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Lecture – 07
Navier-Stokes Equation and its Simplified Forms

We will  continue  where  we  left  in  the  previous  lecture.  We were  discussing  Navier-Stokes

equations that is we discussed part of constitutive relations for a Newtonian fluid, it is where we

left in the previous lectures. We are going to continue from there and complete Navier-Stokes

equations and energy equation in this lecture.
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So summary of what we discussed in the previous lecture, we derived the Cauchy equation using

a differential control volume and then we started off with constitutive relations for different types

of fluids and in this lecture, we would focus primarily on Navier-Stokes equations for Newtonian

fluids and energy equations.
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Outline of this lecture. We will complete the constitutive relation for a Newtonian fluid and then

would substitute this in Cauchy equation to obtain the celebrated Navier-Stokes equations. We

will have look at few simplified forms, all other equations one of the most prominent amongst

them and then we would move on to the derivation of energy equation for a fluid body. So this is

where we were that we wanted to find out a constitutive relation for a Newtonian fluid for which

stress and strain rate relationship is linear.
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Which is given by tau=-pI lambda + divergence of vI+2 mu S, where S is our strain rate tensor.

How do we obtain this equation, this would be discussed in bit more detail.
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Now let us have a look at the constitutive relation for a Newtonian fluid. Now in the case of

Newtonian fluid, we say that the stress tensor must be linearly related to strain rate tensor. So the

most general form of this relationship of a linear relationship can be written as tau ij=Aij+Bij.

Now we have broken it  in 2 parts.  So here Aij,  this  part does not depend on velocity. So it

basically corresponds to the stresses at rest, that is the stress at a fluid in a state of rest.

And Bij, this is dependent on fluid motion. Basically, it would be proportional to the gradient of

velocity or more particularly, it is proportional to strain rate tensor. So if you recall at the end of

the previous lecture, we talked about the stresses in a fluid at rest.
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So if you look at that particular case what we call case 1, this fluid at rest and we can easily

identify that our Aij is basically -p times delta ij, where delta ij is Kronecker delta which is a

second  order  isotropic  tensor  and  p  is  our  thermodynamic  pressure  which  is  related  to

thermodynamic state of the fluid. For example, p=rho RT for an ideal gas. Now when we are

dealing with fluid motion, in our case 2, fluid motion an additional stress term, additional stress

Bij is generated due to viscous action.
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Now this additional term Bij, we commonly refer to it as Deviatoric stress tensor and we use a

symbol Sigma ij for it. Now this component is proportional to velocity gradients. In fact, we can

easily show that Sigma ij depends on the symmetric part of gradient of velocity because the anti-

symmetric part which represents the rotations, they do not contribute to stress generation. Hence

we can express Sigma ij as a product of a fourth-order tensor, let us call it as Kijmn*emn where

emn is our strain rate tensor.

Now as far as tensor K is concerned, in general, it would have 81 components which basically

represent  or  depend on the thermodynamic  state  of  the fluid but  this  should satisfy specific

requirements. For instance, the stress-strain relationship must be independent of rotation of the

coordinates. So stress-strain relation must be independent of rotation of coordinate axes.
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And this requirement implies that is Kijmn must be an isotropic tensor. So if that were the case,

then we will have a lot fewer components in K. In fact, this K can be expressed as a product of 3

constants and so we cannot isotropic tensor delta ij. So Kikmn, this is given by lambda*delta ij

delta  mn+mu*delta  im  Delta  in+gamma*delta  in  delta  jm.  Now  here  this,  we  have  got  3

constants, lambda, mu and gamma, these depend on thermodynamic state of the fluid.

We have got another requirement that our Newtonian fluid is isotropic and our stress tensor is

symmetric for isotropic medium. So stress tensor is symmetric which requires that is Kijmn must

be symmetric with respect to i and j analysis and this is possible only if, gamma=mu. So this

requirement reduces the number of material properties which we require by 1.

