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Momentum Equation: Navier-Stokes Equations

Welcome back to the next lecture in Mathematical Modeling. We had already finished a brief

look at  conservation  laws,  notation  in  mathematical  parameters  and we started  off  with  the

governing equations of fluid flow. We have derived continuity equation and Cauchy equation.

The reviewed focus on the specialized form (()) (00:49) to make equation for a Newtonian fluid

which we call Navier-Stoke equation. Before we proceed further, let us see what we did in last

lecture.

(Refer Slide Time: 00:52)

In the previous lecture, we derived the internal form of momentum starting from Newton second

law of motion for an arbitrary control  volume and thereafter  we invoked Gauss divergences

theorem and  obtained  a  differential  form of  momentum equation  starting  from this  integral

equation. Now, in today’s lecture, we would focus on obtaining an appropriate form for what we

call Newtonian fluids that is of a popular Navier-Stokes equations which form the backbone of

practical CFD analysis as outlined in today’s lecture.

(Refer Slide Time: 01:37)



We would finish the unfinished business of previous class. We would derive the Cauchy equation

using differential control volume. Then, we would have a look at what we mean by constitutive

relations and thereafter we would derive Navier-Stokes equations. We will also have a look at

few simplified forms notably the Euler’s equation. Now, this is what we did yesterday. 

(Refer Slide Time: 02:06)

We derived the differential form momentum equation starting from the integral form and the first

one  was  so-called  conservative  form  given  by  del  rho  V/del  T+  divergence  of  rho

VV=divergence of tau+rho*B where tau is stress tensor B is a body force and this equation is

popularly referred to as Cauchy equation of motion. Same equation we can write in  Cartesian

component form using tensor notation del of rho Vi/del T+del/del X rho ViVj=del tau Ij/del



Xj+rho Bi.

So this represents the momentum equation or Cauchy equation for (()) (02:47) component of

velocity. So, we have got a total of three components for three-dimensional space.

(Refer Slide Time: 02:54)

Now  today,  we  would  focus  on  obtaining  the  same  equation  in  differential  form  using  a

differential control volume in Cartesian coordinates. So, to derive this equation, let us first have a

brief look at the conventions used for the stress components.

(Refer Slide Time: 03:15)

Conventions for this stress components.  For the sake of clarity, let us draw a two-dimensional



element with X direction, with Y direction and let us identify the stress components which we

work on the small element. The first one on the right face which you would call this as your

positive explain.  Because normal to this area element,  points in positive X direction.  So, the

stress component here is referred as tau XX normal component on this phase and it would be

considered to be positive if it is aligned in X direction.

Similarly, you have a sheer component on the surface directed in Y direction, it is called tau XY.

Similarly, on the negative X phase tau xx and we can draw the stress components on Y plane.

This is tau yy. This is normal component,  tau yx, tau xy and this is tau yx. So, what is the

Convention which you have adopted. Suppose we use symbol tau x1, x2, this denotes a stress

component on X1 plane directed in X2 direction.

For example, if you see this tau xy, this denotes sheer component on X plane directed along Y

direction. So, this is about the subscript notation which we used to identify different components.

The next one is when will these components be considered positive. The stress components are

considered positive if  the two possibilities  that  if  they are along positive coordinate  axis on

positive planes, i.e., the planes whose normal are in positive axis direction and B on negative

planes aligned along negative axis.

(Refer Slide Time: 07:15)

So, that is why if you look at the way had drawn this tau yy on a Y plane, this is a positive signs



of  the  stress  component  and  it  is  pointing  negative  Y direction.  Same  holds  for  the  sheer

component  tau yx on this  negative Y plane.  It  will  be considered positive if  it  is  aligned in

negative X direction.

(Refer Slide Time: 08:51)

Now, let  us move on to our momentum equation and we are going to derive it in Cartesian

components. First, let us find out forces acting on a differential element. So, let us draw a simple

differential volume in three-dimensional space. This labeled access properly X, Y and Z. So,

origin for the sake of clarity, now let us identify the stress components which are aligned in X

direction.

Each side of this element, it has got Dx in X direction, Dy in Y direction and Dz in Z direction.

Now, let us identify the stress components first on the positive X plane which will act on the

centroid of the space. On negative X phase while this is tau xx. Now, with reference to the origin,

this  tau xx component  acting  on the positive  X phase that  can be  denoted by Taylor  series

expansion.

