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Energy and Scalar Transport Equations

Welcome back to the next lecture in module 02 Mathematical Modeling, let us have a recap of

what we have done so far in this module. We started with Statement of conservation laws, then

we had a look at notice a mathematical preliminaries. In past 3 lectures we had focused on the

derivation of the governing equation of fluid flow. And today in the same series you would focus

on derivation of Energy equation and Scalar Transport equation.

And  thereafter,  we  are  going  to  start  off  with  mathematical  classification  and  boundary

conditions for the flow problem in the next lecture. Let us have a recap of what we did in the last

lecture.
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We started off with the discussion on constitutive relations for Newtonian fluid for which stress

and strain rate tensor are linearly related, and based on that simplified relation we obtained a

famous Navier-Stokes equation. We also derived simplified forms for Navier-Stokes equation for

specialized cases for instances incompressible flows, which gives us much simpler equation, and

we had a look at the cases for inviscid flow which use us the celebrated Euler's equation.



And we looked at  one specialized cases which we called creeping flow equation.  In today’s

lecture that is sixth lecture in the series, we should focus on energy equation and scalar transport

equation this would be outline.
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We are start off with first of thermodynamics which is the basic law for energy conservation, and

we would have a look at what would you mean by flow work, then based on the first law we

would have obtained integral and differential forms of energy equation, then from this equation

we would derive a specific equation which we call thermal energy equation, and in the end we

would have looked at equations for a generalized scalar transport equation.
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So now let us start off with the fist law of thermodynamics which is the basic equation for energy

conservation. What does this law say? Let us recall back what we learnt your thermodynamics

class says, the time rate of increase of the total energy stored in the system this = net rate of

energy equation by heat transfer from the surroundings + net rate of energy addition by work

done on the system.

Let us use our usual symbols we use capital E to indicate the total stored energy in the system, so

DE/Dt this represents the time rate of change rather the rate of increase of the stored energy in

the system this = del Q/del t where Q is heat transfer we have used symbol delta to indicate that

Q is not a state function, it depends on the path, so this is why we use this in adjective frentials

on the right hand side.

So del Q/del t this gives us the net rate of energy addition by heat transfer. And then we have

followed  the  typical  convention  used  in  thermodynamics,  that  is  to  say  that  work  done  is

considered as positive if it is done by the system on the surroundings and negative vice versa, so

here we are looking at  the  work done on the system that  is  the reason we have introduced

negative sign here, so del Q/del t-del W/del t.
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We would look at each of these terms separately and thereafter we would have time our integral

form of energy equation, so now let us have a detailed look at each term.

(Refer Slide Time: 04:15)

We had total stored energy of the system in those total energy capital E we have got the account

for what we call internal energy. In thermodynamics we normally use symbol capital U+ kinetic

energy + potential energy P.E. Now if you remember in potential energy arises because of the

presence of a field or from force field in which our system is embedded, so this potential energy

is essentially the work done by the body force on the system okay.



This bring the case what we will do is we would observe or transfer this term or rather account

for this term for potential energy in the work done term that is del W/delta t, so we do not need to

put it in as part of a E. So thus, our capital E would consist of only two terms that is our internal

energy + kinetic energy, now internal energy per unit mass we will chooses a slightly different

symbol that is called it small e to denote the internal energy per unit mass.

Because usually thermodynamics symbol small u we use for velocity component next direction,

so let us this that is why we choose a different symbol. Kinetic energy per unit mass this would

be given by 1/2 square of a velocity magnitude. So thus, where a specific total energy let us use a

symbol eta for it eta = e+1/2 of modulus of v squared. Let us note the relation between capital E

that is total energy and eta it is very simple.

Capital energy E is basically integral over the whole up over domain so that is a rho eta dV over

domain  omega.  So now let  us  invoke Reynolds  transport  theorem,  from Reynolds  transport

theorem dE/dt which occurs in the first law statement dE/dt for a control mass system, this would

be first one with time derivative or this temporal variation of the stored energy and the system is

rho eta dV and + the flux of this energy across the control surfaces so rho eta v dot dA.