(Refer Slide Time: 13:15)



So now what we are left with is only 2 metal properties that is our Kijmn=lamda*delta ij delta

mn+2 mu delta im delta jn. So now these to material constants, they have got specific name,

lambda and mu or historically  referred to as, referred as coefficients of viscosities.  Our task

would be to see what happens if we substitute this expression for Kij into sigma ij.

So our stress tensor sigma ij would be given by, sigma Ij=lambda*delta ij delta mn emn+2 mu

delta im delta jn emn and this expression simplifies to sigma IJ=lambda*delta ij emm+2 mu eij.

Now we can clearly say that this emm, it is nothing but divergence of the velocity vector and eij

is our usual strain rate tensor. So now we can substitute for sigma ij in expression for tau ij and

our stress tensor tau ij is given by -p delta ij+lambda delta ij emm+2 mu eij.

So this is generic relationship between the stress tensor and strain rate tensor for a Newtonian

fluid.
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Now we will see what further simplifications we can have. If our fluid were incompressible or

the fluid flow were incompressible. So for an incompressible flow, divergences of the velocity

vector which is what this emm represents, this is = 0 and we get a simpler relationship, so this

simplified form for incompressible flows as tau ij=-p delta ij+2 of mu eij that is we have got a

single material constant which relates this stress tensor to the strain rate tensor.

This is our usual coefficient of viscosity. So mu is fluid viscosity. So this is what we had that the

expression which we have obtained tau=-pI+lambda times divergences of v*I+2 mu*S and for

incompressible Newtonian or a Stokesian fluids, we had tau=-p*I+2 mu*S.
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Can  we  obtain  a  similar  relationship  or  simpler  relationship  for  general  or  compressible

Newtonian fluid, that is what our task would be.
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So  for  a  general  fluid  what  was  observed  by  Stokes  is,  for  compressible  fluids  or  rather

compressible Newtonian fluids, we have got a term which is called bulk viscosity which is given

by kappa=lambda+2/3 mu and this was observed by Stokes to be very, very small. So the Stokes'

hypothesis is this kappa is almost = 0.

This  immeasurable  quantity  but  is  measurement  of  kappa  would  require  very  large  density

gradients which occur only in shockwaves and for majority of engineering fluids, for instance air

and water, we have observed this Stokes hypothesis works pretty well. So kappa=0, this implies

that our lambda=-2/3 mu. So with Stokes hypothesis, now we have got only 1 material constant

or material property which is there in stress-strain relationship.

And now we can express our stress tensor tau ij = -p+2/3 mu divergence of velocity*delta ij+2

mu eij. Now since this relationship which we obtained was based on Stokes hypothesis. So this is

also called constitutive relation for Stokesian fluid and if we substitute this expression for tau ij,

in a Cauchy equation, the resulting equation is referred to as Navier-Stokes equation.

So this is what we get if we substitute for tau ij using Stokes hypothesis, we get a general form of



Navier-Stokes equation given by del rho v/del t+ divergences of rho vv=rho b-gradient of p+2

divergence of mu*S-1/3 divergence of v*i. Now this equation was independently derived by a

French gentlemen Navier  and the  British gentleman Stokes,  that  is  why these equations  are

referred to as Navier-Stokes equations.

We can have various simple forms or simplified forms of these equations.

(Refer Slide Time: 23:09)

We have only seen 1 form for incompressible fluids and that simple form is given by del/del t rho

vi+del/del xj of rho vivj=-del p/del/xi+2 mu del/del xj del vi/del xj+del vj/del xi/2. Now if we

assume, if you want we can divide by density on both the sides or let us leave it as such by

noting here that density rho is constant. Now if temperature variations were small, mu can be

assumed as a constant and simplified form of this NS equation for an incompressible flow can be

given as del v/del t+divergence of vv=-gradient of p/rho+mu*Laplacian of v.
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For Newtonian fluids, we can have few other simpler forms and other simpler form is what we

call for inviscid fluid which leads to a so called Euler's equations. Now this Euler's equation is

specifically valid for high-speed flows. For example, around an aircraft, okay. Now away from

the solid surfaces that viscous effects can be neglected or negligible and hence our stress tensor

is just that due to pressure.