This can be written as tau xx+del tau xx/del XDx and if you want to find the forces on these

phases, we need to multiply by the respective areas, we will do that later. Now, what are the

sheer components which would work along X direction. Let us focus on positive Y plane. So, we

would have one sheer  component  which will  be along positive  X direction.  Similarly, on a



negative Y phase, it would be aligned in negative X direction.

So, this component is tau yx and this tau yx component on positive Y phase, this would be given

by tau yx+del tau yx/del YDy. Similarly, we can identify the sheer components which work

along X direction on Z phases. On positive Z face, it will act in positive X direction and on

negative Z phase it will act in negative X direction. So, it is tau zx. On the positive Z phase, we

can represent in terms of Taylor series expansion and is tau zx+del tau zx/del ZDz.

What would be the body force in X direction. So, this mass of this differential element DM is rho

DxDyDz. So, if you denote our body force by symbol B, the body force per unit mass, then body

force in X direction. Let us call that as DFBX, this will be simply DM*Bx or rho BxDxDy. Next,

let us find out the surface forces in X direction, let us call this as DFSX. So, let us see, let us find

out all the components. First, let us write the components due to the normal stress tau xx in X

direction.

So, on positive X phase, we have got tau xx+del tau xx/del XDx*by area DyDz. The force acting

on the negative X phase due to this normal component, i.e., negative X direction and this given

by –tau XxDyDz.

(Refer Slide Time: 16:22)

Next, the force due to the sheer component, first once on the Y plane. So, on negative Y plane we



have got –tau YxDxDz plus the component which is acting on the positive Y plane, i.e.,  tau

YX+del tau YX/del YDy*DxDz.

The last  term would be  the  contribution  coming  from sheer  stress  on  Z planes.  So,  on the

negative Z plane, we have got –tau ZxDxDy and on positive Z plane,  this stress component

multiplied by area and we get the force. So, tau ZX+del tau ZX/del Z DzDxDy. So, we can

clearly see the first on this component gets cancelled by this, tau YX gets cancelled. Similarly,

here tau ZX gets cancelled with tau Z.

We get a very simplified form for this DFSX and this is given by del tau XX/del X+del tau

YX/del Y+del tau ZX/del Z DxDyDz. So, finding the resultant force in X direction is now very

simple. So, thus resultant force in X direction DFX which is sum of surface and body forces that

will become rho BX+del tau XX/del X+del tau YX/del Y+del tau ZX/del Z DxDyDz. Now, we

can invoke Newton's second law and we have got one form of Newton's second law which says

F=MA. 

See, if we apply this particular form and apply it to a small differential element, so what do we

get  DM*AX which is  given in  to  rho DxDyDz*D of U/DT. D/DT is  metal  derivative  of  X

component which gives us the acceleration in X direction. This will be equal to D of FX which

you  have  derived  previously.  If  we  substitute  these  two  equations  and  simplify,  we  get

rho*DU/DT=rho BX+del tau XX/del X+del tau YX/del Y+del tau ZX/del Z. 

So, this is the momentum equation derived in X direction or for X velocity component. We can

repeat the same exercise and we can obtain these differential equations for two other velocity

components as well and you can easily identify what we have derived just now. This represents

non-conservative  form  of  momentum  equation.  So,  to  derive  the  conservative  form  of

momentum equation, we have already found out what are the forces acting on this differential

element.
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Now let  us  find  out  the rate  of  momentum efflux and once again  we would  focus  only on

momentum exchanges in X direction and to simplify the visual representation, let us first take a

two-dimensional  element  or  rather  let  us  have  a  look  along  XY plane  and  let  us  see  the

momentum efflux or influx which is coming from different areas. At the centroid of the net X

plane, we have the velocity component given by U and rate of mass that will be given by rho*U.

On the positive X phase, here this U has to be obtained from Taylor series expansion, UX+delta

X. Similarly, this rho U, this has to be obtained again in terms of Taylor series expansion. Same

thing about the Y velocity components. So, V component rho V which will represent influx with

this velocity. On the positive Y plane, we will have the fluid going out with the velocity V. Now,

these quantities must be evaluated at Y+DY.

Now if you look at these Y planes, the contribution of these velocities in X direction momentum

efflux would not come directly from this but in a speed what is the momentum transfer along X

direction that would be given by finding out what would be the X velocity components at these

locations. So, with reference to the centroidal planes at negative Y plane, we have X velocity

which should be evaluated at Y-DY/2 and the top phase, it has to be evaluated at +DY/2.