So  this  one  expression  which  rather  an  expansion  of  the  left  hand  side  of  a  first  law  of

thermodynamics that is dE/dt term in terms of the quantities related to the control volume. Next,

we will have a detailed look at 2 other terms on the right hand side, so in right hand side we had

1 term.
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Now we had heat transfer now there are 2 principal components of heat transfer for our fluid

body omega, there would be some amount of heat which is generated internally let us call this

volumetric heat generation at qg. So heat transfer is caused by 2 mechanism, number one is our

internal heat generation now this internal heat generation could be due to chemical reaction or it

could be let us say a nuclear reaction or maybe an embedded heated throughout the volume.

And the second would be the heat transfer from surroundings okay. So can we find out the total

amount  of each of these terms, so if  qg is our volumetric  heat generation rate then its total

contribution we can express in terms of a volume integral, so let us use the symbol delta q/delta

tg the subscript g which denotes internal heat generation so this is integral of qg over volume.

Now how do you obtain the next term that is the heat transfer from the surroundings, let us look

at one small boundary here and if the q where the heat flux normally we say that q would be

directed outside this heat flux vector across an area element dA, so q dot dA that will give us the

energy or rather heat which is leaving our control volume, but we are interested in finding out

how much heat is being transferred from the surroundings to a system or to the control volume.

So heat transfer through control surface let us call it del q/ del t s we have to put a negative sign

because q dot dA are integral service integral of that term will give us the amount of heat which

is going out per unit time and what we are interested in finding out what how much energy which



is being transferred inside the system, so this would be q dot dA, so if you combined these two

terms we can find out the net rate of heat transfer into this control volume or rather the system

which instantaneously occupying control volume.

So del q/del t this we can express as a first term of volume integral qg or if you want to make the

rate process involved we can put qg dot, so qg dot d omega-q dot dA, and nature of these two

terms is very clear. The first term this qg dot d omega this is due to internal heat sources, and the

latter term this surface integral this tells us the diffusion of heat through control surface. So now

we have obtained the mathematical form for the rate of energy transfer due to heat.

(Refer Slide Time: 15:58)

Next, we need to have a look at the rate of work done by this surroundings on the system, so

work done by the surroundings on the system, so if you can go back to the mechanics we know

the rate of work done can be expressed in terms of rate of work done is dot product of velocity

with force vector. So now in our case we will in general have 2 set of forces we have body forces

and surface forces, so let us treat them separately and find out what is the rate of work done by

each component.

So the forces involved are a body force and surface force. So let us take the first case that is the

rate of work done by body forces, let us take a small differential element rho*dV that will give us

the mass of this small element, it has got the velocity v and the body force acting on it per unit



mass is b. So this total body force on this small differential element this force dFB that is b times

rho dV.

So differential rate of work done delta WB dot, this would be v dot B rho dV, so to find out a

total rate of work done by the body forces let us call that is del WB/del t this would be negative

of volume integral over the control volume rho v dot b dV okay. The next we have to look at

what is the rate of work done by surface forces.

(Refer Slide Time: 19:26)

So rate of work done by surface forces, so let us consider a small area element on the surface dA

so we obtain the surface force on it dFs that we can obtain by taking the dot product of this stress

tensor with our area element,  so this  gives us the surface force acting on a differential  area

element dA. So now rate of work done due to surface forces that would be v dot dFs=v dot tau

dot dA, so we can easily find out total work done by the surface forces.

So this rate of work done by surface forces let us call it as delta Ws/delta t-v dot tau dot dA,

please  remember  this  we have  putting  this  thing  the  negative  sign  to  take  care  of  the  sign

convention using thermodynamics okay. So thus, net rate of work done by surroundings on our

system this - delta W/delta t that we saw in the 2 integrals integral reasons which we derived

earlier, the first one which corresponds to our worked in a body force.



