on a steady case so the

nature  of  equation  is  what  we  called  parabolic  in  time  because  we  have  got  a  first  order

derivative in time and elliptic in space.

Or this elliptic in space this nature comes because of the presence of second derivative with

respect  to  x  on  the  right  hand  side  of  both  Navier-Stokes  and  energy  equations,  and  the

consequence  is  that  we  require  1  set  of  initial  conditions  at  t=0  and  boundary  conditions

specified  everywhere  on  CV boundary for  t>0.  For  steady case the  nature  of  both  of  these

equations Navier-stokes as well as energy equation that is elliptic.



So we only require here BCs on the domain boundaries. Next, let us moves to compressible

flows, now in the case of compressible flows the life is bit difficult, the nature of equations is

what we will call mixed and in fact it would depend on of non-dimensional number called Mach

number, so depends on local Mach number and because local Mach number we can make certain

observations.

That is first if Mach number Ma if Ma<1 everywhere, so typical of what we called subsonic flow

okay, now in this case nature is similar to that of equations for incompressible flow okay. Now if

Mach number>1 everywhere that means our flow equations both Momentum as well as energy

equations they would have what we called hyperbolic nature. Otherwise, we will have mixed

nature.

Similar type of classification we can extend in the case of Euler's equation and for details we will

have a look at few references to which you can have a look at that how do we classify energy, so

Euler equation and Full-potential equations. And next, we will have a brief look at boundary

conditions before we close this module.
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So let us see governing equations which we had continuity, momentum or energy equation, they

would be the same irrespective of the problem domain. Then what makes each problem unique

that uniqueness is imposed by what we called boundary conditions which act as the constraints



and establish the uniqueness of the flow field for a specified problem. Now in normal flow

simulations we will encounter 2 types of boundary conditions.
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The first situation we would be looked we have got some physical boundary conditions, if you

got the physical boundaries which are actually present there, and we can say the constraints

which are imposed by this physical processes happening at the bounding surfaces, so we will call

these  things  as  physical  boundary  conditions.  The second case  would  be  artificial  boundary

conditions which are specified at the boundaries of computational domain which are not natural

boundaries.
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To understand the second aspect let us have a look at an unconfined flow around a black body, so

unconfined flow or it could be a car we want to simulate the flow around the car, now in this case

how do we specify our problem domain, the car is moving in an unconfined here, so we cannot

take this unconfined domain in numerical solutions, so we have to somewhere break or put what

we called artificial boundaries.

And by putting these artificial boundaries we introduce what we called artificial surfaces, and we

have to specify what type what would be the reasonable boundary conditions at these artificial

boundaries, so these are artificial boundaries, and of course in this case we can also have a set of

physical  boundaries  that  is  car  surface  and  our  route  surfaces,  so  these  are  our  physical

boundaries.
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Now  for  a  typical  boundary  which  conditions  we  confined  for  viscous  fluids  at  physical

boundaries that is say if you are dealing with a flow surface or solid surface, so since the flow is

viscous the velocity of the flow would be same as that of the solid wall, so we have got the

impose what we call no-slip country conditions which is given by V=Vw where Vw tell us the

velocity of this solid surface, in majority of applications Vw would simply be 0.

For energy equation you have to specified the wall temperature that depends on the physical

process which are happening maybe in some cases the solid surface has got a constant wall



temperature, so in that case we will put T = Tw or you would have a specified heat flux that is

q=qw, so this would be typical conditions for viscous flows. If you are dealing with inviscid

flows then by inviscid means there is no viscosity present.
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So there could be a slip between the solid surface and the fluid but one thing is very sure that the

fluid cannot penetrate the solid surface, so we will impose what we call as slip condition Vn, n is

stands for the normal velocity, velocity component normal to the surface so Vn=0, rest these 2

conditions one of these 2 conditions have to be specified for energy equations that is specified

wall temperature or specified heat flux.

The only difference in the case of inviscid flow would be that in the case of velocity that is we

have to impose what we call slip condition by setting the normal component of velocity has 0.
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What other boundary conditions we encountered? We have what we called inlet boundary, now

that inlet boundary conditions could be at both physical as well as artificial boundary conditions.

We  have  got  outflow  boundary  conditions,  symmetry  boundary  conditions,  and  periodic

boundary conditions and so on. The variety of these types now solving these we can have a brief

look here.

For instances let us get back to our example of simulation of flow around the car at upstream end

we have got to specify the velocity everywhere, so this would become what we call as our inlet

boundary or inlet boundary condition, so you have to specified as a function of or the velocity

has to  be specified  as a function of spatial  coordinates  and time.  What happens at  this  stop

artificial surface we would say that the flow or temperature does not vary across the surface.

So we can impose what we call  a symmetry conditions here at  the top that  is for any flow

variable del phi/del n= 0, there is no variation of a given quantity of phi could be any velocity

component or it could be temperature it does not vary along the normal direction. Similarly, on

the downward side we can specify what we call outflow boundary conditions, so you have to

specify pressure and we can say that look this no variation in the velocity components along the

outflow directions so that completes our outflow boundary conditions.



So  further  details  about  these  boundary  conditions  and  mathematical  classification  you

encourage to read these few very nice books is Computational Fluid Dynamics by Anderson, and

Computational Methods for Fluid Dynamics by Ferziger and The Introduction to Computational

Fluid Dynamics by Versteeg and Malalasekera each of these 3 books they gives some description

about the derivation of governing equations.

They contained a very nice detail  about classification procedure and they also have they are

generally useful as a text book for numerical schemes you are going to learn later on. So that is

we are going to now put a full stop to this module, and in the next module will start off with

Finite Difference Methods.