Okay, now let us find out this momentum exchanges arising from each velocity component. So,

momentum efflux  in  X direction,  number  one  due  to  velocity  component  U which  is  in  X



direction, let us call this as PXX. So, what is the momentum going out, it is rho U at X+DX*by

the  area  DyDz,  that  gives  us  the  mass  flow  rate  multiplied  by  the  velocity  here  which  is

evaluated at XDx-the incoming momentum which would be given by rho UDyDz*U.

Expand  the  first  term on the  right  hand  side,  so  you  will  have  rho  U+del  of  rho  U/del  X

Dx*DyDz*U+del U/del X Dx-rho UyDz*U. Let us carry out the multiplications and find out

which terms we have to retain. So, first multiplying two terms on the first side, so you get rho

UUDyDz+U times del/del X of rho U DxDyDz+rho U times del U/del X DxDyZ+del of rho

U/del X, del U/del X, DX square DYDZ-rho UU DxDyDz.

(Refer Slide Time: 28:32)

So, last term gets cancelled with the first term and let us take out DxDyDz outside. So, we are

left with U times del of rho U/del X+rho U times del U/del X+del of rho U del X del U/del

X*Dx and this whole thing gets multiplied by the differential volume DxDyDz. These two terms

can be combined as a single derivative by using chain rule, so this can be written as del of rho

UU/del X+del of rho U/del X del U/del X DxDyDz.

Now, let us have a look at the second term in the bracket, i.e., this particular term. It is being

multiplied by the differential area element Dx which is finitely small quantity. So, compared to

the first term, this can be easily neglected. So, we can approximate Pxx as del of rho UU/del X

DxDyDz. We can repeat the similar exercise and we can find out that momentum efflux in X



direction due to velocity component V, we call this as Pyx. This can be obtained as del of rho

UV/del Y DxDyDz and similarly we can obtained the contribution of Z velocity component.

(Refer Slide Time: 31:15)

Not let us combine these together. So, this rate of momentum efflux in X direction, let us call it

small Px out. This is sum of three terms which you have done earlier, Pxx+Pyx+Pzx. P dot X out,

this can be written as del X of rho UU plus partial derivative with respect to YF rho UV plus

partial derivative with respect to Z of rho Uz. So, now what is the rate of momentum change in X

direction.

For this differential element, rate of change of momentum in X direction DPx/DT. We can invoke

this Reynolds transport theorem. So, this will be given by del of PX/del T+P dot X out. Now,

what is Px. Px is nothing but DM*U which is rho DxDyDz. So, therefore DPx by DT is del of

rho U/del D+del X of rho UU, del Y of rho UV+del of del Z of rho UZ*DxDyDz. Now, from

Newton's second law, this DPx/DT, this would be equal to the resultant  force in X direction

which we have denoted by DFRX which we have derived earlier.

Let us substitute the expressions of both of them. So, on our left hand side, we get del of rho

U/del T+del of del X of rho UU+del of del Y of rho UV+del of del Z of rho UZ*DxDyDz.
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This is equal to our force term rho BX+del tau XX over del X+del tau YX/del Y+del tau YZ/del

Z DxDyDz. We can divide by this volume of differential element DxDyDz and thereby we get X

momentum equation,  del rho U/del T+del of rho UU/del X+del of rho UV/del Y+del of rho

Uz/del Z=rho BX+del tau xx/del X+del tau yx/del Y+del tau zx/del Z.

This is precisely the expanded form of Cauchy equation in X direction.  So, this is Cauchy’s

equation in conservative form, okay. So, we have now derived only one component or equation

for only one momentum component. The similar equations can be derived for the momentum

equations in other two directions. The whole purpose of doing this exercise was that how we can

obtain the desired governing equations starting from the first principles.

(Refer Slide Time: 38:09)



As an exercise, you can try and derive momentum equation in planar polar coordinates or let us

say cylindrical polar coordinates. So, derive the momentum equation for a 2D case using a polar

differential element, i.e., using R theta coordinates. So, once we have done this exercise, this

would give us the confidence that for a specific application, this would be able to derive the

governing equations ourselves which is the first step in our numerical simulation.

(Refer Slide Time: 39:45)

Now, let us get back to the formal form of these equations. So, what we had on the left inside, the

first term in momentum equation that is what we call temporal derivative which was in terms of

the density rho and velocity components, velocity vector V. The second component what we call

the connector term which again involves rho and V. On the right hand side, we got two terms, the



first one is divergence of tau where tau is the second (()) (40:18) and the last term is in terms of

rho*B, B is our body force.