The second one which corresponds to body worked in surface process, so combine these two

together so we get rho v dot b dV+ the area integral v dot tau dot dA. So now you have got

detailed  expressions  for  all  the  terms,  the  3  terms  which  we started  off  in  our  first  law of

thermodynamics  we  have  obtained  the  detailed  expressions  for  dE/dt,  we  have  obtained  a

quantitative  expressions  for  delta  Q/delta  t  that  is  heat  transfer  into  the  system  from  the

surroundings.

And we have also obtained quantitative expressions for the work done by the surroundings on

the system, let us combine all these together and if you do that this is what we get.
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We get the integral form of energy equation, from the left hand side we got del rho/del t rho eta d

omega, so this is the time rate of change of this stored energy into the control volume + second

term uses the flux rho eta v dA the flux of energy which is going out from this control volume.

And on the right hand side the first 2 terms which account for the heat transfer Q*d omega is the

volumetric heat generation and second one is heat diffusion q dot dA + the next term is v dot tau

dot dA.

This term we also referred to as flow work + we will have we have got include here the work

done by body forces which is missing in this expression at the moment.
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So complete expression would be this is what we had we had dE/dt=delta q/delta t-delta W/delta

t, dE/dt we had obtained its expanded form using Reynolds transport theorem + del/del t of rho

eta dV+ the surface integral which gives us the rate of efflux of energy from the system rho eta v

dot dA. Now this equal to first let us put that expanded form for del q/del t, del q/del t contains

first one is a heat generation term qg d omega so volumetric integral of that -q dot dA.

So this q dot da that represents the heat which comes in, q is the heat flux vector so negative sign

here that gives us that how much heat is being transferred into this control volume from the

surroundings, let us have work done term work done by the body forces rho v dot d omega, the

last one is work done by the surface forces v dot tau dot dA. So this is our integral form for

energy equation for total energy.

Now sometimes you might be interested in only to transport of thermal energy, so in that case

what  we need to  do is  take  out  the  mechanical  component  which can be easily  done if  we

multiply or we take dot product with v of our Cauchy equation, so that will give us the rate of

mechanical energy transport subtract that from our integral form of total energy and we will get

an integral form for thermal energy, but for the time being we will stop here as far as the integral

forms are concerned.
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Next, we would like to derive a differential form for energy equation, so how do we obtain the

differential form for energy equation, once again we will follow the same approach which we

had  followed  earlier  in  the  derivation  of  different  differential  forms  like  Cauchy  equation

momentum equation. First, we need to transfer all the terms which we had in integral equation in

to corresponding volume integrals, so now let us transform each one of them separately.
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The first one is del/del t of rho eta dV this can be written as volume integral over omega of del

rho eta/del t dV for fixed mass, so for fixed mass what we can do is that we can assume that time

derivative or the temporal derivative and the integration they can be easily interchanged. Next,



let us use Gauss divergence theorem to transform all the surface integrals which we had into

volume integrals, so using Gauss divergence theorem let us see.

Let us have a look at each one of the surface integral, this a full surface integral on the left hand

side, so see what do we get for it rho eta v dot dA this will be given by the volume of what

divergence of whatever terms which we have got before the dot operator that is rho eta*v d

omega, so if now transformed the surface integral which we had on the left hand side into a

volume integral.

What we will have next, we have got 2 surface integrals in the rhs that is q dot dA and v dot tau

dot dA, now let us transform these ones also into respective volume integrals, so q dot dA this

simply becomes divergence of q d omega and our last surface integral that is our v dot tau dot dA

once again while using divergence theorem all that we need to note down as the terms which

occur before dot dA we have to take divergence of those terms.