And we get a very simple form for this equation, viscous terms drop out and what we get is del

rho v/del t+ divergence of rho vv=rho b-gradient of p. So this simplified form was derived by

Euler and that is why this is called Euler's equation and it is very widely used in numerical flows

simulation for flows over aircraft and winged bodies. There is another case of interest which is

extreme of that of the Euler equation. Suppose what we had is for low Reynolds number flows.
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Now Reynolds number could be low because of what, that flow velocity is very small or the

second case is, the fluid is very viscous or the third condition could be geometric dimensions are

very small. So this last case could occur if we are dealing with electronic devices or the flow-

through biological systems, we have got very small length scales in capillaries.

So  in  such  situations  in  either  of  these  situations,  what  we  would  have  is  our  non-linear

convective terms, terms which are represented by this divergences of rho vv, these are negligible

and the flow is dominated primarily by, flow is dominated by pressure, body forces and viscous

forces. This particular flow is referred to as creeping flow and we have got a very simple form

which Navier-Stokes equation takes in this case, mu*del square of v+rho*b-gradient of p=0.
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There are various other simpler forms, the most important functions I would likely refer to the

ones where we have got buoyancy driven flows in which case the density  variations  can be

ignored everywhere except in the momentum equation by including a term which accounts for

density variations. For this and various other cases, please refer to the following book.

So  just  for  the  sake  of  recap  of  what  we  have  discussed  so  for  in  connection  with  our

conservation laws, good references could be the books by Bachelor, this book published in 1973

is one of the classic books, Introduction to Fluid Dynamics by Cambridge University Press. A

more, a recent book is that by Kundu and Cohen, this most recent edition was published in 2008

by Academic Press. The book is simply titled as fluid mechanics published by Academic Press.

So these 2 references will give fairly detailed derivation of the governing equations of fluid flow

which we had discussed so far.
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I would just like to mention few other simplified cases that we have already seen incompressible

flow which leads to simpler continuity and momentum equations. We have already seen inviscid

flows  which  is  or  approximations,  very  useful  approximations  for  the  case  of  high-speed

aerodynamics and these are given by Euler equation.

We can also have another possibility that if you are dealing with high-speed flows away from the

solid surfaces where we can ignore not just the viscosity, that is to say our flow is inviscid if in

addition it is also what we call irrotational, that is the vorticity present is very, very small or

negligible.  We can represent  our  velocity  as  a  gradient  of  a  scalar  function  which  is  called

velocity potential.

And in that case, we got a further simplification that instead of solving full equations, one for

continuity  and  free  momentum equations,  we can  have  a  single  equation,  single  this  scalar

equation  which  is  called  Laplace  equation  for  scalar  velocity  potential.  So  in  numerical

stimulation, this case becomes a lot easier, we need to just solve for this scalar velocity potential,

take its gradients and we would get all the velocity components.

We can invoke the Bernoulli's equation to get the pressure field and so on. So this simplified and

potential flow model is also very commonly used in some hydrodynamic flow stimulations as

well as in aerodynamics flows. In the next lecture, we will cover or discuss in detail the energy



equation.
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You will start from the first law of thermodynamics and we would obtain integral form of energy

equation which is just for the sake of summary, we have given here del/del t of cv rho eta d

omega+ surface integral of rho eta v.dA=q*d omega, this is a volume integral, -q.dA+v.tau.dA.

On the left-hand side this eta that this represents the total energy per unit mass of a fluid which

consists of internal energy as well as kinetic energy.

The potential energy has been incorporated in this flow work on the right-hand side. So the first

term is temporal variation, the second one is conviction of eta with velocity field. The first term

on the right-hand side represents volumetric heat generation due to volume sources in the fluid

medium. The second term q.dA, q is q of surface flexes, so that represents what we call heat

diffusion through the control surfaces.

And the last term represents the flow work which involves the work which the fluid must do

against the stresses which incorporate the effect of both surface forces as well as body forces.

Now how do we obtain this equation starting from the first of thermodynamics, that is what we

will discuss in detail in the next class and would obtain this integral form as well as appropriate

differential forms for the energy equation.