In the given problem, we have to obtain what would the density be. We would like to find out

what  are  the  velocity  components  at  each  point  in  the  flow domain.  B would  normally  be

specified  but  how about  tau.  If  we combine  Cauchy equation  with  our  continuity  equation,

continuity equation gives us equation for transport of density, so that is one equation and the

Cauchy equation of motion represent a set of three equations.

So, we have got four equations in terms of how many tensor; density is one, three components of

velocity that makes it four and we have got nine components of this stress tensor. So, this system

equation is still not closed.

(Refer Slide Time: 41:26)

We have got more number of unknowns than the number of equations and that brings us to the

topic of what we call constitutive relations, i.e., we have got nine additional unknowns which are

components of stress tensor in our momentum equation. Now, these nine unknowns they must be

modeled or they must be expressed in terms of a primary unknowns which are velocity pressure

and density.

So, we need to use what we call constitute models for relating the stress tensor to the velocity



components. In fact, we will try to relate the stress tensor to the rate of the strain tensor. So,

relationship between stress tensor and rate of strain tensor is what we would call a constitutive

relation. The simplest model which was proposed long time ago by Newton is a linear relation

between  the  stress  and  strain  rate  and  this  model  is  valid  for  what  we  call  Newtonian  or

Stokesian fluids.

Why do we call these fluids as Stokesian that would become clearer when we look at the formal

derivation for our Navier-Stokes equations.

(Refer Slide Time: 42:34)

Now, let us look at a general constitutive relation. Now, when we want to relate the stress tensor

to the strain rate tensor, we can write a general functional form tau is equal to a function of the

strain rate tensor S. The first derivative of S the second derivative with respect to time of S and

so on where the strain rate tensor S is given as 1/2 gradient of V+ gradient of V transpose. Now,

you  might  wonder  why  you  have  just  taken  the  strain  rate  tensor  and  why  not  rotational

component.

Normally, what we would think that in a moving fluid, the stress arises due to velocity gradients,

but if you look carefully the rigid body rotations which were represented by the rotation tensor,

they do not contribute to the stress generation and thus why the stress is normally related only to

the strain rate tensor. To give a simple example of this particular functional form for a second



order fluid with memory which is typically referred to as viscoelastic fluid.

Tau could be given as –P*I where this I represents Kronecker delta or identity matrix which is a

second order tensor with nine components +alpha 1 times S+alpha 2 times S square +alpha 3

times  S  dot.  Now, here  these  P, alpha  1,  alpha  2,  and  alpha  3,  these  will  depend  on  the

thermodynamic  state  of  the  fluid.  For  Newtonian  fluid  where  we  have  a  simple  linear

relationship between stress and the rate of strain, we get a fairly simplified relationship.

How do we obtain this relation is tau=-Pi+lambda times divergence of V*I+ twice mu times S,

we will find it out. How do we say that if  we assume a linear variation,  we would get this

particular component and the term if you look carefully we have got tau=-P*I, from where this P

crops up, what is justification of having this scalar term in a momentum equation. So, now let us

look at that justification.

(Refer Slide Time: 45:21)

This is constitutive relation for a Newtonian fluid. What do we mean by Newtonian fluid here.

We would focus only on the fluids for which stress and strain rate relationship is linear. You will

not consider the so-called non-Newtonian fluids for which the stress-strain relationship is non-

linear. Now, if we are dealing with this isotropic fluid, in an isotropic fluid medium whatever

constitutive relation we come up with that should satisfy few constraints.



So, let us consider two specific cases. The first case is fluid at rest. When the fluid is at rest, what

do we say in this case that stress is in the fluid or independent of direction of orientation of a

specific plane. In fact, this is nothing but what we call as Pascal's law which says that in a static

fluid we have an isotropic state of stress which is the same or it can be reworded what we say.

We have got a single scalar component or a scalar quantity which describes the state of stress in a

static fluid, i.e., stress state is given by a scalar quantity which is called pressure.
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So, if that were the case for static fluid, we must represent the stress tensor as -P times I where I

is our Kronecker delta or identity matrix or in component forms, we can write tau IJ=-P times

delta IJ. Now, the presence of negative sign before P that is due to the convention which we

follow for P and tau.

The normal components of tau are considered positive intention whereas pressure P is considered

positive in compression. So, that is the reason why we need a negative sign on RHS. So, we have

seen the state of stress how we are going to represent for a static fluid. The remaining part at

what happens for fluid in motion. Here we will have additional stressors, stressors generated due

to viscous action, okay.

So, we are going to stop here in this lecture and what could be the additional forms or additional

terms which we need to add to obtain the stress tensor for removing fluid is what we will look at



in the next lecture.