So that this will give us divergence of v dot tau d omega, so now we have got the corresponding

forms or volume integral forms for all the surface integral and we will collect all the terms on left

hand side.
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So let us substitute and re-arrange the integral form of energy equation, so what we will get we

will get a very big integrand inside or volume integrand omega let us put a big bracket so first is

[del rho eta/del t the second term is divergence rho eta*velocity vector, then now terms which

have come from the right hand side, so first term will give us -qg dot next we will get divergence

of q and -rho v dot b let let us called it as body force and the last term is on this integrand would

be divergence v dot tau] let us close a big bracket d omega which = 0.

So if we apply the same argument here we have got an integral which is 0 for an arbitrary control

volume omega,  so we can argue that  integrand would  be 0 for  an arbitrary  volume control

volume if and only if the integrand is 0 everywhere. So thus, what would we get let us set our

integrand to 0, so we get del rho eta/del t+ divergence of rho eta v-qg dot+ divergence of q-rho v

dot b sorry that is a – divergence of v dot tau= 0.

Re-arrange, so that we have terms in a specific energy on the left hand side and remaining terms

on the right hand side, so del rho eta/delta + divergence of rho eta v =qg dot- divergence of

q+rho v dot b+ divergence of v dot tau, so this gives us the differential form of energy equation

and that is what we have summarized here. So differential form of energy equation conservative

form del rho eta/del t+ divergence of rho eta v, and this term missing in this equation ppt here

that body force term.
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We have obtained the differential form for total energy equation. Now if you want to obtain the

equation for thermal energy we simply need to subtract the contribution of mechanical energy, on

this  later  part  this  could  be  obtained  by  taking  dot  product  with  v  or  velocity  vector  of

momentum equation okay. Now the final equation is in terms of internal energy e del rho e/del t+

divergence of rho e*v = heat generation term q dot g- divergence of q+ gradient of v double dot.

This last term has been obtained from some algebraic manipulations, so the last time in our total

energy equation and its expanded form is del v dot dot tau this is basically del vj/del xj tau ij for

usual summation convention supply to give us a scalar term, this del v double dot tau, del v that

is a gradient of velocity vector which is say against our tensor, tau which is stress tensor which

against our tensor.

So  we  have  to  take  doubly  contracted  product  of  these  two  tensors  to  obtain  this  scalar

contribution and this term represents the work done by pressure as well as viscous dissipation.

Now let  us note that if  you are dealing with low speed flows which are very common with

incompressible  flows in particular, the contribution of the viscous dissipation would be very

small, the viscous dissipation is important only for high speed compressible flows.
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So for low speed flows we can simply draw this term off and combine the contribution coming

from pressure  into  a  right  hand  side  in  terms  of  enthalpy,  so  for  low speed  flows  viscous



dissipation is negligible contribution from pressure work can be combined with internal energy,

and this gives us the resulting equation for such flow that a low speed flows resulting energy

equation becomes rho CP DT/Dt the capital T represents the temperature and this capital D by Dt

this gives us material derivative this =q dot g- divergence of q.

So this is the thermal energy equation for low speed flows, here capital T stands for temperature

and CP is specific enthalpy at constant pressure sorry a specific heat at constant pressure, so CP

stands for a specific heat at constant pressure. Now for some substances specifically for heat

thermal  energy transfer in solids we can invoke Fourier’s law. So for the substance obeying

Fourier’s law they have got a very special relationship between heat flux q and the gradient of

temperature.

So the heat flux vector is given by -K*gradient of T where K is thermal conductivity for an

anisotropic substance this K would have 9 components it will be shaken our tensor but for simple

isotropic  medium  it  will  become  a  scalar  quantity.  So  now  if  you  substitute  the  Fourier’s

equation in the thermal energy equation which we have obtained earlier, so then we get on the

simplified form rho CP D of capital T/Dt this =qg dot+ divergence of K times gradient of T.

So this is a form of thermal energy equation for substances which obey the Fourier’s law, so in

this  lecture  we stop here.  In  the  next  lecture  we will  have a  look at  conservation  of  scalar

quantities we would obtain at transport equation for generalized scalar transport, and then we

will have a look at mathematical classification and the boundary conditions which we require for

the fluid problem.


